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We study QCD finite energy sum rules (FESR) for the axial-vector current correlator in the presence of a
magnetic field, in the weak field limit and at zero temperature. We find that the perturbative QCD and the
hadronic contribution to the sum rules get explicit magnetic-field-dependent corrections and that these in
turn induce a magnetic field dependence on the deconfinement phenomenological parameter s0 and on the
gluon condensate. The leading corrections turn out to be quadratic in the field strength. We find from the
dimension d ¼ 2 first FESR that the magnetic field dependence of s0 is proportional to the absolute value
of the light-quark condensate. Hence, it increases with increasing field strength. This implies that the
parameters describing chiral symmetry restoration and deconfinement behave similarly as functions of the
magnetic filed. Thus, at zero temperature the magnetic field is a catalyzing agent of both chiral symmetry
breaking and confinement. From the dimension d ¼ 4 second FESR we obtain the behavior of the gluon
condensate in the presence of the external magnetic field. This condensate also increases with increasing
field strength.
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I. INTRODUCTION

Lately, the properties of strongly interacting matter in the
presence of external magnetic fields has become a very
active research field. One of the driving motivations behind
this interest is the possibility to study experimentally such
properties in peripheral collisions of heavy nuclei at high
energy. In addition, recent lattice QCD (LQCD) results
show that the critical temperature for deconfinement/chiral
symmetry restoration decreases with increasing field
strength [1]. This behavior is dubbed inverse magnetic
catalysis, and it reveals an unexpected, nontrivial phe-
nomenon: in a thermal environment, near the transition
temperature, the presence of a magnetic field acting on
strongly interacting matter hinders the formation of a
quark-antiquark condensate. LQCD calculations [2] show

that the quark condensate does increase with increasing
magnetic field at low temperatures. This behavior corre-
sponds to magnetic catalysis. However, as the temperature
increases approaching the crossover region T ≃ 150 MeV,
the quark condensate reaches a maximum value smaller
than at T ¼ 0 (for the same field strength). Subsequently,
the condensate decreases as a function of the field strength.
Finally, for temperatures above the crossover values the
condensate decreases monotonically as a function of the
magnetic field. Some of the possible scenarios aiming to
understand this behavior include (i) invoking a fermion
paramagnetic contribution to the pressure with a sufficiently
large magnetization [3]; (ii) the competition between the
valence and sea contributions at the phase transition [4]
produced by a backreaction of the Polyakov loop, which
depends on the magnetic field [5]; (iii) magnetic inhibition
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due to neutral meson fluctuations in a strong magnetic
field [6]; (iv) accounting for nonperturbative effects by
means of Schwinger-Dyson equations and renormaliza-
tion group analyses [7–9]; (v) a decreasing magnetic field
and temperature-dependent coupling with [10–12] and
without [13,14] plasma screening effects; (vi) the proper
account of the gluon contribution during the phase
transition [15]; and (vii) quark antiscreening due to the
anomalous magnetic moment of quarks in strong [16] and
weak [17] fields. On the other hand, this behavior is not
obtained in mean field approaches describing the thermal
environment [18–23], nor when calculations beyond the
mean field do not include magnetic effects on the coupling
constants [24]. For recent reviews see Refs. [25,26].
Given the dual nature of the QCD phase transition, a

pertinent question is to what extent inverse magnetic
catalysis is due to the mechanisms of either chiral sym-
metry restoration and/or of deconfinement. One way to
address this question is to find a relation between decon-
finement and chiral symmetry restoration parameters as a
function of the magnetic field. Since the transition happens
for temperatures in the realm of nonperturbative phenom-
ena, the relation searched for needs to carry nonperturbative
information. An extensively used tool in the context of
effective models at finite temperature and zero [27] and
finite [22] magnetic field is the Polyakov loop [28]. When
coupled to quark degrees of freedom this loop sheds light
on how chiral symmetry and deconfinement behave during
the QCD transition as a function of the field intensity.
Another nonperturbative tool that does not rely on effective
models is that of QCD finite energy sum rules (FESR).
This approach has been successfully applied both at zero
[29] and at finite temperature [30] to understand hadronic
properties. Of particular mention are (i) the prediction, in this
framework, of the survival of charmonium and bottomonium
above the critical temperature [31]; (ii) the temperature
behavior of the hadronic width of charmonium and botto-
nium [31] in qualitative agreement with bottonium results
from LQCD [32]; and (iii) the description of the dimuon
spectrum in heavy-ion collisions [33], in excellent agreement
with data [34] in the region of the rho-meson peak. A key
parameter that emerges from this analysis signaling quark-
gluon deconfinement is the squared energy threshold, s0,
above which the hadronic spectral function is well approxi-
mated by perturbative QCD (pQCD). An interesting relation
between s0 and the quark condensate hq̄qi, whereby the
former is proportional to the latter, has been found, in the
absence of a magnetic field and at finite temperature, in [35],
and at finite temperature and density in [36].
In this paper we use FESR in the axial-vector channel,

and in the presence of an external magnetic field, to
explore the relation between (i) the deconfinement and
chiral symmetry restoration parameters, s0 and hq̄qi; and
(ii) obtain the behavior of the gluon condensate as a
function of the magnetic field intensity at zero temperature.

Other formulations of the QCD sum rules, also at T ¼ 0,
have been used to explore the dependence of heavy-quark
meson masses and mixing as a function of the magnetic
field strength [37]. The paper is organized as follows: In
Sec. II we set up the FESR. We show that since the pQCD
contribution to the current correlator receives corrections
that can be expressed as powers of the magnetic field
strength divided by powers of the squared energy s, there
appear additional terms that contribute to higher order
FESR. In Sec. III we explicitly compute the pQCD
corrections to the current correlator and solve the first
two FESR to find the dependence of s0 and the gluon
condensate on the magnetic field strength. We show that for
magnetic field strengths eB smaller than s0, the former
follows the magnetic field dependence of the quark con-
densate, which we parametrize from LQCD results [2].
We also show that the magnetic field dependence of the
gluon condensate receives nontrivial corrections from
the pQCD sector and that overall it is a monotonically
increasing function of the field strength. We summarize and
conclude in Sec. IV, leaving for the appendixes the explicit
computation of the imaginary part of the hadronic con-
tribution and the vanishing of the first order correction in
the field strength of the pQCD contribution to the axial-
vector current correlator.

II. FINITE ENERGY QCD SUM RULES IN THE
PRESENCE OF A MAGNETIC FIELD

The charged axial-vector current correlator in the
absence of a magnetic field and at T ¼ 0 can be written as

Πμνðq2Þ ¼ i
Z

d4xeiqxh0jTðAμðxÞ; A†
νð0ÞÞj0i

¼ ð−gμνq2 þ qμqνÞΠAðq2Þ þ qμqνΠ0ðq2Þ; ð1Þ

where AμðxÞ ≕ d̄ðxÞγμγ5uðxÞ∶ is the (charged) axial-vector
current, qμ is the four-momentum carried by the current,
with s≡ q2 > 0 the squared energy. The functions
ΠA;0ðq2Þ are free of kinematical singularities, an important
property needed in writing dispersion relations and sum
rules. Concentrating on e.g. Π0ðq2Þ and invoking the
operator product expansion (OPE) of current correlators
at short distances beyond perturbation theory, one of the
two pillars of the QCD sum rule method, one has

Π0ðQ2ÞjQCD ¼ C0Î þ
X
N¼1

C2NðQ2; μ2Þ
Q2N hÔ2Nðμ2Þi; ð2Þ

where Q2 ≡ −q2, hÔ2Nðμ2Þi≡ h0jÔ2Nðμ2Þj0i, and μ2 is a
renormalization scale. The Wilson coefficients CN depend
on the Lorentz indexes and quantum numbers of the
currents, and on the local gauge invariant operators Ô2N
built from the quark and gluon fields in the QCD
Lagrangian. These operators are ordered by increasing
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dimensionality and the Wilson coefficients are calculable in
pQCD. The unit operator above has dimension d ¼ 0
and C0Î stands for the purely perturbative contribution
normalized according to

C0Î ¼
1

4π
ln

�
−s
μ2

�
½1þOðαsðsÞÞ�: ð3Þ

Since there are no dimension d ¼ 2 operators built from the
QCD fields, it is generally assumed that the OPE starts at
dimension d ¼ 4. This is fully confirmed by determinations
of condensates from experimental data [38]. The dimension
d ¼ 4 in the chiral limit is proportional to the renormaliza-
tion group invariant gluon condensate

C4hÔ4i ¼
π

3
hαsG2i: ð4Þ

The second pillar of the QCD sum rule method is to
consider an integration contour in the complex square
energy plane, as in Fig. 1, and invoke Cauchy’s theorem
assuming that QCD can be used on the circle of radius js0j,
provided js0j is large enough (quark-hadron duality). On
the real axis there is a discontinuity associated with the
hadronic states entering the spectral function. Since there
are no further singularities this leads to the FESR

−
1

2πi

I
Cðjs0jÞ

dssN−1ΠQCD
0 ðsÞ ¼ 1

π

Z
s0

0

dssN−1ImΠHAD
0 ðsÞ;

ð5Þ
with N ≥ 1, and ΠQCD

0 ðsÞ given by the OPE, Eq. (2). It will
be shown later that in the presence of a magnetic field, and
in the weak field limit eB < s0, the Wilson coefficients
acquire themselves a B-field dependence. In this work we
shall compute the corrections to the FESR due to a weak

magnetic field, which can be expressed as a series in
powers of eB. Since the magnetic field carries dimension
of energy squared, on dimensional grounds one finds the
replacements

C0 ln
�
−s
μ2

�
→ C0 ln

�
−s
μ2

�
þ
X
n¼1

CðnÞ
0

ðeBÞn
sn

C2N →
X
m¼0

CðmÞ
2N

ðeBÞm
sm

ð6Þ

where CðmÞ
2N are dimensionless quantities that can be

computed in pQCD at a given order in eB. Substituting
Eqs. (6) and (2) into Eq. (5), one obtains

−
XN−1

m¼0

ð−1ÞN−mCðmÞ
2ðN−mÞðeBÞmhO2ðN−mÞi

¼ 1

π

Z
s0

0

dssN−1ImΠHAD
0 ðsÞ − C0

N
sN0 þ CðNÞ

0 ðeBÞN: ð7Þ

Note that in general the presence of the magnetic field
mixes operators of different dimension in the FESR.
For instance, the first two sum rules ðN ¼ 1; 2Þ become

0 ¼ 1

π

Z
s0

0

dsImΠHAD
0 ðsÞ − C0s0 þ Cð1Þ

0 ðeBÞ; ð8Þ

−Cð0Þ
4 hO4i þ Cð1Þ

2 ðeBÞhO2i ¼
1

π

Z
s0

0

dssImΠHAD
0 ðsÞ

−
C0

2
s20 þ Cð2Þ

0 ðeBÞ2: ð9Þ

In order to set up explicitly the relevant FESR we start by
computing the hadronic contribution. The axial-vector
current in the presence of a magnetic field can be
interpolated by the charged pion current

Aμ ¼ −fπDμπ
þ ¼ −fπð∂μ − ieAμÞπþ; ð10Þ

where fπ ¼ 130.28ð14Þ MeV [39] is the pion decay con-
stant, πþ the pion field, and Aμ ¼ ðB=2Þð0;−y; x; 0Þ the
vector potential in the symmetric gauge, which gives rise to
a constant magnetic field along the ẑ direction. Therefore,
the axial-vector correlator in the hadronic sector can be
written as

ΠHAD
μν ðx; yÞ≡ h0jTðAμðxÞ; A†

νðyÞÞj0i
¼ if2πh0jT½Dμπ

þðxÞD�
νπ

−ðyÞ�j0i
¼ if2πDμðxÞD�

νðyÞGπðx; yÞ
¼ ieieΦðx;yÞf2πð∂=∂xμÞð∂=∂yνÞ ~Gπðx − yÞ
≡ eieΦðx;yÞ ~ΠHAD

μν ðx − yÞ; ð11Þ
FIG. 1. Cauchy integration contour in the complex squared
energy s-plane used to obtain QCD FESR. The radius of the
circle, s0, is the threshold for pQCD.
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where we have used the fact that the charged pion
propagator Gπðx; yÞ in the presence of a magnetic field
can be written as a product of a translationally invariant
piece ~Gπðx − yÞ and a phase factor eieΦðx;yÞ. The phase
factor does not depend on the integration path so that
choosing a straight line trajectory it can be written as

Φðx; yÞ ¼
Z

y

x
AðξÞdξ; ð12Þ

where ξ ¼ ytþ xð1 − tÞ, t ∈ ½0; 1�. It is easy to show that
the above phase factor can be gauged away by a suitable
gauge transformation of the vector potential. Hence, we
keep only the translational invariant part of the hadronic
correlator whose Fourier transform is

ΠHAD
0 ðq2Þ ¼ if2π ~Gπðq2Þ; ð13Þ

where ~Gπðq2Þ stands for the Fourier transform of
~Gπðx − yÞ. Using Schwinger’s proper time method this
quantity can be written as

~Gπðq2Þ ¼
Z

∞

0

dτ
cosðeBτÞ e

iτ½q2∥−q2⊥ tanðeBτÞ=eBτþiϵ�; ð14Þ

where mπ ¼ 0 as we consider the chiral limit. Hereafter we
shall use the notation

gμν ¼ g∥μν − g⊥μν
g∥μν ¼ diagð1; 0; 0;−1Þ
g⊥μν ¼ diagð0; 1; 1; 0Þ: ð15Þ

Consequently

a · b ¼ ða · bÞ∥ − ða · bÞ⊥
ða · bÞ∥ ¼ g∥μνaμbν

¼ a0b0 − a3b3

ða · bÞ⊥ ¼ g⊥μνaμbν

¼ a1b1 þ a2b2

g∥μνgμν ¼ 2

g⊥μνgμν ¼ −2: ð16Þ

Extending the integration in Eq. (14) to the lower complex
plane, it can be shown [40] that the charged pion propagator
is expressed in terms of a sum over Landau levels

~Gπðq2Þ ¼ 2i
X∞
l¼0

ð−1ÞlLlð2q2⊥=eBÞe−q
2⊥=eB

q2∥ − ð2lþ 1ÞeB : ð17Þ

As it is customary in problems where Lorentz invariance
is lost and the correlators depend separately on the time and

space parts of the four-momentum, to simplify the analysis
hereafter we study the behavior of the correlator in the
static limit where the space part of the four momentum
vanishes. However, note that since the magnetic field
separates space-time into longitudinal and transverse direc-
tions with respect to the direction of the field, q0 comes
together with q3 to form q2∥ ¼ q20 − q23. It is therefore
equally simple to set q2⊥ ¼ 0, perform the analysis in terms
of q2∥ and then at the end, if needed, take q3 → 0. In this
limit, Eq. (17) becomes

~Gπðq2Þ ¼ 2i
X∞
l¼0

ð−1Þl
q2∥ − ð2lþ 1ÞeB : ð18Þ

Therefore the hadronic contribution to the correlator
becomes explicitly

ΠHAD
0 ðq2∥ ¼ sÞ ¼ −2f2π

X∞
l¼0

ð−1Þl
s − ð2lþ 1ÞeB : ð19Þ

As we show in Appendix A, the imaginary part of Eq. (19)
in the weak field limit, eB < s0, is given by

ImΠHAD
0 ðsÞ ¼ f2ππδðs − eBÞ: ð20Þ

It is important to mention that Eq. (20) holds provided s0
satisfies also the condition s0 < 3eB, as explicitly shown in
Appendix A. This means that the weak field condition
(eB < s0) has to be supplemented with a further restriction
for Eq. (20) to remain valid. Recall that s0 represents the
onset for the pQCD description for the axial-vector spectral
density and that this quantity is a decreasing function of
temperature [33]. For cold nuclear matter, as in the case of a
neutron star, the condition eB < s0 < 3eB may be difficult
to meet, especially for a weak field where not only the
situation eB < s0, but even neB < s0, (n ≥ 1), can happen.
However, for a heavy-ion collision, around the deconfine-
ment/chiral symmetry restoration transition, when s0 has
dropped off to small values, the weak field condition can
also be made compatible with eB < s0 < 3eB. Hereafter
we keep in mind this last observation as the working
scenario, aiming to eventually incorporate thermal effects
to describe the behavior of a magnetized medium near the
phase transition.
Using Eq. (20), the hadronic line integral in the FESR is

given explicitly by

1

π

Z
s0

0

dssN−1ImΠHAD
0 ðsÞ ¼ f2πðeBÞN−1: ð21Þ

Substituting Eq. (21) into the QCD sum rules Eqs. (8)–(9)
gives
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0 ¼ f2π − C0s0 þ Cð1Þ
0 ðeBÞ

−C4hO4i ¼ f2πðeBÞ −
C0

2
s20 þ Cð2Þ

0 ðeBÞ2: ð22Þ

In order to solve these equations, we now proceed to

compute explicitly the coefficients Cð1Þ
0 and Cð2Þ

0 .

III. SOLUTIONS FOR s0 AND C4hO4i
To perform the perturbative calculation of the coeffi-

cients Cð1Þ
0 and Cð2Þ

0 in the weak field limit we make use of
the weak field expansion of the quark propagator in the
presence of a constant magnetic field [41], and in the chiral
limit, up to order OðB2Þ

iSBðkÞ ¼ i
k
k2

− ðeqBÞ
γ1γ2ðγ · kÞ∥

k4

− 2iðeqBÞ2
½k2⊥ðγ · kÞ∥ − k2∥ðγ · kÞ⊥�

k8
; ð23Þ

where eq is the absolute value of the quark’s charge.
We emphasize that the weak field expansion of the fermion
propagator in the chiral limit is a well-defined object.
This happens because the weak field limit of the propagator
can be thought of as a series representation in powers of eB
of the full propagator independent of any relation between
the strength of the magnetic field and the fermion mass.
One can then use this series representation and take the
chiral limit as much as one can do it for the usual fermion
propagator in the absence of the field; depending on the
process considered, this limit could lead to infrared
divergences but it does not preclude the validity of taking
m → 0 inside the propagator. In the present context, the
field can be considered as weak when compared to s0,
which is the only other energy (squared) present in the
problem, in such a way that the expansion in Eq. (6)
converges.
The pQCD contribution to the axial-vector current

correlator in the presence of a magnetic field is depicted
in Fig. 2, where we also define the kinematics. The thick
internal lines represent the full quark propagators in the
magnetic field background. To first order in eqB only one

of the two quark propagators carries the magnetic effects.
This is depicted in Fig. 3 where the wavy line starting from
a cross represents the external magnetic field. The two
diagrams in Fig. 3 that determine the coefficient Cð1Þ

0 vanish
identically when contracted with the momenta carried by
the axial-vector currents. This is due to a straightforward
application of Furry’s theorem, and to the fact that the
vector and axial-vector correlators are chiral symmetric.
However, we show explicitly in Appendix B that each of
the contributions in the diagrams, Fig. 3, vanishes.
The first nontrivial magnetic contribution to the pQCD

axial-vector current correlator is of order ðeqBÞ2. The
relevant diagrams are shown in Fig. 4. First, we compute
the diagram where one magnetic field line is attached to
each one of the two quark propagators. For these, we use
Eq. (23) to first order in eqB. We call this contribution

Πð11Þ
μν ðq2Þ, and its explicit expression is

Πð11Þ
μν ðq2Þ ¼ −iNcðquqdB2Þ

×
Z

d4k
ð2πÞ4

Tr½γμγ1γ2½γ ·ðk − qÞ∥�γνγ1γ2ðγ · kÞ∥�
ðk − qÞ4k4 :

ð24Þ

Since according to Eq. (5), we are interested in the
magnetic corrections to the coefficient of the longitudinal
structure, Π0ðq2Þ, we project Πð11Þ

μν ðq2Þ with qμqν and

FIG. 2. pQCD contribution to the axial-vector current correlator
in the presence of a magnetic field. The thick internal lines
represent the full quark propagators in the magnetic field back-
ground.

FIG. 3. pQCD contribution to the axial-vector current correlator
in the presence of a magnetic field to first order in eqB. The thick
wavy lines ending in a cross represent the external magnetic field.
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define

~Πð11Þ
0 ðq2Þ≡ qμqνΠð11Þ

μν ðq2Þ: ð25Þ

Using

γ1γ2½γ · ðk − qÞ∥� ¼ ½γ · ðk − qÞ∥�γ1γ2; ð26Þ

together with

γ1γ2qγ1γ2 ¼ 2ðγ · qÞ⊥ − q; ð27Þ

gives

~Πð11Þ
0 ¼ iNcðquqdB2Þ

Z
d4k
ð2πÞ4

×
Tr½q½γ · ðk − qÞ�∥ð−2ðγ · qÞ⊥ þ qÞðγ · kÞ∥�

ðk − qÞ4k4 :

ð28Þ

The evaluation of the trace yields

Tr½q½γ · ðk − qÞ�∥ð−2ðγ · qÞ⊥ þ qÞðγ · kÞ∥�
¼ −4ðq2∥ þ q2⊥Þ½ðk − qÞ · k�∥
þ 8ðq · kÞ∥½ðk − qÞ · q�∥: ð29Þ

We now use the Feynman parametrization

1

ðk − qÞ4k4 ¼ 3!

Z
1

0

dx
xðx − 1Þ

½ðk − xqÞ2 − xðx − 1Þq2�4 ; ð30Þ

and the change of variable

k → l ¼ k − xq; ð31Þ

to obtain

~Πð11Þ
0 ðq2Þ ¼ 4iNcðquqdB2Þ3!

×
Z

1

0

xðx − 1Þ
Z

d4l
ð2πÞ4

1

½l2 − Δ�4
× ½q2q2∥xðx − 1Þ − ðq2∥ þ q2⊥Þl2∥ þ 2ðq · lÞ2∥�;

ð32Þ

where we have discarded terms with odd powers of l and
defined Δ ¼ xðx − 1Þq2. The integrals over l are computed
by means of

Z
ddl
ð2πÞd

1

½l2 − Δ�n ¼ i
ð−1Þn
ð4πÞd=2

Γðn − d=2Þ
ΓðnÞ

�
1

Δ

�
n−d=2

Z
ddl
ð2πÞd

lμlν

½l2 − Δ�n ¼ i
ð−1Þn−1
ð4πÞd=2

gμν

2

Γðn − d=2 − 1Þ
ΓðnÞ

×

�
1

Δ

�
n−d=2−1

; ð33Þ

with n ¼ 4 and d ¼ 4. Using Eq. (33) in Eq. (32), and after
integrating over x, we find

~Πð11Þ
0 ¼ −

Nc

4π2
ðquqdB2Þ ½q

2
∥ þ q2⊥�
q2

: ð34Þ

In the limit q2⊥ → 0 Eq. (34) becomes

~Πð11Þ
0 →

q2⊥→0
−

Nc

4π2
ðquqdB2Þ: ð35Þ

In a similar fashion we compute the diagrams in Fig. 4 to
second order in eB in the u-quark and in the d-quark

propagator. Calling the longitudinal projections ~Πð20Þ
0 and

~Πð02Þ
0 , respectively, the result is

FIG. 4. pQCD contribution to the axial-vector current correlator
in the presence of a magnetic field to second order in eqB. The
thick wavy lines ending in a cross represent the external magnetic
field.
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~Πð20Þ
0 ðq2Þ ¼ −

Nc

24π2
ðquBÞ2

�ðq2∥ þ q2⊥Þ
q2

þ 2
q2∥q

2⊥
q4

�

→
q2⊥→0

−
Nc

24π2
ðquBÞ2

~Πð02Þ
0 ðq2Þ ¼ −

Nc

24π2
ðqdBÞ2

�ðq2∥ þ q2⊥Þ
q2

þ 2
q2∥q

2⊥
q4

�

→
q2⊥→0

−
Nc

24π2
ðqdBÞ2: ð36Þ

Adding all three contributions, and using the absolute
values qu ¼ 2=3e, qd ¼ 1=3e, and Nc ¼ 3, we obtain
the coefficient of the longitudinal structure of the axial-
vector current correlator to second order in the magnetic
field

ΠB2

0 ¼ −
�
17

18

� ðeBÞ2
4π2

: ð37Þ

Using this result together with the first equation in Eq. (6),
we obtain the Wilson coefficient of the pQCD contribution
to second order in the magnetic field

Cð2Þ
0 ¼ −

�
17

18

�
1

4π2
: ð38Þ

The last ingredient needed to find s0 and C4hO4i is the
magnetic field dependence of fπ . This may be obtained
from the Gell-Mann-Oakes-Renner (GMOR) relation,
which relates fπ with the light-quark condensate, and
the pion mass with the light-quark masses. The GMOR
relation is a low energy theorem involving the pseudoscalar
current correlator

ψ5ðq2Þ ¼ i
Z

d4xeiqxh0jTð∂μAμðxÞ∂νA†
νð0ÞÞj0i; ð39Þ

where the divergence of the axial-vector current, ∂μAμðxÞ,
is proportional to the sum of the up- and down-quark
masses. At zero momentum the GMOR relation reads

m2
πf2π ¼ −2ðmu þmdÞhq̄qi: ð40Þ

In the standard chiral interpretation of this relation fπ is
related to the light quark condensate

f2π ¼ −2Bhq̄qi; ð41Þ

and the pion mass is related to the light-quark masses

m2
π ¼

1

B
ðmu þmdÞ; ð42Þ

where B is a chiral perturbation theory constant. In order to
find the constant B one needs to use the physical pion and
light-quark masses. In the hadronic sector the pion pole

contribution to the pseudoscalar current correlator, ψ5ðq2Þ,
is given by

ψHAD
5 ðq2Þ ¼ if2πm4

π
~Gπðq2Þ; ð43Þ

where ~Gπðq2Þ is the pion propagator. In the QCD sector the
light-quark condensate contribution to ψ5ð0Þ is given by

ψQCD
5 ð0Þ ¼ −2ðmu þmdÞhq̄qi: ð44Þ

According to Eq. (18) [see also the discussion leading to
Eq. (A7) for the normalization] the pion propagator for
q2 ≥ 0 in the presence of a weak magnetic field can be
approximated as

~Gπðq2Þ≃ i
q2 −m2

π − eB
; ð45Þ

so that the GMOR relation becomes

f2πm4
π

m2
π þ eB

≃ −2ðmu þmdÞhq̄qi: ð46Þ

For weak fields, we use the expansion

1

m2
π þ eB

∼
1

m2
π

�
1 −

eB
m2

π

�
: ð47Þ

Inserting Eq. (47) into Eq. (46), and neglecting a magnetic
field dependence of the pion and quark masses, the term eB

m2
π

introduces a correction to the GMOR relation of higher
order than the one being considered in this work. Therefore,
to a good approximation for small fields the magnetic field
dependence of f2π is determined by that of hq̄qi and the
constant B from its vacuum value. We point out that the
validity of the GMOR relation in the presence of a magnetic
field was first shown in the first of Refs. [42].

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

eB GeV2

q
q

eB

q
q

FIG. 5 (color online). Light-quark condensate normalized to its
vacuum value as a function of the magnetic field strength eB in
units of GeV2. The data points are from Ref. [2] and the dotted
line corresponds to the fit hq̄qiðeBÞ=hq̄qi ¼ 1þ aðeBÞ þ bðeBÞ2,
with a ¼ 0.85 GeV−2, b ¼ 0.34 GeV−4.
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The light-quark condensate in the presence of the
magnetic field has been computed in Ref. [2]. We make
use of this result, and parametrize the magnetic field
dependence of the light-quark condensate with a quad-
ratic fit

hq̄qiðeBÞ=hq̄qi ¼ 1þ aðeBÞ þ bðeBÞ2; ð48Þ

where a ¼ 0.85 GeV−2, b ¼ 0.34 GeV−4 and ðeBÞ is
given in GeV2. The data from Ref. [2] together with
the fit are shown in Fig. 5. Using this information we
finally write the explicit solutions for s0 and C4hO4i from
Eq. (22):

s0 ¼ −8πBhq̄qiðeBÞ
C4hO4i ¼ −2ðeBÞBhq̄qiðeBÞ þ 8πðBhq̄qiðeBÞÞ2

þ
�
17

18

� ðeBÞ2
4π2

: ð49Þ

The solutions for s0 and for C4hO4i as functions of eB
are plotted in Figs. 6 and 7, respectively. Note that s0 is

proportional to the absolute value of the light-quark
condensate, and that together with C4hO4i it increases
with increasing magnetic field.

IV. SUMMARY AND CONCLUSIONS

In this paper we studied QCD FESR for the axial-vector
current correlator in the presence of a magnetic field in the
weak field limit eB < s0, where s0 is the squared energy
threshold for the onset of pQCD. Given that we work in the
massless quark limit, the weak field limit can be understood
as an expansion in the small parameter eB=s0. We have
shown that the presence of the field modifies both the
pQCD and the hadronic sectors of the FESR. The direct
modification to the hadronic contribution for the equation
that governs the behavior of s0 vanishes nontrivially. The
only change in this sector comes from the dependence of
the pion decay constant on the magnetic field. In turn, this
pion decay constant is proportional to the quark condensate
through the GMOR relation. We have shown that in the
limit where the magnetic field is small compared to the
physical pion mass squared, the proportionality constant
between fπ and hq̄qi can be approximated to be the same
as in vacuum. Use of lattice QCD data on the quark
condensate as a function of the magnetic field allows us
then to extract the magnetic field dependence of fπ . We
should point out that since lattice QCD results are valid for
physical pion masses, the calculation in this work cannot be
directly compared to the results in Refs. [42] which are
performed using chiral perturbation theory in the limit
where qB ≫ m2

π . The magnetic field dependence of s0 is
proportional to the magnetic field dependence of the
absolute value of the light-quark condensate. This means
that the behavior of these two parameters as a function of
the magnetic field is similar. Therefore the magnetic field
both helps the formation of the condensate and acts against
deconfinement. Next, we computed explicitly the magnetic
corrections to the pQCD contribution which affect the
behavior of the gluon condensate as a function of field
strength. In the weak field limit the first correction is
quadratic in the field. The gluon condensate also grows as a
function of the field strength which goes hand in hand with
the behavior of the magnetic field, both as a catalyst of
chiral symmetry breaking and confinement.
The results obtained here should serve as a basis for

studies at finite temperature in an external magnetic field,
thus providing clues on the relation between chiral sym-
metry restoration and deconfinement at the transition
temperature. This research is in progress and will be
reported elsewhere.
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APPENDIX A: IMAGINARY PART OF THE
HADRONIC CONTRIBUTION TO THE

AXIAL-VECTOR CURRENT CORRELATOR

The charged axial-vector current correlator in the pres-
ence of a constant magnetic field, and in the limit q⊥ → 0,
is written as

ΠHAD
0 ðsÞ ¼ −2f2π

X∞
l¼0

ð−1Þl
s − ð2lþ 1ÞeB : ðA1Þ

The above expression can be split into two sums, one for
the even and the other for the odd values of l, namely

ΠHAD
0 ðsÞ ¼ −2f2π

� X
l¼0;even

1

s − ð2lþ 1ÞeB

−
X
l¼odd

1

s − ð2lþ 1ÞeB
�
: ðA2Þ

Pulling out a factor −1=4eB from both sums and adding
and subtracting the element with l ¼ −1 we obtain from
Eq. (A2)

ΠHAD
0 ðsÞ ¼ 2f2π

�
1

4eB

X∞
l0¼0

1

l0 − s=eB−1
4

−
1

4eB

X∞
l0¼0

1

l0 − s=eBþ1
4

−
1

sþ eB

�
; ðA3Þ

where we defined l0 ¼ l
2
for the sum with even l and l0 ¼ lþ1

2
for the sum with odd l. The sums in Eq. (A3) are divergent.
In order to extract the finite piece we regularize them as

ΠHAD
0 ðsÞ ¼ 2f2πlim

ϵ→1

�
1

4eB

X∞
l0¼0

1

ðl0 − s=eB−1
4

Þϵ

−
1

4eB

X∞
l0¼0

1

ðl0 − s=eBþ1
4

Þϵ −
1

sþ eB

�

¼ 2f2πlim
ϵ→1

�
1

4eB
ζðϵ; ðs=eB − 1Þ=4Þ

−
1

4eB
ζðϵ; ðs=eBþ 1Þ=4Þ − 1

sþ eB

�
; ðA4Þ

where ζða; zÞ is the Hurwitz zeta function. Expanding
around ϵ ¼ 1 we find

ΠHAD
0 ðsÞ ¼ 2f2π

�
1

4eB

�
1

ϵ − 1
− ψ

�
−ðs=eB − 1Þ

4

��

−
1

4eB

�
1

ϵ − 1
− ψ

�
−ðs=eBþ 1Þ

4

��
−

1

sþ eB

�

¼ −2f2π
�

1

4eB
ψ

�
−ðs=eB − 1Þ

4

�

þ 1

4eB
ψ

�
−ðs=eBþ 1Þ

4

�
þ 1

sþ eB

�
; ðA5Þ

where ψðxÞ is the digamma function. We note that the
divergent pieces cancel when ϵ → 1. Recall that ψðxÞ is
singular for x ¼ 0;−1;−2;… In the region 0 ≤ eB < s0,
neither of the digamma functions in Eq. (A5) becomes
singular. The first singularity for ψð−ðs=eB − 1Þ=4Þ hap-
pens at s ¼ eB and for ψð−ðs=eBþ 1Þ=4Þ at s ¼ 3B.
Therefore, by restricting the analysis to the region eB ≤
s0 < 3eB we can compute the discontinuity, or imaginary
part of Eq. (A5), with the result

ImΠHAD
0 ðsÞ ¼ f2ππδðs − eBÞ; ðA6Þ

where since s is strictly larger than or equal to 0,
one has

lim
ϵ→0

ϵ

ðs − eBÞ þ ϵ2
¼ π

2
δðs − eBÞ: ðA7Þ

Finally, in the limit eB → 0 the imaginary part of the
correlator becomes

ImΠHAD
0 ðsÞ ¼ f2ππδðsÞ; ðA8Þ

which coincides with the known value in the absence of a
magnetic field.

APPENDIX B: FIRST ORDER MAGNETIC
CORRECTION TO THE PQCD CONTRIBUTION

TO THE AXIAL-VECTOR CURRENT
CORRELATOR

The contribution to the pQCD axial-vector current
correlator of order ðeBÞ is given by

ΠB
μνðq2Þ ¼ Πð10Þ

μν ðq2Þ þ Πð01Þ
μν ðq2Þ ðB1Þ

where

Πð10Þ
μν ðq2Þ ¼ NcðquBÞ

Z
d4k
ð2πÞ4

Tr½γ1γ2½γ · ðk − qÞ∥�γμkγν�
k2ðk − qÞ4

Πð01Þ
μν ðq2Þ ¼ NcðqdBÞ

Z
d4k
ð2πÞ4

Tr½ðk − qÞγμγ1γ2½γ · q�∥γν�
ðk − qÞ2k4 :

ðB2Þ
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Note that the traces in Eqs. (B2) are equal except for an
overall sign, due to the ordering of elements inside the
trace. Therefore, we evaluate one of the traces,

Tr½γ1γ2½γ · ðk − qÞ∥�γμkγν�
¼ kαðk − qÞβ∥ ¼ Tr½γμγαγνγ1γ2γ∥β�
¼ −ikαTr½γμγαγνγργ5
× fbρ½ðk − qÞ · u�
− uρ½ðk − qÞ · b�g�; ðB3Þ

where uρ and bρ are four-vectors describing the particle’s
rest frame and the direction of the magnetic field, respec-
tively. In the rest frame, these are given by

u ¼ ð1; 0; 0; 0Þ
b ¼ ð0; 0; 0; 1Þ: ðB4Þ

Using that

Tr½γμγαγνγργ5� ¼ −4iϵμανρ; ðB5Þ

we can write Eq. (B3) as

Tr½γ1γ2½γ · ðk − qÞ∥�γμkγν�
¼ −4kαϵμανρfbρ½ðk − qÞ · u� − uρ½ðk − qÞ · b�g: ðB6Þ

Notice that when Eq. (B6) is contracted with qμqν the
coefficient of the longitudinal structure vanishes.
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