
Spectral representation for u- and t-channel exchange processes
in a partial-wave decomposition

M. F. M. Lutz,1 E. E. Kolomeitsev,2 and C. L. Korpa3
1GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
2Matej Bel University, Faculty of Natural Sciences, Tajovskeho 40, SK-97401 Banska Bystrica, Slovakia

3Department of Theoretical Physics, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
(Received 8 June 2015; published 15 July 2015)

We study the analytic structure of partial-wave amplitudes derived from u- and t-channel exchange
processes. The latter plays a crucial role in dispersion-theory approaches to coupled-channel systems that
model final state interactions in QCD. A general spectral representation is established that is valid in the
presence of anomalous thresholds, decaying particles or overlapping left-hand and right-hand cut structures
as it occurs frequently in hadron physics. The results are illustrated at hand of ten specific processes.
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I. INTRODUCTION

It is still an open challenge to derive final state
interactions from QCD based on effective field theory
approaches at energies where the strong interaction forms
resonances. From the phenomenology of the last decades, it
is known that coupled-channel unitarity together with the
microcausality condition play a decisive role in the enter-
prise to unravel the underlying physics of this nonpertur-
bative domain of QCD (see e.g. [1–14]).
While final state interactions close to an elastic threshold

can be treated quite reliably in perturbation theory based on
a suitable chiral Lagrangian this is not so for energies where
the resonance spectrum is observed. A convenient frame-
work to study final state interactions is based on the concept
of a generalized potential. A partial-wave scattering ampli-
tude TabðsÞ with a channel index a and b for the final and
the initial state, respectively, is decomposed into contribu-
tions from left- and right-hand cuts where all left-hand cut
contributions reside in the generalized potentialUabðsÞ. For
an approximated generalized potential the right-hand cuts
are induced by means of the nonlinear integral equation

TabðsÞ ¼ UabðsÞ þ
X
c;d

Z
dw2

π

s − μ2M
w2 − μ2M

×
T†
acðw2Þρcdðw2ÞTdbðw2Þ

w2 − s − iϵ
; ð1Þ

where ρcdðw2Þ is a channel dependent phase-space func-
tion. By construction any solution of (1) does satisfy the
coupled-channel s-channel unitarity condition. While the
general framework is known from the 1960s [15–22], only
recently has this framework been successfully integrated
into an effective field theory approach based on the chiral
Lagrangian. The main additional and novel idea is to
approximate the generalized potential systematically by

means of a conformal expansion that is reliable not only
near the threshold but also in the resonance region. The key
observation is that in (1) the generalized potential is needed
only in the region where the partial-wave amplitude has its
right-hand cuts. In this region a conformal expansion is
reliable and systematic results can be expected. Since the
expansion point for the conformal map can be dialed to lie
within the convergence domain of strict chiral perturbation
theory, the expansion coefficients may be computed from
the chiral Lagrangian. First applications of this novel
approach can be found in [10–14,23].
The conformal expansion of the generalized potential

requires the detailed knowledge of the spectral representa-
tion of the generalized potential, the main target of the
present work. The results of the following study are
indispensable for the analytic extrapolation of the gener-
alized potential into the resonance region. The analytic
continuation of a function requires a thorough understand-
ing of its branch points and lines [24]. The latter lead to its
spectral representation. While for reactions involving stable
particles it is straightforward to unravel the spectral
representation of the generalized potential [25,26], this is
not so for reactions involving, for instance, the nonet of
vector mesons with JP ¼ 1− or the baryon decuplet states
with JP ¼ 3

2
þ. The latter play a crucial role in the hadro-

genesis conjecture that expects the low-lying resonance
spectrum of QCD light with up, down and strange quarks
only to be generated by final state interactions of the lowest
SU(3) flavor multiplets with JP ¼ 0−; 1− and JP ¼ 1

2
þ; 3

2
þ

[6–9,27–33]. The coupled-channel interaction of such
degrees of freedom leads to a plethora of subtle phenom-
ena, which need to be treated carefully. The left- and right-
hand cuts may overlap and the generalized potential may be
singular at threshold kinematics. The latter leads to an
anomalous threshold behavior of the partial-wave scatter-
ing amplitudes. This may occur at a threshold but also at a
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pseudothreshold. In this case, the nonlinear integral
equation (1) has to be adapted properly.
The work is organized as follows. In Secs. II and III the

framework for a dispersion-integral representation of
partial-wave amplitudes is set up, and general results are
derived. Detailed illustrations are offered with specific
t-channel and u-channel diagrams in Sec. IV. We conclude
with a short summary in Sec. V.

II. PARTIAL-WAVE PROJECTIONOF INVARIANT
SCATTERING AMPLITUDES

A general scattering amplitude Tðk̄; k;wÞ will have a
decomposition into a set of invariant amplitudes Fnðs; t; uÞ
and associated tensors Lnðk̄; k;wÞ that carry possible Dirac
and Lorentz structure of the scattering amplitude. The latter
is required for reactions of particles with nonvanishing
spin. We write

Tðk̄; k; wÞ ¼
X
n

Fnðs; t; uÞLnðk̄; k;wÞ;

s ¼ ðpþ qÞ2; t ¼ ðp − qÞ2; u ¼ ðp − q̄Þ2; ð2Þ

where we insist on invariant amplitudes, Fnðs; t; uÞ, that are
free of kinematical constraints [34–36]. Owing to energy
and momentum conservation the scattering amplitude
Tðk̄; k;wÞ depends on three 4-vectors k̄μ; kμ and wμ only
with

k ¼ 1

2
ðp − qÞ; k̄ ¼ 1

2
ðp̄ − q̄Þ; w ¼ pþ q ¼ p̄þ q̄;

ð3Þ

where p; q and p̄; q̄ are the 4-momenta of the in and
outgoing particles, respectively. A complete set of Dirac
and Lorentz tensors Lnðk̄; k;wÞ depends on the reaction
considered. In the literature, such a decomposition
has been worked out explicitly for various reactions
[35,37–41].
The partial-wave scattering amplitudes are given by

appropriate projection integrals,

TðJPÞðsÞ ¼
X
n

Z þ1

−1
dxλðJPÞn ðs; xÞFnðs; t½s; x�; u½s; x�Þ;

ð4Þ

where λðJPÞn ðs; xÞ are functions of kinematic origin. They
are derived in the literature for any given angular momen-
tum J and parity P (see e.g. [37–43]). In (4) we consider
Fnðs; t; uÞ as functions of s and the cosine of the scattering
angle x ¼ cos θ. The main target of this work is the
derivation of a spectral representation for such partial-wave
amplitudes.
According to the hypothesis of Mandelstam [16], the

amplitudes Fnðs; t; uÞ satisfy dispersion integral repre-
sentations characterized by a set of spectral weight
functions,

Fnðs; t; uÞ

¼
Z

∞

0

ds̄
π

ρðnÞs ðs̄Þ
s − s̄

þ
Z

∞

0

dt̄
π

ρðnÞt ðt̄Þ
t − t̄

þ
Z

∞

0

dū
π

ρðnÞu ðūÞ
u − ū

þ
Z

∞

0

ds̄
π

Z
∞

0

dt̄
π

ρðnÞst ðs̄; t̄Þ
ðs − s̄Þðt − t̄Þ

þ
Z

∞

0

dt̄
π

Z
∞

0

dū
π

ρðnÞtu ðt̄; ūÞ
ðt − t̄Þðu − ūÞ

þ
Z

∞

0

ds̄
π

Z
∞

0

dū
π

ρðnÞsu ðs̄; ūÞ
ðs − s̄Þðu − ūÞ ; ð5Þ

as can be confirmed in perturbation theory. In effective
field theory applications, suitable subtractions may be
required. In this work we focus on the contributions

defined by the t- and u-channel spectral weights ρðnÞt ðt̄Þ
and ρðnÞu ðūÞ. They give rise to so-called left-hand cuts in
the partial-wave scattering amplitudes. The s-channel

contribution ρðnÞs ðs̄Þ gives rise to s-channel unitarity cuts
which are referred to as right-hand cuts.
In a first step we will establish a spectral representation

for a generic t-channel and u-channel term as shown in
Fig. 1,

FIG. 1. Generic t- and u-channel exchange processes.
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Z
1

−1
dx

λnðs; xÞ
t½s; x� −m2

t
¼

X
i¼�

Z
∞

−∞
dm2

π

ϱðtÞn;iðm2; m2
t Þ

s − cðtÞi ðm2Þ

×

�
d

dm2
cðtÞi ðm2Þ

�
;

Z
1

−1
dx

λnðs; xÞ
u½s; x� −m2

u
¼

X
i¼�

Z
∞

−∞
dm2

π

ϱðuÞn;i ðm2; m2
uÞ

s − cðuÞi ðm2Þ

×

�
d

dm2
cðuÞi ðm2Þ

�
; ð6Þ

with the appropriate contour functions cðtÞ� ðm2Þ and

cðuÞ� ðm2Þ that identify the location of the branch cuts and

some properly constructed spectral weights ϱðtÞn;�ðm2; m2
t Þ

and ϱðuÞn;�ðm2; m2
uÞ. Given such a representations (6) the

general result for a partial-wave projected distributed
t-channel or u-channel exchange as given in (5) in terms

of ρðnÞt ðt̄Þ and ρðnÞu ðūÞ is readily obtained in terms of the
folded spectral weights

ϱðtÞn;�ðm2Þ ¼
Z

∞

0

dt̄
π
ρðnÞt ðt̄ÞϱðtÞn;�ðm2; t̄Þ;

ϱðuÞn;�ðm2Þ ¼
Z

∞

0

dū
π
ρðnÞu ðūÞϱðuÞn;�ðm2; ūÞ: ð7Þ

We note that a partial cancellation of the þ and − contour
contributions in (6) may occur whenever the two contours
run along identical regions on the real axis.
While the derivation of the spectral weights ϱðtÞn;�ðm2; tÞ

and ϱðuÞn;�ðm2; uÞ is quite cumbersome the identification of

the contour functions cðtÞ� ðm2Þ and cðuÞ� ðm2Þ is straightfor-
ward. Owing to the Landau equations any possible branch
point of a partial-wave amplitude must be associated with
an endpoint singularity of the projection integral (4). Note
that this is so only if the invariant amplitudes Fnðs; t; uÞ are
free of kinematical constraints. In the presence of kin-
ematical constraints the functions λnðs; xÞ may be singular
at specific conditions which may lead to additional and

unphysical branch points. In our case, the contour function
may be introduced by the condition

u½cðuÞ� ðm2Þ;�1� ¼ m2; t½cðtÞ� ðm2Þ;�1� ¼ m2: ð8Þ

A few comments on the representation (6) are in order.
The integral on the left-hand side of (6) defines an analytic
function in s with branch points at s ¼ 0 and s ¼ cðuÞ� ðmuÞ.
Here we assume that the x-integration contour in (4) is
appropriately deformed into the complex plane to avoid the
situation u½s; x� ¼ m2

u or t½s; x� ¼ m2
t with x ≠ �1. It is

convenient, though not mandatory, to define the branch cuts
connected to the endpoint singularities of (6), i.e. the points

cðtÞ� ðm2
t Þ or cðuÞ� ðm2

uÞ, to lie on the lines defined by the

functions cðtÞ� ðm2Þ and cðuÞ� ðm2Þ. This procedure has the
advantage that t- and u-channel processes with different
exchange masses define branch cuts that are maximally
overlapping. This is exploited in (7).
The right-hand sides of (6) may require a slight modi-

fication if the contour function cðtÞ� ðm2Þ or cðuÞ� ðm2Þ hits a
threshold point s ¼ ðma �MaÞ2 or ðmb �MbÞ2 at a
critical value mcrit. Such a need reflects the possible
presence of an anomalous threshold [21,44,45]. In this
case the contour has to be deformed close to mcrit. For
instance, one may use a semicircle of radius ϵ centered
around mcrit.

III. SPECTRAL REPRESENTATION:
GENERAL RESULTS

The contour functions cðtÞ� ðm2Þ and cðuÞ� ðm2Þ depend on
the masses of initial and final particles for which we use the
convenient notation

q2 ¼ m2
b; q̄2 ¼ m2

a;

p2 ¼ M2
b; p̄2 ¼ M2

a. ð9Þ

The root equations (8) for the contour functions can be
solved analytically with the well- known result

cðuÞ�;abðm2Þ ¼ 1

2
ðM2

a þm2
a þM2

b þm2
b −m2Þ þM2

a −m2
bffiffiffi

2
p

m

M2
b −m2

affiffiffi
2

p
m

�m2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2

M2
a þm2

b

m2
þ ðM2

a −m2
bÞ2

m4

��
1 − 2

M2
b þm2

a

m2
þ ðM2

b −m2
aÞ2

m4

�s
;

cðtÞ�;abðm2Þ ¼ 1

2
ðM2

a þm2
a þM2

b þm2
b −m2Þ −M2

a −M2
bffiffiffi

2
p

m

m2
a −m2

bffiffiffi
2

p
m

�m2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2

M2
a þM2

b

m2
þ ðM2

a −M2
bÞ2

m4

��
1 − 2

m2
a þm2

b

m2
þ ðm2

a −m2
bÞ2

m4

�s
: ð10Þ

SPECTRAL REPRESENTATION FOR u- AND t- … PHYSICAL REVIEW D 92, 016003 (2015)

016003-3



The spectral weights ϱðtÞn;�ðm2; tÞ and ϱðuÞn;�ðm2; uÞ introduced
in (6) factorize. This is a consequence of specific properties
of the kinematical functions λnðs; xÞ. They may have
singularities at the thresholds s ¼ ðma �MaÞ2 and
ðmb �MbÞ2 only. However, the x dependence in λnðs; xÞ
is such that the integrals (6) are finite at s ¼ ðma �MaÞ2 and
ðmb �MbÞ2, at least for sufficiently largemt andmu. It holds

ϱðtÞn;�ðm2; m2
t Þ ¼ λnðcðtÞ� ðm2Þ; xðtÞ� ðm2ÞÞϱðtÞ� ðm2; m2

t Þ;

xðtÞ� ðm2Þ ¼ 2ωaðsÞωbðsÞ −m2
a −m2

b þm2
t

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

;

ϱðuÞn;�ðm2; m2
uÞ ¼ λnðcðuÞ� ðm2Þ; xðuÞ� ðm2ÞÞϱðuÞ� ðm2; m2

uÞ;

xðuÞ� ðm2Þ ¼ M2
a þm2

b −m2
u − 2EaðsÞωbðsÞ

2paðsÞpbðsÞ
����
s¼cðuÞ� ðm2Þ

;

ð11Þ

with

piðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmi þMiÞ2Þðs − ðmi −MiÞ2Þ

4s

r
;

ωiðsÞ ¼
s −M2

i þm2
i

2
ffiffiffi
s

p ; EiðsÞ ¼
s −m2

i þM2
i

2
ffiffiffi
s

p : ð12Þ

The derivation of the master weight functions

ϱðuÞ� ðm2; m2
uÞ and ϱðtÞ� ðm2; m2

t Þ is of utmost importance
for the present development but quite tedious for the
general case (see e.g. [21,46,47]). The authors did not
find explicit expressions in the published literature for the
general case. We present and discuss first the simple case
where the u-channel and t-channel exchange masses mu
and mt are sufficiently large. In this case the following
results are readily established:

ϱðtÞ� ðm2; m2
t Þ ¼

8>><
>>:

−π Θ½m2−m2
t �

2paðsÞpbðsÞ
���
s¼cðtÞ� ðm2Þ

for MinftðaÞI ; tðbÞI g ≤ 0

�π Θ½m2−m2
t �

2paðsÞpbðsÞ
���
s¼cðtÞ� ðm2Þ

for MinftðaÞI ; tðbÞI g > 0
;

tðaÞI ¼ −M2
am2

b þm2
aM2

b

m2
a −M2

a
; tðbÞI ¼ M2

am2
b −m2

aM2
b

m2
b −M2

b

: ð13Þ

While the form of the spectral weight is quite simple and intuitive, its associated phase factor is complicated, reflecting the
choices of various Riemann sheets. We follow here a pragmatic approach. We will not give complicated arguments about
which Riemann sheets to choose; rather, we present the final answer and assure that (6) was verified by numerical
simulations for sufficiently large energies. It is worth pointing out that (13) holds for arbitrarily small exchange masses for

the limiting case ma ¼ mb and Ma ¼ Mb with tðaÞI ¼ tðbÞI ¼ 0.

The particular values tðaÞI and tðbÞI are determined by the conditions

Imp2
ac

ðtÞ
� ðm2Þ ¼ 0 & ImcðtÞ� ðm2Þ ≠ 0 → m2 ¼ tðaÞI ;

Imp2
bc

ðtÞ
� ðm2Þ ¼ 0 & ImcðtÞ� ðm2Þ ≠ 0 → m2 ¼ tðbÞI ; ð14Þ

where we assure the independence of the solutions with respect to the contour indices �.
Before proceeding with a discussion of the more general case with an arbitrarily small exchange massmt, we provide the

analogous result for the u-channel term:

ϱðuÞ� ðm2; m2
uÞ ¼

8>><
>>:

−π Θ½m2−m2
u�

2paðsÞpbðsÞ
���
s¼cðuÞ� ðm2Þ

for MinfuðaÞI ; uðbÞI g ≤ 0

�π Θ½m2−m2
u�

2paðsÞpbðsÞ
���
s¼cðuÞ� ðm2Þ

for MinfuðaÞI ; uðbÞI g > 0
;

uðaÞI ¼ −M2
aM2

b þm2
am2

b

m2
a −M2

a
; uðbÞI ¼ −M2

aM2
b þm2

am2
b

m2
b −M2

b

; ð15Þ

with

Imp2
ac

ðuÞ
� ðm2Þ ¼ 0 & ImcðuÞ� ðm2Þ ≠ 0 → m2 ¼ uðaÞI ;

Imp2
bc

ðuÞ
� ðm2Þ ¼ 0 & ImcðuÞ� ðm2Þ ≠ 0 → m2 ¼ uðbÞI : ð16Þ
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In (15) we assume mu to be sufficiently large. Note the
formal similarity of the expressions for the contour func-

tions cðuÞ� ðm2Þ and cðtÞ� ðm2Þ as given in (10): applying
mb ↔ Mb transforms the expressions into each other.
We turn to the general case with arbitrary exchange

masses. It suffices to provide explicit expressions for the
t-channel case. Corresponding expressions valid for the
u-channel term follow by the replacement mb ↔ Mb.
In a first step, we identify the points where a change of

Riemann sheets, and therewith a phase change, may be
required. All together there are 15 critical values for the
squared exchange massm2

t . The expression (13) is valid for
m2

t larger than the maximum of those 15 values. Two points

tðaÞI and tðbÞI we encountered already in (13) and (14). An
additional four points are determined by the conditions that
the squared contour functions pass through the threshold
points ðma �MaÞ2 and ðmb �MbÞ2. It is intuitive that the
latter are associated with a change of Riemann sheets and,
therefore, will possibly cause a phase change of the spectral
weight at such points. We introduce

tðaÞþ ¼ maM2
b þm2

bMa

ma þMa
−maMa;

tðbÞþ ¼ mbM2
a þm2

aMb

mb þMb
−mbMb;

cðtÞ� ðm2Þ ¼ ðma þMaÞ2 → m2 ¼ tðaÞþ ;

cðtÞ� ðm2Þ ¼ ðmb þMbÞ2 → m2 ¼ tðbÞþ ; ð17Þ

and

tðaÞ− ¼ maM2
b −m2

bMa

ma −Ma
þmaMa;

tðbÞ− ¼ mbM2
a −m2

aMb

mb −Mb
þmbMb;

cðtÞ� ðm2Þ ¼ ðma −MaÞ2 → m2 ¼ tðaÞ− ;

cðtÞ� ðm2Þ ¼ ðmb −MbÞ2 → m2 ¼ tðbÞ− ; ð18Þ

where a solution exists either with respect to the subscript
� → þ or � → − depending on the specifics of case. The

cðtÞþ ðm2Þ contour runs through two threshold points at most.
The same holds for the cðtÞ− ðm2Þ contour: it may intersect

the two threshold points that are avoided by cðtÞþ ðm2Þ.
Four further critical points are determined by the con-

dition that the imaginary parts of the squared contour
functions approach zero: the argument of the square root in
(10) must vanish:

m2
� ¼ ðma �mbÞ2; M2

� ¼ ðMa �MbÞ2:
vþ� ¼ Maxfm2

�;M
2
�g; v−� ¼ Minfm2

�;M
2
�g: ð19Þ

The critical values (19) determine whether the squared
contour functions lie on the real axis or invade the complex
plane. The latter holds for

v−þ < m2 < vþþ
v−− < m2 < vþ−

↔ ImcðtÞ� ðm2Þ ≠ 0 if v−þ > vþ− ð20Þ

and

vþ− < m2 < vþþ
v−− < m2 < v−þ

↔ ImcðtÞ� ðm2Þ ≠ 0 if v−þ < vþ−: ð21Þ

The points mþ and Mþ have a direct physical interpreta-
tion: for mt > mþ or mt > Mþ the t-channel exchange
particle turns unstable. Similarly, the critical points m− and
M− reflect the opening of decay channels of initial or final
particles.
In order to derive the generalization of (13), it is

important to study the position of the critical points vþ�
and v−� in relation to the points tðaÞI and tðbÞI introduced
already in (13). We derive the inequalities

v−− < t−I < v−þ & tþI > vþ− for t−I > 0;

tþI < v−þ for t−I < 0;

tþI ¼ MaxftðaÞI ; tðbÞI g; t−I ¼ MinftðaÞI ; tðbÞI g; ð22Þ

which follow with ease from the two identities

tðaÞI ¼ M2
b þ

tðaÞI

tðbÞI

M2
a ¼ m2

b þ
tðaÞI

tðbÞI

m2
a;

tðbÞI ¼ M2
a þ

tðbÞI

tðaÞI

M2
b ¼ m2

a þ
tðbÞI

tðaÞI

m2
b: ð23Þ

It is useful to work out also the relative positions of the
remaining critical points. After tedious considerations, we
find the relations

t−þ ≤ v−− ≤ Minfvþ− ; v−þg ≤ Minftþþ; t−−g
≤ Maxftþþ; t−−g ≤ Maxfvþ− ; v−þg
≤ vþþ ≤ tþ− for t−− > Minfvþ− ; v−þg;

t−þ ≤ v−− ≤ Minfvþ− ; v−þg ≤ Minftþþ; tþ−g
≤ Maxftþþ; tþ−g ≤ Maxfvþ−; v−þg
≤ vþþ for t−− ≤ Minfvþ−; v−þg; ð24Þ

where we introduced the notation

tþ� ¼ MaxftðaÞ� ; tðbÞ� g; t−� ¼ MinftðaÞ� ; tðbÞ� g: ð25Þ
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We are now prepared to display the master spectral weight, where we assume ma ≠ mb or Ma ≠ Mb in the following.
Recall that for the diagonal limit with ma ¼ mb and Ma ¼ Mb, the spectral weight is given by (13). We discriminate four
different cases,

ϱðtÞ� ðm2; m2
t Þ ¼

8>>>>>><
>>>>>>:

ϱðtÞ�;1ðm2; m2
t Þ for t−I ≤ 0 & vþ− < v−þ

ϱðtÞ�;2ðm2; m2
t Þ for t−I > 0 & vþ− < v−þ

ϱðtÞ�;3ðm2; m2
t Þ for t−I ≤ 0 & vþ− ≥ v−þ

ϱðtÞ�;4ðm2; m2
t Þ for t−I > 0 & vþ− ≥ v−þ

;

ϱðtÞ�;iðm2; m2
t Þ ¼ ϱðtÞ�;iðmÞΘ½m2 −m2

t �; ð26Þ

with

ϱðtÞ�;1ðm2Þ ¼ π

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

f−1þ 2Θ½vþþ −m2� − 2Θ½v−þ −m2� − 2Θ½vþ− −m2�Θ½vþ− − tþI �

þ 2Θ½v−− −m2�Θ½v−− − tþI � þ 2Θ½tþI −m2�Θ½tþI − v−−�Θ½vþ− − tþI � þ 2Θ½tþ� −m2� − 2Θ½t−∓ −m2�g;

ϱðtÞ�;2ðm2Þ ¼ π

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

f�1þ 2Θ½vþþ −m2�Θ½tþI − vþþ� − 2Θ½v−þ −m2�Θ½tþI − v−þ�

þ 2Θ½tþI −m2�Θ½tþI − v−þ�Θ½vþþ − tþI � − 2Θ½vþ− −m2�Θ½vþ− − t−I � þ 2Θ½v−− −m2�Θ½v−− − t−I �
þ 2Θ½t−I −m2�Θ½t−I − v−−�Θ½vþ− − t−I � þ 2Θ½t�� −m2� − 2Θ½t�∓ −m2�g;

ϱðtÞ�;3ðm2Þ ¼ π

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

f−1þ 2Θ½vþþ −m2� þ 2Θ½v−− −m2�Θ½v−− − tþI �

þ 2Θ½tþI −m2�Θ½tþI − v−−� − 2Θ½tþ∓ −m2� − 2Θ½t−∓ −m2�g;

ϱðtÞ�;4ðm2Þ ¼ π

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

f�1þ 2Θ½vþþ −m2�Θ½tþI − vþþ� þ 2Θ½tþI −m2�Θ½vþþ − tþI �

þ 2Θ½t−I −m2�Θ½t−I − v−−� − 2Θ½tþ∓ −m2� − 2Θ½t−∓ −m2�g; ð27Þ

where we apply the convenient notations (19), (22), and
(25). The result (27) deserves some discussion. The first
term in each of the four expressions in (27) describes the
opening of a normal left-hand cut at m2 > m2

t . While the
conditions m2 > v�− characterize the opening of decay
channels of the exchanged particle the conditions m2 <
v�þ signal an unstable initial or final state. Anomalous
thresholds open at m2 < tþ� or m2 < t−�. With (27) we also
specify implicitly which contour runs through which
threshold points. This follows since each threshold point
is associated with a sign change of the spectral functions as
detailed in (27) at m2 ¼ tþ� or m2 ¼ t−�. For a given plus or
minus contour and a selected case i ¼ 1;…; 4 in (26), two
critical values out of the four tþ� and t−� points are selected
unambiguously.
The merit of (27) lies in its generality. It is a convenient

starting point for coupled-channel studies with many
channels involved, where a case-by-case study is prohibi-
tive. In certain cases the result (27) may be further
simplified by the observation that there may be partial

cancellations of the plus and minus contour contributions in
regions where they are moving on the real axis. With (27) it
is straightforward to implement such cancellations in a
computer code.
We alert the reader that the result (27) requires an

analytic continuation for the case that a channel with
nonzero angular momentum L ≠ 0 is considered. This
implies that the functions λnðs; xÞ in (6) are singular at

thresholds and consequently the contour function cðtÞ� ðm2Þ
needs to be deformed into the complex m2 plane close to
the critical values m2

crit ¼ tþ� and t−�. Using semicircles
centered around the critical points this is readily
achieved. The spectral weight is continued onto the
deformed contour by the condition that it is continuous
along the semicircles. This leads to an unambiguous
definition of the Θ functions in (27) along the deformed
contour: Θ functions in the phase parameters of the
semicircles arise. Since the analytic expression for the
critical phases are quite complicated and implicit they
may be determined numerically.
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The spectral weights in (27) are constructed such that the
representation (6) holds for sufficiently large s. It does not
necessarily hold for arbitrarily small energies. For the
specific case with m2

t < t−þ the contour function cuts
through the larger threshold point

cðtÞ−;abðm2Þ ¼ Maxfðma þMaÞ2; ðmb þMbÞ2g with

m2 ¼ t−þ; ð28Þ

and (6) is not realized for energies slightly above that larger
threshold. An analytic continuation of the rhs of (6) is
possible to affirm the realization of (6) at the larger
threshold and above. We specify the analytic continuation

by additional terms Δϱðt−Þ�;i ðm2m2
t Þ in (27). Replacing the

spectral weight in (11) and (26) by

ϱðtÞ�;iðm2; m2
t Þ ¼ ϱðtÞ�;iðm2ÞΘ½m2 −m2

t � þ Δϱðt−Þ�;i ðm2; m2
t Þ;
ð29Þ

will insure the validity of (6) for energies exceeding the
larger threshold point.
The construction of Δϱðt−Þ�;i ðm2; m2

t Þ requires a further set
of specific contour points as conveniently introduced by the
condition

cðtÞ� ððma �mbÞ2Þ ¼ cðtÞ� ðm̄2
�Þ;

cðtÞ� ððMa �MbÞ2Þ ¼ cðtÞ� ðM̄2
�Þ; ð30Þ

where we are interested in the solutions with m̄2
� ≠

ðma �mbÞ2 and M̄2
� ≠ ðMa �MbÞ2. The latter determine

exchange masses where the contour function returns to
itself. We derive the explicit formulae

m̄2
� ¼ m2

a ∓ mb

ma
M2

a þmbðmb ∓ maÞ
M2

a −M2
b

m2
a −m2

b

−
mb

ma

ðmb �maÞðm2
a −M2

aÞ2
mbðmamb � ðm2

a −M2
aÞÞ−maM2

b

;

M̄2
� ¼ M2

a ∓Mb

Ma
m2

a þMbðMb ∓MaÞ
m2

a −m2
b

M2
a −M2

b

−
Mb

Ma

ðMb �MaÞðM2
a −m2

aÞ2
MbðMaMb � ðM2

a −m2
aÞÞ−Mam2

b

;

fv̄−�; v̄þ�g ¼
�fm̄2

�; M̄
2
�g if ðma �mbÞ2 < ðMa �MbÞ2

fM̄2
�; m̄

2
�g if ðma �mbÞ2 > ðMa �MbÞ2

;

ð31Þ

and introduce further notations v̄−� and v̄þ�. While the points
vþ� and v−� characterize the exchange masses where the
contour leaves the real axis and invades the complex plane,
the associated points v̄−� and v̄þ� determine where the
contour returns to those exit points possibly. It is important
to know the relative locations of the points v̄þ� and v̄−� with
respect to the critical points introduced before.
We first focus on the relevant case with t−þ > 0 for which

we derive the following relations

t−þ > 0 → v̄−− ≤ t−þ ≤ v−− always;

t−− ≤ 0 & vþ− ≤ tþþ ≤ v̄þ− ≤ Minfv−þ; tþ−g if t−I ≤ 0 & vþ− < v−þ;
vþ− ≤ tþþ ≤ v̄þ− ≤ Minfv−þ; t−−g ≤ tþ− if t−I > 0 & vþ− < v−þ;
t−− ≤ 0 & v−þ ≤ tþ− ≤ v̄−þ ≤ Minfvþ− ; tþþg if t−I ≤ 0 & vþ− ≥ v−þ;
v−þ ≤ t−− ≤ v̄−þ ≤ Minfvþ− ; tþþg ≤ tþ− if t−I > 0 & vþ− ≥ v−þ: ð32Þ

The analytic continuation of the rhs of (6) is introduced
upon the identification of an appropriate closed contour,
inside which the spectral weight is analytic. For an energy
outside that closed domain the dispersion integral of (6),
considered with respect to that closed contour, is un-
changed. For s inside the closed domain it is altered
necessarily. The closed contour needed for the desired
analytic continuation is readily identified with

cðtÞ−;abðm2Þ with v̄−− < m2 <

�
vþ− if vþ− < v−þ
v−þ if v−þ < vþ−

;

cðtÞþ;abðm2Þ with v−− < m2 <

�
v̄þ− if vþ− < v−þ
v̄−þ if v−þ < vþ−

; ð33Þ

where a closed domain arises upon the union of the plus
and minus contour lines introduced in (33). The spectral

weights Δϱðt−Þ�;i ðm2; m2
t Þ in (29) follow from the con-

dition that the expressions (29) vanish for exchange
masses m > mt on the closed contour as introduced in
(33). If the contour cuts through the largest threshold
point and the spectral weight would be nonvanishing in
this region a singular threshold behavior would arise
necessarily from the rhs of (6). This would contradict
the lhs of (6), which implies a regular behavior at the
largest threshold point always. The situation is recon-
ciled by the analytic continuation we are after. We find
the result
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Δϱðt−Þ�;1 ðm2; m2
t Þ ¼ π

Θ½t−þ −m2
t �

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

× fð2Θ½m2 − tþI �Θ½vþ− − tþI � − 1ÞΘ½m2 − v−−�Θ½vþ− −m2�
þ ð1 − 2Θ½�t�þ ∓ m2�ÞΘ½�v̄�− ∓ m2�Θ½�m2 ∓ v�−�g;

Δϱðt−Þ�;2 ðm2; m2
t Þ ¼ π

Θ½t−þ −m2
t �

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

× fð2Θ½m2 − t−I �Θ½vþ− − t−I � − 1ÞΘ½m2 − v−−�Θ½vþ− −m2�
þ ð1 − 2Θ½�t�þ ∓ m2�ÞΘ½�v̄�− ∓ m2�Θ½�m2 ∓ v�−�g;

Δϱðt−Þ�;3 ðm2; m2
t Þ ¼ π

Θ½t−þ −m2
t �

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

× fð1 − 2Θ½tþI −m2�ÞΘ½m2 − v−−�Θ½v−þ −m2�
þ ð1 − 2Θ½m2 − t�∓�ÞΘ½�v̄−� ∓ m2�Θ½�m2 ∓ v−��g;

Δϱðt−Þ�;4 ðm2; m2
t Þ ¼ π

Θ½t−þ −m2
t �

2paðsÞpbðsÞ
����
s¼cðtÞ� ðm2Þ

× fð1 − 2Θ½t−I −m2�ÞΘ½m2 − v−−�Θ½v−þ −m2�
þ ð1 − 2Θ½m2 − t−∓�ÞΘ½�v̄−� ∓ m2�Θ½�m2 ∓ v−��g: ð34Þ

Due to the particular construction of Δϱðt−Þ�;i ðm2; m2
t Þ it is possible to write the total spectral weights in (29) directly in terms

of the functions ϱðtÞ�;iðmÞ introduced in (27). All together we affirm that using either (34) in (29) or

ϱðtÞþ;iðm2; m2
t Þ ¼ f−Θ½t−þ −m2

t �Θ½m2 − v−−�Θ½v̄þ− −m2� þ Θ½m2 −m2
t �gϱðtÞþ;iðmÞ for i ¼ 1; 2;

ϱðtÞþ;iðm2; m2
t Þ ¼ f−Θ½t−þ −m2

t �Θ½m2 − v−−�Θ½v̄−þ −m2� þ Θ½m2 −m2
t �gϱðtÞþ;iðmÞ for i ¼ 3; 4;

ϱðtÞ−;iðm2; m2
t Þ ¼ f−Θ½t−þ −m2

t �Θ½m2 − v̄−−�Θ½Minfvþ− ; v−þg −m2� þ Θ½m2 −m2
t �gϱðtÞ−;iðmÞ for i ¼ 1; 2; 3; 4; ð35Þ

the validity of (6) for energies exceeding the larger thresh-
old point is ensured.
There is a further complication to be addressed. The

representation (6) is not necessarily valid for energies in
between the two normal thresholds

Minfma þMa;mb þMbg
<

ffiffiffi
s

p
< Maxfma þMa;mb þMbg: ð36Þ

Two cases need to be discriminated. Either both pseudo-
threshold values, jma −Maj and jmb −Mbj are smaller
than the two normal thresholds ma þMa and mb þMb or
this is not true. In both cases an analytic continuation of the

lhs of (6), may be required. For the case of an inverted
threshold order with e.g.

jmb −Mbj ≤ mb þMb ≤ jma −Maj ≤ ma þMa; ð37Þ

also the rhs of (6) needs an analytic continuation for
energies below the larger pseudothreshold energy. Such
an inversion occurs always for i ¼ 3 or i ¼ 4 with vþ− ≥ v−þ
but is impossible for i ¼ 1 or i ¼ 2 in (26).
We first construct the analytic continuation of the lhs (6),

which is necessary provided that the following condition is
realized

Maxfðma −MaÞ2; ðmb þMbÞ2g < sþðm2
t Þ < ðma þMaÞ2

or Maxfðma −MaÞ2; ðmb þMbÞ2g < s−ðm2
t Þ < ðma þMaÞ2;

s�ðm2
t Þ ¼

m2
a þM2

a þm2
b þM2

b

2
−m2

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

a þM2
a þm2

b þM2
b

2
−m2

t

�
2

− ðM2
a −m2

aÞðM2
b −m2

bÞ
s

; ð38Þ
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where we assumed ma þMa ≥ mb þMb without loss of
generality. The particular functions s�ðm2

t Þ introduced in

(38) pass through the thresholds at the critical points m2
t ¼

tðaÞ� and m2
t ¼ tðbÞ� introduced in (17), (18) when studying

the contour properties. We derive

for tðaÞ� ≥
m2

b þM2
b

2
−m2

a þM2
a

2
∓ 2maMa;

s−ðtðaÞ� Þ ¼ ðm2
b −M2

bÞ
ma ∓Ma

ma �Ma
≤ sþðtðaÞ� Þ ¼ ðma �MaÞ2;

ð39Þ

where the role of sþ and s− is interchanged in the case that
the first inequality in (39) is not realized. Corresponding

results for s�ðtðbÞ� Þ follow from (39) by interchanging the
indices a ↔ b.
The analytic continuation is achieved by deforming the

x-integration contour: a complex contour γðzÞ with
γð0Þ ¼ −1 and γð1Þ ¼ 1 needs to be devised accordingly.
At sufficiently large s the representation (6) is true
always by construction, only as one lowers the energy
a deformation of the integration contour is required. We
derive the result

Z
1

0

dzγ0ðzÞ λnðs; γðzÞÞ
t½s; γðzÞ� −m2

t
¼

Z þ1

−1
dx

λnðs; xÞ
tabðsÞ þ 2xpaðsÞpbðsÞ

− iπ
λnðs;− tabðsÞ

2paðsÞpbðsÞÞ
paðsÞpbðsÞ

Θ½ImðtabðsÞpaðsÞpbðsÞÞ�;

t½s; x� −m2
t ¼ tabðsÞ þ 2xpaðsÞpbðsÞ; ð40Þ

where we consider a typical t-channel process (see also
[44,45]) and recall that the deformation of the x-
integration contour is required only if the condition
(38) is realized. The function tabðsÞ is defined implicitly
in (40). For s real the function tabðsÞ is real as well. The
analytic continuation (40) is valid for

ffiffiffi
s

p
> ma þMa

and
ffiffiffi
s

p
> mb þMb at least. For smaller energies the

expressions may demand further modifications. The
continuation is necessary since the function tabðsÞ
may pass through zero while ImðpaðsÞpbðsÞÞ ≠ 0. This
is the condition (38). If one dropped the second term in
(40) the integral would be discontinuous right where
tabðsÞ ¼ 0. Such a discontinuity would be incompatible
with the representation (6). Note that for the validity of
(40) it is irrelevant which of the various normal or
anomalous thresholds in (27) cause the occurrence of a
zero in tabðsÞ: in any case the proper result must be
continuous at that zero. A direct consequence of the

analytic continuation is the presence of an anomalous
threshold behavior: due to the second line of (40) the
dispersion integral (6) may exhibit a singularity at a
threshold or pseudothreshold energy [44,45].
It is left to derive the analytic continuation of the rhs (6)

mandatory for (38). Using the deformed x-integration
contour of (40) and replacing the spectral weight

ϱðtÞ�;iðm2; m2
t Þ in (26) by

ϱðtÞ�;iðm2ÞΘ½m2 −m2
t � þ Δϱðt−Þ�;i ðm2; m2

t Þ þ ΔϱðtþÞ
�;i ðm2; m2

t Þ;
ð41Þ

will ensure the validity of (6) for energies exceeding any of
the two normal thresholds.
We consider first the case t−I > 0 with i ¼ 2 or i ¼ 4 in

(41). In order to derive the analytic continuation it is useful
to establish the inequalities

t−I > 0 → v̄þþ ≥ tþ− ≥ vþþ or v̄þþ < vþþ;

t−− ≥ tþþ & v−þ ≥ t−− ≥ v̄−þ ≥ Maxfvþ− ; t−þg if vþ− < v−þ;
tþþ ≥ & vþ− ≥ tþþ ≥ v̄þ− ≥ Maxfv−þ; t−þg if vþ− ≥ v−þ; ð42Þ

which suggest the application of the following closed contour

cðtÞþ;abðm2Þ with Maxfv̄þþ; vþþg > m2 >

�
v−þ if vþ− < v−þ
vþ− if v−þ < vþ−

;

cðtÞ−;abðm2Þ with vþþ > m2 >

�
v̄−þ if vþ− < v−þ
v̄þ− if v−þ < vþ−

: ð43Þ

First, we assume v̄þþ ≥ vþþ for which the spectral weights ΔϱðtþÞ
�;i ðm2; m2

t Þ are constructed from the condition that the
expression (41) vanishes for m lying on the contours (43). We find the result
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ΔϱðtþÞ
�;2 ðm2; m2

t Þ ¼ π
Θ½t−− −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞ� ðm2Þ

× fð1 − 2Θ½tþI −m2�Θ½tþI − v−þ�ÞΘ½m2 − v−þ�Θ½vþþ −m2�
þ ð2Θ½�t�− ∓ m2� − 1ÞΘ½�v̄�þ ∓ m2�Θ½�m2 ∓ v�þ�g;

ΔϱðtþÞ
�;4 ðm2; m2

t Þ ¼ π
Θ½tþþ −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞ� ðm2Þ

× fð2Θ½m2 − tþI �Θ½vþþ − tþI � − 1ÞΘ½m2 − vþ− �Θ½vþþ −m2�
þ ð2Θ½tþ∓ −m2� − 1ÞΘ½�v̄þ� ∓ m2�Θ½�m2 ∓ vþ��g: ð44Þ

For v̄þþ < vþþ the analytic continuation requires yet the
further critical point,

t0 ¼ ðM2
am2

b −m2
aM2

bÞ
m2

a −M2
a −m2

b þM2
b

ðm2
a −M2

aÞðm2
b −M2

bÞ
; ð45Þ

which specifies the exchange mass where either the plus or
the minus contour runs through the particular point s ¼ 0.

The appropriate closed contour defining the desired ana-
lytic continuation needs to be extended: while the minus
contour specification in (43) remains untouched the plus
contour must be enlarged as to include the region
vþþ ≤ m2 ≤ ∞. The results (44) are valid for both cases
v̄þþ ≤ vþþ and v̄þþ ≥ vþþ for masses m in the regions
introduced in (43). On the extended plus contour the
spectral weight is

ΔϱðtþÞ
þ;2 ðm2; m2

t Þ ¼ π
Θ½t−− −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞþ ðm2Þ

8<
:

þ2 for vþþ ≤ m2 ≤ t0
þ1 for t0 ≤ m2 ≤ tþ−
−1 for tþ− ≤ m2 ≤ ∞

;

ΔϱðtþÞ
þ;4 ðm2; m2

t Þ ¼ π
Θ½tþþ −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞþ ðm2Þ

8<
:

þ2 for vþþ ≤ m2 ≤ t0
þ1 for t0 ≤ m2 ≤ tþ−
−1 for tþ− ≤ m2 ≤ ∞

; ð46Þ

for v̄þþ ≤ vþþ ≤ m2 ≤ ∞.
It is left to consider t−I ≤ 0 with i ¼ 1 or i ¼ 3 in (41). Four distinct cases arise which are characterized by the following

inequalities

t−I ≤ 0 → v̄þþ ≤ vþþ always;

v−þ ≥ tþ− ≥ v̄−þ ≥ Maxfvþ−; t−þg
t−− ≤ t0 ≤ v̄þþ ≤ v−−

if tþþ ≤ tþ− & vþ− < v−þ;

vþ− ≥ tþþ ≥ v̄þ− ≥ Maxfv−þ; t−þg
t−− ≤ t0 ≤ v̄þþ ≤ v−−

if tþþ ≥ tþ− & vþ− ≥ v−þ;

vþ− ≤ tþ− ≤ v̄þ− ≤ v−þ & t−þ ≤ 0

v̄−− ≥ v−− or v̄−− ≤ t−− ≤ v−−
if tþþ ≥ tþ− & vþ− < v−þ;

v−þ ≤ tþþ ≤ v̄−þ ≤ vþ− & t−þ ≤ 0

v̄−− ≥ v−− or v̄−− ≤ t−− ≤ v−−
if tþþ ≤ tþ− & vþ− ≥ v−þ: ð47Þ

The first two cases in (47) lead to a closed contour similar to the one introduced in (43). While the mass range for the minus
part in (43) is unchanged the plus part extends to arbitrarily large and negative m2. It holds

m2 ≤ v̄þþ or vþþ > m2 >

�
v−þ if vþ− < v−þ
vþ− if v−þ < vþ−

: ð48Þ
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The last two cases in (47) involve yet the further closed contour

cðtÞ−;abðm2Þ with v−− < m2 <

�
v̄þ− if vþ− < v−þ
v̄−þ if v−þ < vþ−

;

cðtÞþ;abðm2Þ with Minfv̄−−; v−−g < m2 <

�
vþ− if vþ− < v−þ
v−þ if v−þ < vþ−

: ð49Þ

For v̄−− ≤ v−− the spectral weights ΔϱðtþÞ
�;i ðm2; m2

t Þ with i ¼ 1 and i ¼ 3 follow from the requirement that the expressions
(41) vanish for exchange massesm on the closed contour as specified in (43) or (49) depending on the specifics of the case.
Some algebra leads to

ΔϱðtþÞ
�;1 ðm2;m2

t Þ ¼ π
Θ½tþ− −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞ� ðm2Þ

Θ½tþ− − tþþ�× f−Θ½m2 − v−þ�Θ½vþþ −m2� þ ð2Θ½∓ m2 � t∓− �− 1

−Θ½�m2 ∓ t0�ÞΘ½�v̄�þ ∓ m2�Θ½v�þ −m2�g þ π
Θ½t−− −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞ� ðm2Þ

Θ½tþþ − tþ−�

× fð2Θ½m2 − tþI �Θ½vþ− − tþI �− 1ÞΘ½m2 − v−−�Θ½vþ− −m2�
þ ð2Θ½�t∓− ∓ m2�− 1ÞΘ½�m2 ∓ v̄∓− �Θ½�v∓− ∓ m2�g;

ΔϱðtþÞ
�;3 ðm2;m2

t Þ ¼ π
Θ½tþþ −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞ� ðm2Þ

Θ½tþþ − tþ− �× f−Θ½m2 − vþ− �Θ½vþþ −m2� þ ð2Θ½t∓∓ −m2�− 1

−Θ½�m2 ∓ t0�ÞΘ½�v̄þ� ∓ m2�Θ½vþ� −m2�g þ π
Θ½t−− −m2

t �
2paðsÞpbðsÞ

����
s¼cðtÞ� ðm2Þ

Θ½tþ− − tþþ�

× fð2Θ½m2 − tþI �− 1ÞΘ½m2 − v−−�Θ½v−þ −m2� þ ð2Θ½t∓∓ −m2�− 1ÞΘ½�m2 ∓ v̄−∓�Θ½�v−∓ ∓ m2�g: ð50Þ

The results (50) are valid for both cases v̄−− ≤ v−− and v̄−− ≥ v−− for masses m in the regions introduced in (43) and (49).
A generalization is needed if the contour (49) is probed with v̄−− ≥ v−−. While the minus contour region is unchanged the
plus contour of (49) is modified to cover the additional interval t−− ≤ m2 ≤ v−−. On the extended plus contour the spectral
weight is

ΔϱðtþÞ
þ;1 ðm2; m2

t Þ ¼ π
Θ½tþþ − tþ− �
2paðsÞpbðsÞ

����
s¼cðtÞþ ðm2Þ

�−2 for t−− ≤ m2 ≤ v−−
0 for m2 ≤ t−−

;

ΔϱðtþÞ
þ;3 ðm2; m2

t Þ ¼ π
Θ½tþ− − tþþ�
2paðsÞpbðsÞ

����
s¼cðtÞþ ðm2Þ

�−2 for t−− ≤ m2 ≤ v−−
0 for m2 ≤ t−−

; ð51Þ

for m2 ≤ v−− and m2
t ≤ t−−.

IV. SPECTRAL REPRESENTATION:
SOME EXAMPLES

In this section we illustrate the formalism developed
above at hand of several selected reactions with

specific contributions from t- and u-channel exchange
processes. We pick reactions which give a good
illustration of the various cases summarized in the
general spectral density (27) and (41). In Fig. 2 and
Fig. 5 our choices are shown. We consider five
t-channel and five u-channel processes involving
pseudoscalar and vector particles.

FIG. 2. Some specific t-channel exchange processes.
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In a first step we compute the list of critical exchange
masses and collect them in Table I for the t-channel
processes. For later convenience the critical points are
labeled from 1 to 15. Isospin averaged particle masses from
the Particle Data Group are used. All dimension full
quantities are expressed in units of the isospin averaged
pion masses. A critical exchange mass is not always active
in the expression (27). Only if it is larger than the mass of
the exchange particle it may turn relevant. The extra terms
introduced in (41) imply a further analytic continuation of
the dispersion integral (6). While the additional terms (34)
are required for the validity of (6) slightly above the largest
threshold point, the extra contributions (44), (50) are
necessary to realize (6) in between the two nominal
thresholds. In the absence of such terms (6) holds only
for large s exceeding some critical value. All extra terms
(34), (44), and (50) will be illustrated by our t-channel
examples.
We briefly discuss the t-channel processes charac-

terized by the list of critical exchange points Table I.
For our first t-channel reaction πK → πK two critical
points vþþ and v−þ, which are number 7 and 9, may be

relevant for both contour lines cðtÞþ ðm2Þ and cðtÞ− ðm2Þ.
Since the square of the exchange mass, the ρ-meson
mass, is larger than v−þ, there is only vþþ left. For this
example it holds t−I ≤ 0 and vþ− < v−þ so that the
corresponding spectral weight is given by the first
case in (27). The contour lines are shown in the center
of Fig. 3. The two contours leave the real axis at
m2 ¼ v−þ. At the second critical point m2 ¼ vþþ the two
contours return to the real axis. As a consequence, the
spectral weight develops an imaginary part for v−þ ≤
m2 ≤ vþþ only. In order to illustrate the characteristics

of the spectral weights ϱðtÞ� ðm2; m2
t Þ we introduce their

signature with

ΘðtÞ
� ðm2; m2

t Þ ¼ 2
paðsÞpbðsÞ

π
ϱðtÞ� ðm2; m2

t Þjs¼cðtÞ� ðm2Þ; ð52Þ

which is an integer number depending on m2 and m2
t .

For our first t-channel example both signatures are set to
−1 and remain unchanged throughout the contours.
For our second t-channel process πK → ρK�, there are

six relevant critical points in the contour paths. The latter
are indicated in Fig. 3 by their label number 1, 2, 7, 8, 9,
10. The positions of the circled numbers in the plot
correspond to their numerical values as given in Table I.
All such points are larger than the square of the exchange
mass, in this case the pion mass, and therefore a proper
evaluation of the spectral weight depends on those 6
critical points. The contour paths are off the real axis
within the two intervals v−− < m2 < vþ− and v−þ < m2 <
vþþ only. In general, any of the critical points 7, 8, 9, 10
signals that the contour leaves or returns to the real axis.
The corresponding critical contour points are surrounded
by open circles in our plots. The anomalous point 2
characterizes the exchange mass m2 ¼ tþ− at which the −
contour hits a threshold or pseudothreshold pillar.
Similarly, the condition m2 ¼ tþþ specifies the anomalous
point 1 at which the þ contour hits a threshold or
pseudothreshold pillar. In general either of the two
contours may touch a threshold or pseudothreshold pillar
only at any of the anomalous points 1, 2, 3, 4. If this
occurs the contour runs towards the threshold along the
real axis till it hits it and then inverts the direction and
runs away from the threshold again. Whenever this
happens the corresponding critical contour point is
surrounded by an open square in our plots.
The associated spectral signatures are shown again left

and right of the contour paths in the center of Fig. 3. Like
for our first example we have t−I ≤ 0 and vþ− < v−þ and the

TABLE I. Critical points for the t-channel exchange processes shown in Fig. 2 in units m2
π .

πK → πK πK → ρK� πω → ρρ ρJ=ψ → πρ πJ=ψ → ρρ

1 tþþ 0 29.8812 25.4465 97.3278 221.066
2 tþ− 0 30.5313 ∞ 116.185 ∞
3 t−þ 0 −29.6174 −14.5458 −118.153 8.67998
4 t−− 0 −36.8085 36.7849 −66.4585 53.5515
5 tþI 0 30.2063 ∞ 15.4347 ∞
6 t−I 0 −33.2129 31.1157 −0.984286 31.1157
7 vþþ 51.5765 101.333 126.503 784.778 784.778
8 vþ− 0 20.9594 20.9594 284.179 284.179
9 v−þ 4 43.2720 43.2720 43.2720 43.2720
10 v−− 0 8.32172 0.00829 20.9594 20.9594
11 v̄þþ 0 8.29860 −15.6877 20.3388 −118.153
12 v̄þ− Indeterminate 43.2466 36.4702 43.8217 116.185
13 v̄−þ 0 20.9722 25.6933 279.869 97.3278
14 v̄−− Indeterminate 101.577 −1812.17 826.092 −66.4585
15 t0 0 −3.00669 ∞ 14.4504 ∞
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corresponding spectral weights are given by case 1 in (27)
and (41). In contrast, however, the spectral signatures
change several times now. In our plots the corresponding
critical points are indicated by their label number as
introduced in Table I. In particular, the extra terms (50)
prove relevant here. This is so since tþ− > m2

π . We identify
the associated closed contour. According to (43) the − part
is specified by v̄−þ < m2 < vþþ. The þ part receives two
distinct contributions with v−þ < m2 < vþþ and m2 < v̄þþ
[see (48)]. As a consequence of tþ− > tþþ the additional
critical points t0 and v̄�þ are activated in (50). Indeed at
m2 ¼ v̄−þ and m2 ¼ v̄þþ the − and þ spectral signatures are
discontinuous, respectively. While in Fig. 3 the full lines
show the full spectral signatures in the presence of the extra
terms, the dotted lines show the results implied by (27)
only. We do not show possible contributions for m2 < 0 in
the plots for the clarity of the presentation. Due to the
condition m2 < v̄þþ discussed above they are present
nevertheless in the þ spectral signature.

We turn to the remaining three t-channel processes that
are illustrated in Fig. 4. The corresponding spectral
signatures are shown left and right of the contour lines
in the center of the plots. In all cases there are nontrivial
changes of the signatures at the various critical points. The
t-channel process πω → ρρ is characterized by the critical
contour points 1, 4, 7, 8, 9 and the condition t−I > 0. With
vþ− < v−þ < vþþ case 2 in (27) is implied. The conditions
m2 ¼ tþþ and m2 ¼ t−− identify at which point the þ and −
contours hit a threshold pillar, respectively. Moreover, the
extra terms (44) are active since it holds t−− > m2

π. The
corresponding closed contour is identified in (43) and (46)
which leads to v̄−þ < m2 < vþþ and v−þ < m2 for the − and
þ parts, respectively.
With the t-channel process ρJ=Ψ → πρ we have an

example for case 3 in (27). The 6 critical contour points 1,
2, 7, 8, 9, 10 are active and we have t−I ≤ 0 together
with vþ− > v−þ. The extra terms in (50) are not probed here
since we have tþþ < tþ− together with t−− < m2

π . Finally, the
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FIG. 3 (color online). Spectral signatures ΘðtÞ
� ðm2; m2

πÞ of (27) and (52) along the cðtÞ− ðm2Þ (left column) and cðtÞþ ðm2Þ (right column)
contours for the t-channel processes πK → πK (upper panel) and πK → ρK� (lower panel) as functions of the mass of the exchanged
particle m. The form of the two contours are shown in the center of the figure always. The thin pillars show the positions of relevant
thresholds or pseudothresholds.
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t-channel process πJ=Ψ → ρρ illustrates case 4 in (27). The
seven critical contour points 1, 3, 4, 7, 8, 9, 10 are active
and we have t−I > 0with vþ− > v−þ. Since tþþ > t−þ > m2

π the
extra terms in (34) and in (44) are probed. While the first
closed contour is specified with v̄−− < m2 < v−þ and

v−− < m2 < v̄−þ, the second closed contour is associated
with the conditions v̄þ− < m2 < vþþ and vþ− < m2 for
the − and þ parts, respectively.
We turn to the u-channel processes of Fig. 5. The list of

critical exchange masses is collected in Table II, where
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FIG. 4 (color online). Spectral signatures ΘðtÞ
� ðm2; m2

πÞ of (27) and (52) along the cðtÞ− ðm2Þ (left column) and cðtÞþ ðm2Þ (right column)
contours for the t-channel processes πω → ρρ, ρJ=Ψ → πρ and πJ=Ψ → ρρ, respectively. The form of the two contours are shown in the
center of the figure always. The thin pillars show the positions of relevant thresholds or pseudothresholds.
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again the critical points are labeled through from 1 to 15.
All dimension full quantities are expressed in units of the
isospin averaged pion masses. We recall that a critical
exchange mass is not necessarily active in the expression
(27). Only if it is larger than the mass of the exchange
particle it may turn relevant. The additional terms in the
spectral density (41) as constructed in (34), (44), and (50)
will be needed for our example cases. Our results are
illustrated with Figs. 6 and 7 where besides the contour
paths in the center of the plots, the signatures of the spectral
weights as introduced with

ΘðuÞ
� ðm2; m2

uÞ ¼ 2
paðsÞpbðsÞ

π
ϱðuÞ� ðm2; m2

uÞjs¼cðuÞ� ðm2Þ

ð53Þ

are shown. There are integer numbers depending onm2 and
m2

u. Like for our t-channel exchange studies the plots of the
spectral signatures include solid lines that show the full
signature with respect to (41) and dotted lines that
correspond to the partial expressions (27). Possible con-
tributions at m2 < 0 are not shown for the clarity of the
presentation. In all plots the relevance of a critical point is
indicated by its label number as introduced in Table II.
Consider the first u-channel reaction KK� → KK� of

Fig. 5 and Fig. 6. With u−I > 0 and vþ− < v−þ, case 2 in (27)
is selected. This is our first case with u−þ > 0. As a

consequence both contour lines pass through the threshold
and pseudothreshold of this reaction, i.e. ðmK �mK�Þ2.
This occurs at the critical points m2 ¼ uþþ ¼ u−þ > m2

π and
m2 ¼ uþ− ¼ u−− > m2

π . Since in this reaction a π meson is
exchanged the relevant parts of the contours do reach both
threshold points. After all it holds u−þ > m2

π . Therefore it
appears that the extra terms (34), properly transformed
from the t-channel kinematics to the u-channel kinematics
with t ↔ u, are active in this case. The associated
closed contour is characterized by v̄−− < m2 < vþ− and
v−− < m2 < v̄þ− . However, since v̄−− ¼ vþ− and v−− ¼ v̄þ−
these are empty conditions for the given example and
none of the terms in (34) are relevant. On the other hand we
may find a contribution of (44) since u−− > m2

π . Here the
conditions for the closed contour are v̄−þ < m2 < vþþ and
v−þ < m2 < Maxðv̄þþ; vþþÞ. Since v̄þ− ¼ v−− and v̄−− ¼
Minðvþ− ; v−þÞ again these are empty conditions.
Correspondingly, there is no effect of the extra terms
(44) also.
Inspecting the contour paths in Fig. 6 one may be led to

the conclusion that the corresponding partial-wave pro-
jected amplitude has a branch cut going through the two
threshold points. However, this is not so. The effect of the
þ and − contours in (6) cancel in part, so that the full
contribution does not have such a branch cut. Nevertheless,
a branch cut emerges on the real axis, however, only at
energies where the þ and − contours do not overlap.

TABLE II. Critical points for the u-channel exchange processes shown in Fig. 5, in units m2
π .

KK� → KK� πK → πK πρ → K̄K� πK� → Kρ πJ=ψ → ππ

1 uþþ 8.32172 6.71244 31.9405 22.2027 251.181
2 uþ− 101.333 21.0758 91.8556 135.925 ∞
3 u−þ 8.32172 6.71244 −2.87974 5.87230 −21.4357
4 u−− 101.333 21.0758 53.8542 40.9191 23.4357
5 uþI 54.8272 13.8941 44.4880 70.8985 ∞
6 u−I 54.8272 13.8941 42.8973 31.5609 1
7 vþþ 101.333 21.0758 84.0703 101.333 549.234
8 vþ− 8.32172 6.71244 29.9819 20.9594 459.491
9 v−þ 101.333 21.0758 55.8842 43.2720 4
10 v−− 8.32172 6.71244 3.94940 8.32172 0
11 v̄þþ 101.333 21.0758 145.925 −270.515 −21.4357
12 v̄þ− 8.32172 6.71244 37.4141 25.9791 23.4357
13 v̄−þ 101.333 21.0758 48.2445 35.0822 251.181
14 v̄−− 8.32172 6.71244 −46.4972 −5.11443 ∞
15 u0 109.654 27.7882 87.3853 102.459 ∞

FIG. 5. Some specific u-channel exchange processes.
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This follows since the þ and − spectral signatures have
opposite sign. As a consequence there is a branch

cut connecting the two particular points cðuÞþ ðm2
πÞ >

ðmK þmK�Þ2 and cðuÞ− ðm2
πÞ > ðmK þmK� Þ2. Here we have

an example where a left-hand branch cut is located right to
the largest threshold pillar.
We discuss the πK → πK process of Fig. 6. This is a

further example with u−þ > 0 where case 2 in (27) is
scrutinized. Again both contour lines pass through the
threshold and pseudothreshold of this reaction, i.e.
ðmπ �mKÞ2. This occurs at the critical points m2 ¼ uþþ ¼
u−þ and m2 ¼ uþ− ¼ u−−. Since in this reaction a K� meson
is exchanged, with a mass distribution starting at
ðmπ þmKÞ2 > u−− > u−þ, the relevant parts of the contours
do not reach any of the threshold points, however. Like in
our first example, even though we have u−− > m2

π and
u−þ > 0, there are no contributions from (34) and (44).
This is so independent on the value of the exchange mass
mu. In Fig. 6 the contour lines are shown for m > mπ, in
order to illustrate the generic mechanism.

There are the remaining u-channel exchange processes
analyzed in Fig. 7. The first two reactions πρ → K̄K� and
πK� → Kρ probe the case 2 in (27) with vþ− < v−þ. The
extra terms in (34) prove relevant for the second reaction
with u−þ > m2

π only. The corresponding closed contour
path is generated by the condition v̄−− < m2 < vþ− and
v−− < m2 < v̄þ− for the minus and plus contours, respec-
tively, [see (33)]. In contrast, the additional terms (44) are
needed in both cases. For the reaction πρ → K̄K� it holds
u−− > m2

K and the closed contour is given by v̄−þ < m2 <
vþþ and v−þ < m2 < v̄þþ. A slightly different condition is
derived for the πK� → Kρ reaction with u−− > m2

π . Here
the closed contour follows from v̄−þ < m2 < vþþ and v−þ <
m2 instead.
We discuss the final u-channel reaction πJ=ψ → ππ. It is

described by the case 4 in (27) with vþ− > v−þ. Since it holds
u−þ < 0 here the extra terms (34) are not active. On the other
hand with uþþ > m2

ρ the terms (44) are needed. The
corresponding closed contour follows with v̄þ− < m2 <
vþþ and vþ− < m2.

-2 0 2
0

10

20

1

2

 

Θ(u)

--
(m2,m2

π
)

 

 

m
 [m

π]

-2 0 2
0

10

20

1

2

 

 m
 [m

π ]

 Θ(u)

+
(m2,m2

π
)

-2 0 2
0

10

20

1

2

Θ(u)

--
(m2,m2

π
)

 

 

m
 [m

π]

-2 0 2
0

10

20

1

2

Θ(u)

+
(m2,m2

π
)

 m
 [m

π ]

 

FIG. 6 (color online). Spectral signatures ΘðuÞ
� ðm2; m2

πÞ along the cðuÞ− ðm2Þ (left column) and cðuÞþ ðm2Þ (right column) contours for the
u-channel processes KK� → KK� and πK → πK as functions of the mass of the exchanged particlem. The form of the two contours are
shown in the center of the figure always. The thin pillars show the positions of relevant thresholds or pseudothresholds.
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A concluding remark on the numerical implementation
of (6) is in order here. A partial cancellation of theþ and −
contour contributions in (6) occurs frequently. Whenever
the two contours run along identical regions on the real axis

this may happen. In a numerical implementation of (6) it is
useful to work out such cancellations explicitly. Based on
our general results, this is straightforwardly achieved in a
computer code.
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FIG. 7 (color online). Spectral signatures ΘðuÞ
� ðm2; m2

πÞ along the cðuÞ− ðm2Þ (left column) and cðuÞþ ðm2Þ (right column) contours for the
u-channel processes πρ → K̄K�, πK� → Kρ and πJ=Ψ → ππ. The form of the two contours are shown in the center of the figure always.
The thin pillars show the positions of relevant thresholds or pseudothresholds.

SPECTRAL REPRESENTATION FOR u- AND t- … PHYSICAL REVIEW D 92, 016003 (2015)

016003-17



V. SUMMARY

We have analyzed the generic structure of partial-wave
projected t- and u-channel exchange diagrams. A general
and explicit form for a dispersion-integral representation for
their contributions to partial-wave reaction amplitudes was
established. Our results hold for the case of overlapping left-
and right-hand cut structures, decaying particles and anoma-
lous thresholds or pseudothresholds. Various applications to
specific examples were worked out and illustrated in detail.
With our study, more realistic treatments of final state

interactions in the resonance region of QCD may become

feasible. The merit of the result lies in its generality. It is
a convenient basis for coupled-channel theories with a
large number of channels involved, where a case-by-case
study is prohibitive.
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