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We derive an analytic expression for one-loop effective action of QCDþ QED at zero and finite
temperatures by using the Schwinger proper time method. The result is a nonlinear effective action not only
for electromagnetic and chromo-electromagnetic fields but also for the Polyakov loop, and thus reproduces
the Euler-Heisenberg action in QED, QCD, and QEDþ QCD, and also the Weiss potential for the
Polyakov loop at finite temperature. As applications of this “Euler-Heisenberg-Weiss” action in
QCD þ QED, we investigate quark pair productions induced by QCDþ QED fields at zero temperature
and the Polyakov loop in the presence of strong electromagnetic fields. Quark one-loop contribution to the
effective potential of the Polyakov loop explicitly breaks the center symmetry, and is found to be enhanced
by the magnetic field, which is consistent with the inverse magnetic catalysis observed in lattice QCD
simulation.
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I. INTRODUCTION

The very first stage in a high-energy heavy-ion collision
is dominated by extremely strong chromo-electromagnetic
(chromo-EM) fields reflecting colliding nuclei filled with
high-density gluons (color glass condensate). Such a state
with strong fields is called a “glasma,” which is named
since it is a transitional state between a color glass
condensate (before the collision) and a quark-gluon plasma
(QGP) [1]. The glasma is characterized by a field strength
F of the order of the saturation scale: gF ∼Q2

s (with g
being the QCD coupling). Notice that the saturation scale
Qs is a semihard scale representing a typical transverse
momentum of gluons in a colliding nucleus and can
become large enough, at high energies, compared to light
quark masses, Qs ≫ mq. Besides, it has long been known
that heavy-ion collisions, with electrically charged nuclei,
are accompanied by electromagnetic (EM) fields, but only
recently was it seriously recognized that the strong EM
fields could affect time evolution of heavy-ion collision
events since the strength F of the EM fields could be as
large as or even greater than the nonperturbative QCD scale
ΛQCD, namely eF ≳ Λ2

QCD and thus eF ≫ m2
q [2–5]. Since

both the chromo-EM and EM fields created in heavy-ion
collisions can be strong enough compared with the light
quark masses, the effects of strong fields cannot be treated
as perturbation (even though the coupling constants are

small), but must be treated in a nonperturbative way.
Then we expect nonlinear and nonperturbative phenomena
associated with the strong fields to occur. Typical examples
of such phenomena include particle productions (quarks,
antiquarks and gluons) from these strong fields (the
Schwinger mechanism), which must be a key towards
understanding the formation of QGP.
While the (coherent) chromo-EM fields will disappear as

the QGP is formed, the EM fields could survive longer due
to Faraday’s law, which works in the presence of a
conducting medium [6,7]. If the EM fields survive at a
strong enough level until the formation of QGP, and even
until the end of the QGP’s lifetime, we need to describe the
QCD phase transition with the effects of strong EM fields
taken into account. Notice that the effects of strong
magnetic fields on thermodynamical or fundamental quan-
tities of QGP can be investigated in lattice QCD simu-
lations, and are indeed found to be large. For example, at
zero temperature, lattice QCD simulations confirmed the
“magnetic catalysis” as predicted in several effective
models [8–15] in which the value of chiral condensate
increases with increasing magnetic field strength. On the
other hand, at finite temperature, lattice QCD simulations
almost at the physical point concluded [16,17] that the
magnetic catalysis does not necessarily occur at all the
temperature regions, but rather gets weakened and even
shows opposite behavior with increasing temperature. Such
behavior of the chiral condensate around the critical
temperature is called “magnetic inhibition” [18] or “inverse
magnetic catalysis,” which eventually gives rise to decreas-
ing critical temperature. For recent reviews on the phase
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diagram of chiral phase transitions in strong magnetic
fields, see, e.g., Refs. [19,20]. Furthermore, it is reported
[21] that the (pseudo)critical temperature of the confine-
ment-deconfinement phase transition (for the Polyakov
loop) also decreases with increasing magnetic field. This
is achieved by increasing Polyakov loop expectation
values. Probably, these two phenomena are related to each
other. However, so far, there is no clear explanation about
the physical mechanism behind this (for recent attempts,
see Refs. [22,23] and [24,25]).
We can investigate these two aspects, namely the non-

linear and nonperturbative dynamics of strong fields
(including particle production) and the phase transition
under strong external fields, within a single framework of
an effective action. So far, effective actions for QED and
QCD in various external conditions have been extensively
explored. First of all, Euler and Heisenberg derived a
nonlinear effective action for constant EM fields at the
electron’s one-loop level, known as the Euler-Heisenberg
(EH) action [26]. Later, Schwinger reproduced the same
action in a field-theoretical manner, which is the so-called
Schwinger proper time method [27]. The EH action at finite
temperature is computed in imaginary time formalism
[28,29] as well as in real time formalism [30,31].
Furthermore, an analog of the EH action in QCD (for
chromo-EM fields) has been evaluated too within a similar
method at zero and finite temperatures [32–41]. Lastly, the
most recent progress was to compute the EH action at zero
temperature when both the EM and chromo-EM fields are
present, which was done by one of the authors and B. V.
Galilo and S. N. Nedelko independently [42,43]. The
author of Ref. [43] used this effective action to investigate
the QCD vacuum (gluon condensate) in the presence of
strong magnetic fields. Though all of these are about the
effective action for strong fields and choromo-EM con-
densates, it should be possible to include the Polyakov loop
at finite temperature. Indeed, an effective action (or
potential) for the Polyakov loop at the one-loop level
was computed independently by D. J. Gross, R. D. Pisarski,
and L. G. Yaffe [44], and by N. Weiss [45,46], and the
result is called the Weiss potential. In the present paper, we
are going to derive an analog of the EH effective action in
QCDþ QED at finite temperature with the Polyakov loops
included. Thus, the result may be collectively called the
“Euler-Heisenberg-Weiss action.” Our result is also a
generalization of the one obtained by H. Gies [41], who
computed an effective action for the Polyakov loop and the
chromo-electric field.
The paper is organized as follows: In the next section, we

will derive the effective action for QCDþ QED at finite
temperature by using the Schwinger proper time method.
Variables of the effective action are the EM and chromo-
EM fields as well as the Polyakov loop, and one can
reproduce the previous results (the EH action with QCDþ
QED fields, the Weiss potential, etc.) in various limits.

Then, we discuss some applications of our effective action
in Sec. III. First, we investigate quark-antiquark pair
production in QCDþ QED fields at zero temperature.
We obtain the quark production rate in the presence of
QCDþ QED fields, which allows us to study the quark
pair production with arbitrary angle between the EM and
chromo-EM fields. Next, we study an effective potential for
the Polyakov loop with electromagnetic fields. We find that
the magnetic field enhances the explicit center symmetry
breaking, while the electric field reduces it. This indicates
that the (pseudo)critical temperature of the confinement-
deconfinement phase transition decreases (increases) with
increasing magnetic (electric) field. Finally, we conclude
our study in Sec. IV.

II. ONE-LOOP EFFECTIVE ACTION FOR
QCDþQED AT FINITE TEMPERATURE

In this section, we derive the one-loop effective action
for QCDþ QED at finite temperature. The effective action
will be a function of chromo-EM and EM fields, as well as
the Polyakov loop. Notice that both the strong fields and the
Polyakov loop can be treated as background fields so that
the background field method is applicable. We will take
quantum fluctuations around the background fields up to
the second order in the action, and integrate them in the
path integral. This corresponds to computing the action at
the one-loop level.
We shall begin with the four-dimensional QCD action of

the SUðNcÞ gauge group with Nf flavor quarks interacting
with EM fields:

SQCDþQED

¼
Z

d4x

�
−
1

4
Fa
μνFaμν −

1

4
fμνfμν þ q̄ðiγμDμ −MqÞq

�
;

ð1Þ

where the covariant derivative contains gluon fields1 Aa
μ

ða ¼ 1;…; N2
c − 1Þ and U(1) gauge fields aμ as

Dμ ¼ ∂μ − igAa
μTa − ieQqaμ; ð2Þ

and the gluon and EM field-strength tensors are given by
Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν and fμν ¼ ∂μaν − ∂νaμ,

respectively. In this paper, we treat the EM fields just as
background fields, and assume that the field strengths are
constant so that ∂f ¼ 0. We abbreviate color, flavor,
and spinor indices of the quark field in Eq. (1). Mass
and charge matrices of quarks are given by Mq¼
diagðmq1 ;mq2 ;…;mqNf

Þ and Qq¼diagðQq1 ;Qq2 ;…;QqNf
Þ.

1Throughout the paper, we use a; b; c (and h) for adjoint color
indices (a; b; c ¼ 1;…; N2

c − 1), i for fundamental color indices
ði ¼ 1;…; NcÞ, μ; ν; α; β for Lorentz indices, and f for flavor
indices ðf ¼ 1;…; NfÞ.
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As for the gluon field, we apply the background field
method and decompose the gluon field into a slowly
varying background field Aa

μ and a quantum fluctuation
~Aa
μ as

Aa
μ ¼ Aa

μ þ ~Aa
μ: ð3Þ

Here we employ the covariantly constant field as a
background field, which obeys the following condition
[47–49]:

Dac
ρ F c

μν ¼ 0; ð4Þ

where the covariant derivative Dμ is defined only with
respect to the gluon background field:

Dac
μ ¼ ∂μδ

ac þ gfabcAb
μ; ð5Þ

and F a
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν. From the condi-

tion (4), the field-strength tensor F a
μν can be factorized as

F a
μν ¼ F μνna, where na is a unit vector in color space,

normalized as nana ¼ 1, whereas F μν expresses the
magnitude of the chromo-EM field. We further assume
that F μν is very slowly varying, satisfying ∂σF μν ¼ 0,
which allows us to obtain the analytic expression of the
EH action for QCD, just as in QED. Both F μν and na are
space-time independent. The background field Aa

μ is
proportional to the color unit vector na as

Aa
μ ¼ Aμna; ð6Þ

and the field-strength tensor F μν has an Abelian form,
F μν ¼ ∂μAν − ∂νAμ. This background field (6) indeed
satisfies the condition (4). By using the background field
and the quantum fluctuation, the full gluon field-strength
tensor can be decomposed as

Fa
μν ¼ F μνna þ ðDac

μ
~Ac
ν −Dac

ν
~Ac
μÞ þ gfabc ~Ab

μ
~Ac
ν: ð7Þ

Applying the background gauge for the quantum fluc-
tuation,

Dac
μ
~Ac
μ ¼ 0; ð8Þ

we get the gauge fixed action in the presence of EM
fields,

SQCDþQED

¼
Z

d4x

�
−
1

4
fF μνna þ ðDac

μ
~Ac
ν −Dac

ν
~Ac
μÞ þ gfabc ~Ab

μ
~Ac
νg2

−
1

2ξ
ðDac

μ
~AcμÞ2−c̄aðDμDμÞaccc þ q̄ðiγμDμ −MqÞq

−
1

4
fμνfμν

�
; ð9Þ

where c is the ghost field and ξ is the gauge parameter.
Notice that one of the covariant derivatives in the ghost
kinetic term Dac

μ and the one in the quark kinetic term Dμ

defined in Eq. (2) contain all the gauge fields. The
effective action for the background fields Aμ and aμ
can be obtained through the functional integral as

expðiSeff ½Aμ; aμ�Þ

≡
Z

D ~ADcDc̄DqDq̄ exp

�
i
Z

d4xSQCDþQED

�
: ð10Þ

We perform the functional integral with fluctuations
taken up to the second order. This corresponds to
evaluating the one-loop diagrams as shown in Fig. 1.
The gluon, ghost, and quark loop integrations can be
separately done, and one finds, respectively,

FIG. 1 (color online). Typical loop diagrams contributing to the effective action. The field A contains both the chromo-EM fields and
the Polyakov loop.
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Z
D ~A exp

�Z
d4x

−i
2

~Aaμ½−ðD2Þacgμν − 2gfabcF b
μν� ~Acν

�
¼ det ½−ðD2Þacgμν − 2gfabcF b

μν�−1
2;

Z
DcDc̄ exp

�
i
Z

d4xc̄a½−ðD2Þac�cc
�

¼ det ½−ðD2Þac�þ1;

Z
DqDq̄ exp

�
i
Z

d4xq̄ðiγμD̂μ −MqÞq
�

¼ det ½iγμD̂μ −Mq�þ1: ð11Þ

Here we have taken the Feynman gauge, ξ ¼ 1. In the
quark one-loop contribution, the covariant derivative D̂μ

contains both of the background fields Aμ and aμ:

D̂μ ¼ Dμ − ieQqaμ

¼ ∂μ − igAa
μTa − ieQqaμ: ð12Þ

On the other hand, the gluon and ghost one-loop contri-
butions contain Dac

μ and F a
μν, which only depend on the

gluon background field Aμ. This is, of course, because the
gluon and ghost fields do not have electric charge and thus
cannot interact with EM fields. Since these contributions
are the same as in the pure Yang-Mills (YM) theory, we
may call these the YM part.
So far, we have not specified the background field Aμ,

but it can contain both the chromo-EM fields and the
Polyakov loop. Let us briefly explain how the Polyakov
loop is described within our framework. In the pure Yang-
Mills theory at finite temperature, there is a confinement-
deconfinement transition whose order parameter is given
by the Polyakov loop. It is defined by the (closed) Wilson
line along the imaginary time (τ) direction:

Φð~xÞ ¼ 1

Nc
TrP exp

�
ig
Z

β

0

dτAa
4ðτ; ~xÞTa

�
; ð13Þ

where β ¼ 1=T is the inverse temperature and P stands for
a path-ordered product along the imaginary time direction.
Indeed, hΦi → 0 (hΦi ≠ 0) corresponds to a confining
(deconfined) phase, since the negative logarithm of the
expectation value of the Polyakov loop can be identified
with the free energy of a static quark (a vanishing value of
the Polyakov loop implies that the energy of a single quark
state is infinity). These two phases are distinguished by the
center symmetry. The gauge fields at finite temperature are
not necessarily periodic in the direction of imaginary time
and can have ambiguity related to the center subgroup ZNc

of the gauge symmetry SUðNcÞ. This residual symmetry is
called the center symmetry, and the theory is invariant
under gauge transformations which differ at τ ¼ 0
and τ ¼ β by a center element of the gauge group.
The Polyakov loop Φ transforms as Φ → e2πin=NcΦ
ðn ¼ 0; 1; 2;…; Nc − 1Þ. Thus, the values of Φ distinguish
the center symmetric (confining) phase and the center
broken (deconfined) phase. Dynamical quarks, however,

explicitly break the center symmetry. Therefore, in QCD,
the Polyakov loop should be understood as an approxi-
mated order parameter. Still, we can compute an effective
action for the Polyakov loop and discuss how a phase
transition occurs when external parameters such as temper-
ature are varied.
An effective action for the Polyakov loop in the pure

Yang-Mills theory was obtained in Refs. [44,45] in the
following way: Working in what we now call the
“Polyakov gauge” for a time-independent field Aa

4ð~xÞ ¼
ϕð~xÞδa3 in the SU(2) case, the authors of Refs. [44,45]
performed a functional integral with respect to fluctuations
around the field ϕð~xÞ. This procedure is nothing but the one
we explained above where we treated the gluon field Aa

μ as a
background Aa

μ with a fluctuation around it. Besides, as
long as we consider a spatially homogeneous and time-
independent order parameter Āa

4, we can have both the
Polyakov loop and the chromo-EM fields at the same time.
We divide the background field into the constant part and
the coordinate-dependent part as Aa

μðxÞ¼ ðĀμþ ÂμðxÞÞna.
The second term gives the real (physical) chromo-EM
fields so that F a

μν ¼ ∂μAa
νðxÞ − ∂νAa

μðxÞ ¼ ð∂μÂνðxÞ−∂νÂμðxÞÞna, while the first constant term Āμ does not.
We want to treat both the chromo-EM fields and the
Polyakov loop, and the latter is described at finite temper-
ature. In order to have the both, we specify the trans-
formation of the temporal component of the background
field Aa

0ðxÞ under the Wick rotation of the coordinate,
x0 → −ix4 ¼ −iτ and xi → xi ði ¼ 1; 2; 3Þ, as follows:
Aa

0ðxÞ ¼ ðĀ0 þ Â0ðxÞÞna → ðiĀ4 þ Â0ðxÞÞna. In this
way, the first term gives the Polyakov loop defined in
Eq. (13), while the second term remains unchanged to give
the real chromo-EM fields. We work in the Polyakov gauge
for Āa

4 [45]2:

2In the literature, the fourth component of the gauge field Āa
4 in

the Polyakov gauge is often expressed in terms of Nc − 1 real
scalar fields. In our formalism, these fields are properly encoded
in the color eigenvalues ωiði ¼ 1;…; NcÞ and vhðh ¼ 1;…;
N2

c − 1Þ, which will be defined later. Here, choosing the
third direction of the color unit vector—na ¼ δa3 at finite
temperature—we pick up the one particular field Ā4 which
provides a simple expression for the Poyakov loop as shown in
Eq. (16). However, in the final expression of our effective action,
it is quite straightforward to keep all theNc − 1 scalar fields in the
color eigenvalues ωi and vh.
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Āa
4 ¼ Ā4δ

3a; ∂4Ā4 ¼ 0; ð14Þ

which does not conflict with the covariantly constant
condition in Eq. (4). Notice that we use this gauge with
δa3 even for the SUðNcÞ case, and the color unit vector na

introduced in Eq. (6) should be understood as na ¼ δ3a at
finite temperature.3 Following Ref. [45], we also introduce
a dimensionless field C as

C ¼ gĀ4

2πT
; ð15Þ

so that the Polyakov loop is simply given as

Φ ¼ cosðπCÞ for SUð2Þ;

Φ ¼ 1

3
f1þ 2 cosðπCÞg for SUð3Þ: ð16Þ

A. Yang-Mills part of effective action

Now, we consider the Yang-Mills part (gluon and ghost
contributions) of the one-loop effective action. In the one-
loop level, the effect of EM fields is not included in gluon
and ghost loops, since these do not directly interact with
EM fields. From Eq. (11), the effective actions of gluon and
ghost parts are given, respectively, as

iSgluon ≡ ln det ½−ðD2Þacgμν − 2gfabcF b
μν�−1

2; ð17Þ

iSghost ≡ ln det ½−ðD2Þac�þ1: ð18Þ

Let us first explore the gluon part (17). By using the proper
time integral,4 the gluon part of the effective action can be
rewritten in the following form (the limit ϵ; δ → 0 is always
implicit and should be taken after the calculation):

iSgluon ¼ −
1

2
Tr ln ½−ðD2Þacgμν − 2gfabcF b

μν�

¼
Z

d4x
iϵ

2

XN2
c−1

h¼1

Z
∞

0

ds
s1−ϵ

trhxje−ið−D2
vh
gμνþ2igvhF μν−iδÞsjxi

¼
Z

d4x
iϵ

2

XN2
c−1

h¼1

Z
∞

0

ds
s1−ϵ

e−δsfe−ið2gvhaÞs þ e−ið−2gvhaÞs þ e−iðigvhbÞs þ e−ið−2igvhbÞsg × hxje−ið−D2
vh
Þsjxi: ð19Þ

While the capital trace “Tr” in the first line is taken with
respect to colors, Lorentz indices, and coordinates, “tr” in
the second line is only for Lorentz indices. Also, in the
second line, we have introduced real quantities vh ðh ¼
1;…; N2

c − 1Þ that are eigenvalues of a Hermitian matrix
Vac ≡ ifabcnb (i.e., Vacφc ¼ vhφa), and Lorentz-invariant
quantities a, b defined by

a≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 4 þ ðF · ~F Þ2

q
þ F 2

r
;

b≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 4 þ ðF · ~F Þ2

q
− F 2

r
; ð20Þ

with the dual field-strength tensor ~F μν ¼ 1
2
ϵμναβF αβ (or

equivalently, by a2 − b2 ¼ 1
2
F 2 and ab ¼ 1

4
F · ~F ). The

covariant derivative is defined asDvhμ ¼ ∂μ − igvhAμ. The

calculation up to now is in fact the same as in the case at
zero temperature, which was done in Ref. [43]. At finite
temperature, however, one needs to be careful in evaluating
the matrix element hxje−ið−D2

vh
Þsjxi. Namely, it can be now

written as the Matsubara summation:

hxje−ið−D2
vh
Þsjxi

¼ iT
X∞
n¼−∞

Z
d3p
ð2πÞ3 e

−pαX
αβ
h ðisÞpβe−YhðisÞ

				
p0¼igvhĀ4−i2πnT

;

ð21Þ
where the functions Xαβ

h ðs̄Þ and Yhðs̄Þ have been defined
as [50]

Xαβ
h ðs̄Þ ¼ ½ðgvhF Þ−1 tanðgvhF s̄Þ�αβ;

Yhðs̄Þ ¼
1

2
tr ln cosðgvhF s̄Þ: ð22Þ

In the presence of the Polyakov loop Ā4, the periodic
boundary condition of the gluon in the imaginary time
direction is modified. Then, the Matsubara frequency is
shifted by the Polyakov loop as in Eq. (21). Performing the
three-dimensional momentum integral and applying the
Poisson resummation [50], one can obtain the matrix
element in terms of a and b as

4We use the following identity:

lnðM̂ − iδÞ ¼ 1

ϵ
−

iϵ

ϵΓðϵÞ
Z

∞

0

ds
s1−ϵ

e−isðM̂−iδÞ

in the limit ϵ → 0 and δ → 0. We ignore the first divergent term,
since it does not depend on the fields.

3Still, we keep the expression na because we will discuss the
case at zero temperature.
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hxje−ið−D2
vh
Þsjxi ¼ −

i
16π2

gvhas
sinðgvhasÞ

gvhbs
sinhðgvhbsÞ

�
1þ 2

X∞
n¼1

ei
hðsÞ
4T2

n2 cos

�
gvhĀ4

T
n

��
; ð23Þ

where

hðsÞ ¼ b2 − e2

a2 þ b2
gvha cotðgvhasÞ þ

a2 þ e2

a2 þ b2
gvhb cothðgvhbsÞ; ð24Þ

with

e2 ¼ ðuαF αμÞðuβF β
μÞ: ð25Þ

The vector uμ is the heat-bath four-vector, which is (1,0,0,0) in the rest frame of the heat bath. The first (second) term in
Eq. (23) corresponds to the zero- (finite-) temperature contribution. The gluon part of the effective action is then given as

iSgluon ¼ −
i1þϵ

32π2

Z
d4x

XN2
c−1

h¼1

Z
∞

0

ds
s3−ϵ

e−δsfe−ið2gvhaÞs þ e−ið−2gvhaÞs þ e−iðigvhbÞs þ e−ið−2igvhbÞsg

×
gvhas

sinðgvhasÞ
gvhbs

sinhðgvhbsÞ
�
1þ 2

X∞
n¼1

ei
hðsÞ
4T2

n2 cos
�
gvhĀ4

T
n
��

: ð26Þ

Similarly, we obtain the ghost part as

iSghost ¼
i1þϵ

32π2

Z
d4x

XN2
c−1

h¼1

Z
∞

0

ds
s3−ϵ

e−δsf2g

×
gvhas

sinðgvhasÞ
gvhbs

sinhðgvhbsÞ
�
1þ 2

X∞
n¼1

ei
hðsÞ
4T2

n2 cos

�
gvhĀ4

T
n

��
: ð27Þ

In both parts, the first terms in the square brackets are
the results at zero temperature and agree with the
known results [43]. As discussed in detail in Ref. [43],
each term has an ultraviolet (UV) divergence, which,
however, can be absorbed by renormalizing the cou-
pling g and fields Aμ [32,33]. On the other hand,
the finite-temperature contributions do not have UV
divergence, and thus we do not need an additional
renormalization procedure for the finite-temperature
contributions. We regard the coupling and fields as
renormalized ones and focus on UV-finite pieces in
Eqs. (26) and (27).
Our results (26) and (27) are effective actions for

chromo-EM fields as well as the Polyakov loop at finite
temperature. These are generalizations of the previous
results in two cases. Indeed, if we consider the pure
chromo-electric background with a Polyakov loop
(B ¼ 0; E ≠ 0;A0 ≠ 0), we find a → iE, b → 0 and
reproduce Gies’s effective action at finite temperature
[41]. Moreover, in the case of the pure chromo-
magnetic background (E ¼ 0;B ≠ 0, Ā4 ¼ 0), we find
a → B, b → 0 and reproduce the results obtained in
Refs. [40,51].

B. Quark part of effective action

For the quark part of the effective action, we follow
basically the same procedures as in the Yang-Mills part.
From the functional integral (11), the quark part of the one-
loop effective action reads

iSquark ¼ ln det ½iγμD̂μ −Mq�: ð28Þ

Utilizing the proper time integral, we evaluate the effective
action as

iSquark ¼ Tr ln ½iγμD̂μ −Mq�

¼ −
Z

dx4
iϵ

2

XNc

i¼1

XNf

f¼1

Z
∞

0

ds
s1−ϵ

e−iðm
2
qf
−iδÞs

× trhxje−isð−D2
i;f−

1
2
σ·F i;fÞjxi; ð29Þ

where Dμ
i;f ¼ ∂μ − iAμ

i;f, with the field Aμ
i;f being a linear

combination of the gluon field Aμ and the photon field aμ

as
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Aμ
i;f ¼ gωiAμ þ eQqfa

μ: ð30Þ

This covariant derivative Dμ
i;f can be obtained from D̂μ

defined in Eq. (12) with the covariantly constant field
employed as the background field. Here ωiði ¼ 1;…; NcÞ
are eigenvalues of an Nc × Nc matrix naTa and satisfy5PNc

i¼1 ωi ¼ 0 and
PNc

i¼1 ω
2
i ¼ 1=2. The field-strength ten-

sor Fμν
i;f can be expressed in terms of constant chromo-EM

fields ~E, ~B, and EM fields ~E, ~B as [with the notation
~V ¼ ðVx; Vy; VzÞ]

Fμν
i;f ¼ gωiF μν þ eQqff

μν

¼ gωi

0
BBB@

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

1
CCCA

þ eQqf

0
BBB@

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

1
CCCA: ð31Þ

The eigenvalues of the field-strength tensor Fμν
i;f are given

by �iai;f and �bi;f with

ai;f ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F4
i;f þ ðF i;f · ~F i;fÞ2

q
þ F2

i;f

r
;

bi;f ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F4
i;f þ ðF i;f · ~F i;fÞ2

q
− F2

i;f

r
: ð32Þ

The dual field-strength tensor ~Fμν
i;f is defined as

~Fμν
i;f ¼ 1

2
ϵμναβF i;fαβ. By using Eq. (31), F2

i;f¼2ða2i;f−b2i;fÞ
and F i;f · ~F i;f ¼ 4ai;fbi;f can be expressed in terms of
chromo-EM fields and EM fields as

F2
i;f ¼ 2ð~B2

i;f − ~E2
i;fÞ;

F i;f · ~F i;f ¼ −4~Ei;f · ~Bi;f; ð33Þ

where we have defined the combined electromagnetic

fields as ~Ei;f¼gωi
~EþeQqf

~E and ~Bi;f ¼ gωi
~B þ eQqf

~B.

Taking the trace of the matrix hxje−isð−D2
i;f−

1
2
σ·F i;fÞjxi at finite

temperature, we get

trhxje−isð−D2
i;f−

1
2
σ·F i;fÞjxi

¼ iT
X∞
n¼−∞

Z
d3p
ð2πÞ3 e

−pαX
αβ
i;fðisÞpβ

× e−Y i;fðisÞtrei
2
σ·F i;fs

				
p0¼igωiĀ4−iπð2nþ1ÞT

: ð34Þ

Here, the functionsXαβ
i;fðs̄Þ and Y i;fðs̄Þ have been defined as

[50]

Xαβ
i;fðs̄Þ ¼ ½F−1

i;f tanðF i;fs̄Þ�αβ;

Y i;fðs̄Þ ¼
1

2
tr ln cosðF i;fs̄Þ: ð35Þ

In the presence of the Polyakov loop Ā4, the antiperiodic
boundary condition for the quark is also modified. Then,
the temporal component of the four-momentum vector has
been replaced by the Polyakov loop and the Matsubara
frequency for a fermion in Eq. (34). The third part, tre

i
2
σ·F i;fs,

is common with the case at zero temperature and was
computed in Ref. [43]. The result is

tr exp

�
i
2
σ · F i;fs

�
¼ 4 cosðai;fsÞ coshðbi;fsÞ: ð36Þ

Now, performing the three-dimensional momentum inte-
gral and using the Poisson resummation, we find from
Eq. (34)

trhxje−isð−D2
i;f−

1
2
σ·F i;fÞjxi

¼ −
i

4π2s2
ðai;fsÞðbi;fsÞ

sinðai;fsÞ sinhðbi;fsÞ
cosðai;fsÞ coshðbi;fsÞ

×

�
1þ 2

X∞
n¼1

ð−1Þne i
4T2

hi;fðsÞn2 cos
�
gωiĀ4n

T

��
; ð37Þ

where

hi;fðsÞ ¼
b2i;f − e2i;f
a2i;f þ b2i;f

ai;f cotðai;fsÞ

þ a2i;f þ e2i;f
a2i;f þ b2i;f

bi;f cothðbi;fsÞ; ð38Þ

with

e2i;f ¼ ðuαFαμ
i;fÞðuβFβ

i;fμÞ: ð39Þ

In the heat-bath rest frame, we have uμ ¼ ð1; 0; 0; 0Þ and

then e2i;f ¼ ~E2
i;f ¼ ðgωi

~E þ eQqf
~EÞ2. Therefore, the quark

part of the one-loop effective action reads

5Let Ω be a diagonal matrix with eigenvalues ωi, i.e.,
Ω ¼ diagðω1;…;ωNc

Þ ¼ UnaTaU†. Then,
PNc

i¼1 ωi ¼ trΩ ¼
natrTa ¼ 0 and

PNc
i¼1 ω

2
i ¼ trΩ2 ¼ trðTaTbÞnanb ¼ 1=2.
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iSquark ¼
i1þϵ

8π2

Z
d4x

XNc

i¼1

XNf

f¼1

Z
∞

0

ds
s3−ϵ

e−iðm
2
qf
−iδÞs

× ðai;fsÞðbi;fsÞ cotðai;fsÞ cothðbi;fsÞ

×

�
1þ 2

X∞
n¼1

ð−1Þne i
4T2

hi;fðsÞn2 cos
�
gωiĀ4n

T

��
:

ð40Þ

As in the YM part, the first (second) term corresponds
to the zero-(finite-)temperature contribution. The zero-
temperature contribution agrees with the previous result
obtained in Ref. [43].
Again, the first term contains UV divergences. These

divergences have two origins: QCD and QED [43]. This is
because the resummed quark one-loop diagrams contain
contributions from the diagrams with only two EM field
insertions (QED) and only two chromo-EM field insertions
(QCD). The UV divergence coming from purely QCD
dynamics is additive to the one which we encounter in the
YM part. Then, we can absorb all the UV divergences by
renormalizing the coupling g; e and fields Aμ; aμ. From the
renormalization procedure at zero temperature, we have
obtained the correct beta functions of both QCD and QED
inRef. [43].The sumof the threeparts (26), (27), and (40)may
be called the Euler-Heisenberg-Weiss action in QCDþ QED
at finite temperature. This result can be applied to several
systems where strong EM fields and chromo-EM fields
coexist at zero and finite temperatures. In the next section,
we will show some applications of our effective actions.

III. APPLICATIONS OF EULER-HEISENBERG-
WEISS ACTION IN QCDþQED

In this section, we will discuss two applications of our
results. The first one is the quark pair production in the
presence of both EM and chromo-EM fields. We treat the
effective action at zero temperature. The second application
is to investigate the effects of EM fields on the effective
potential for the Polyakov loop at finite temperature. We
will discuss the possible implication for the inverse
magnetic catalysis.

A. Quark pair production in QCDþQED fields

Let us first discuss quark-antiquark pair production in
constant QCDþ QED fields as an application of our
effective action. For this problem, only the quark part
(40) is relevant.
In the early stage of relativistic heavy-ion collisions,

extremely strong chromo-EM fields and EM fields could
coexist. Notice that the strong electric field in addition to the
strong magnetic field could be created on an event-by-event
basis [5]. The strength of the chromo-EM fields is approx-
imately of the order of the saturation scale: jg~Bj; jg~Ej ∼Q2

s ,
whereas strengths of EM fields would reach the QCD
nonperturbative scale je~Ej; je~Bj ∼ Λ2

QCD, or even exceed
it. Under such strong QCDþ QED fields, a number of
quark-antiquark pairs must be created through the
Schwinger mechanism. The pair-production rate per unit
space-time volume can be obtained from the imaginary part
of thequark effectiveLagrangianat zero temperature.Taking
the zero-temperature contribution in Eq. (40), one finds

Lquark ¼
SquarkR
d4x

¼ 1

8π2
XNc

i¼1

XNf

f¼1

Z
∞

0

ds
s3

e−isðm
2
qf
−iδÞ

× ðai;fsÞðbi;fsÞ cotðai;fsÞ cothðbi;fsÞ: ð41Þ

This is the same as the result obtained in Ref. [43]. The
imaginary part of the effective Lagrangian thus reads

ℑmLquark ¼ −
1

8π2
XNc

i¼1

XNf

f¼1

Z
∞

0

ds
s3

e−δs sinðm2
qfsÞ × ðai;fsÞðbi;fsÞ cotðai;fsÞ cothðbi;fsÞ

¼ 1

2i
1

8π2
XN2

c

i¼1

XNf

f¼1

�Z
0

−∞

ds
s3

e−isðm
2
qf
þiδÞ þ

Z
∞

0

ds
s3

e−isðm
2
qf
−iδÞ

�

× ðai;fsÞðbi;fsÞ cotðai;fsÞ cothðbi;fsÞ: ð42Þ

The integrand has infinitely many poles along the real axis [from cotðai;fsÞ] and along the imaginary axis [from cothðbi;fsÞ].
With a small positive number δ > 0, the integral contour along the real axis is inclined. Closing the contour in the lower half
of the s plane as depicted in Fig. 2 and picking up the poles lying on the imaginary axis spoles ¼ −inπ=bi;f, we find

FIG. 2. Contour on the complex s plane. The contour along the
real axis is inclined by an infinitesimal number δ > 0.
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ℑmLquark

¼ 1

8π2
XNc

i¼1

XNf

f¼1

ai;fbi;f
X∞
n¼1

1

n
e
−
m2
qf

bi;f
nπ
coth

�
ai;f
bi;f

nπ

�
: ð43Þ

By using this expression, we can investigate quark-anti-
quark pair productions under arbitrary configurations of
constant chromo-EM and EM fields. The production rate
per unit space-time volume is given by wqq̄ ¼ 2ℑmLquark.
When we take Nc ¼ Nf ¼ 1, Q ¼ 1, g → 0, B → 0 and
replacemq → me in Eq. (43), we reproduce the well-known
Schwinger formula for the production rate of eþe− pairs in
an electric field [27]:

weþe− ¼ 2ℑmLEH ¼ ðeEÞ2
4π3

X∞
n¼1

1

n2
e−

m2
e

eEnπ; ð44Þ

as we expected. On the other hand, in the pure chromo-
electric field case, we obtain the same formula for quark
productions derived by G. C. Nayak [52].

1. Quark pair production in purely electric background

First, we shall consider quark pair production in a
purely electric background with vanishing magnetic fields:
~B; ~B → 0. In this case, the production rate for qq̄ pairs of
flavor f becomes

wqfq̄f ¼
1

4π3
XNc

i¼1

b2i;f
X∞
n¼1

1

n2
e
−
m2
qf

bi;f
nπ
; ð45Þ

where bi;f ¼
ffiffiffiffiffiffiffi
~E
2
i;f

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgωiÞ2E2 þ ðeQqfÞ2E2 þ 2gωieQqfEE cos θEE

q
, with E ¼

ffiffiffiffiffiffi
~E2

p
, E ¼

ffiffiffiffiffi
~E2

p
, and θEE being the

angle between ~E and ~E. ForNc ¼ 3, the eigenvalues ωi are given by ω1 ¼ 1=2, ω2 ¼ −1=2, and ω3 ¼ 0. Recall that a factor
gωi plays the role of an effective coupling between the chromo-EM field and quarks [see Eq. (30)]. Thus, a quark (or an
antiquark) with ω3 ¼ 0 does not interact with the chromo-EM field in this representation. Still, since there is always a
coupling with the EM fields, qq̄ production with ω3 ¼ 0 is possible due to electric fields, i.e., bi¼3;f ¼ jeQqfEj ≠ 0.
Let us see the dependences of production rates on the quark mass mq and the angle θEE. We first consider the case with

light quark masses m2
qf ≪ bi;f. The left panel of Fig. 3 shows the light (up) quark production rate with mq ¼ 5 MeV and

Qq ¼ þ2=3. The chromo-electric field is fixed to gE ¼ 1 GeV2, which is a typical value realized in heavy-ion collisions at
RHIC and LHC, while we take several values of strength for the E field. The production rate increases with increasing E
field, which is an expected behavior of the usual Schwinger mechanism, but it does not show dependence on the angle θEE,
while bi;f certainly depends on θEE. This unexpected behavior can be understood as follows: When the quark mass is small
enough, m2

q ≪ bi;f, we can approximate the production rate as

wqfq̄f ∼
1

4π3
XNc

i¼1

b2i
X∞
n¼1

1

n2
¼ 1

4π3

�ðgEÞ2
2

þ NcðeQqEÞ2
�
ζð2Þ; ð46Þ

where ζð2Þ ¼ π2=6 and bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgωiÞ2E2 þ ðeQqÞ2E2 þ 2gωieQqEE cos θEE

q
. Notice that the angle dependence in bi drops

out thanks to the relations
PNc

i¼1 ω
2
i ¼ 1=2 and

PNc
i¼1 ωi ¼ 0. Therefore, the production rate is independent of the angle θEE.
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FIG. 3 (color online). Quark production rate as a function of the angle θEchroE, which stands for θEE. The left panel is the light (up)
quark production rate, while the right panel is the heavy (charm) quark production rate. The chromo-electric field is fixed as
gE ¼ 1 GeV2.
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We next discuss the production of heavy quark-antiquark
pairs. Since the heavy quark limit just implies that the pair
creation does not occur, we consider the case where quark
masses are comparable to the background field m2

q ∼ bi;f.
This is realized for charm quarks if we again take the
typical value of the chromo-electric field gE ¼ 1 GeV2. For
mc ¼ 1.25 GeV and Qq ¼ Qcharm ¼ þ2=3, the production
rate of a charm quark pair is shown in the right panel of
Fig. 3. This time, while the production rate becomes small,
one can see a clear dependence on the angle θEE. Both
effects (small production rate and angle dependence) come
from the exponential factor in Eq. (45). In particular, when
the electric field is parallel (or antiparallel) to the chromo-
electric field, the production rate has a maximum. Since the
exponential factor is very sensitive to the change of bi;f, the
rate is largely enhanced at θEE ¼ 0; π. Symmetric shape of
the angle dependence with respect to θEE ¼ π=2 is not so
trivial. Notice that the effective field strengths of the
combined field at θEE ¼ 0 and π are not equivalent
for a fixed value of i; namely, it is the strongest for the
parallel configuration (for ωi > 0) bi;charmðθEE¼0Þ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgωiÞ2E2þðeQcharmÞ2E2þ2gωieQcharmEE

p
and the

weakest for the antiparallel configuration bi;charmðθEE¼πÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgωiÞ2E2þðeQcharmÞ2E2−2gωieQcharmEE

p
, implying

that pair production is most enhanced for the parallel
configuration. This is true for any index of i giving a
positive eigenvalue ωi > 0. However, this eigenvalue
appears with a partner ωj having an opposite sign ωj ¼
−ωi [for SU(3) we have ω1 ¼ −ω2 ¼ 1=2], and the
antiparallel configuration gives the strongest effective field
for the index j, bj;charmðθEE ¼ πÞ ¼ bi;charmðθEE ¼ 0Þ.
Therefore, after summing over all the pairwise modes i,
we obtain the angle dependence symmetric with respect
to θEE ¼ π=2.

2. Quark pair production in purely chromo-EM
background

Next, we investigate quark pair production under
chromo-EM fields in the absence of EM fields. Lorentz-
invariant quantities F2

i;f and F i;f · ~F i;f are now explicitly
given as [see Eq. (33)]

F2
i;f ¼ 2ðgωiÞ2ðB2 − E2Þ;

F i;f · ~F i;f ¼ −4ðgωiÞ2EB cos θEB; ð47Þ

where B ¼
ffiffiffiffiffiffi
~B2

p
, and θEB stands for the angle between ~E

and ~B. When θEB ¼ �π=2 and E > B, we can move into a
system with pure chromo-electric fields with ai;f ¼ ai ¼ 0

and bi;f ¼ bi ¼ jgωij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − B2

p
by the Lorentz transforma-

tion. Then, the production rate for a certain flavor of quark
becomes

2ℑmLquark ¼
1

4π3
XNc

i¼1

b2i
X∞
n¼1

1

n2
e−

m2
q

bi
nπ; ð48Þ

which decreases as B increases. Furthermore, for B ≥ E
the production rate vanishes, since in this case the system
is equivalent to the pure chromo-magnetic field system.
When θEB ¼ 0; π, which would be relevant configurations
for relativistic heavy-ion collisions, ai and bi become
ai ¼ jgωiBj, bi ¼ jgωiEj. Then, the production rate reads

2ℑmLquark

¼ 1

4π2
XNc

i¼1

jgωiB∥gωiEj
X∞
n¼1

1

n
e−

m2
q

jgωiEjnπ coth

�
B
E
nπ

�
: ð49Þ

This production rate is the same result as obtained in
Refs. [53,54]. It increases as either the chromo-electric
field or the chromo-magnetic field increases. Figure 4
shows θEB dependence of the light quark production
rate with a fixed value of the chromo-electric field,
gE ¼ 1 GeV2. The maxima appear when the chromo-
magnetic field is parallel (or antiparallel) to the chromo-
electric field.

3. Quark pair production in a glasma with EM fields

Now we shall consider a specific configuration of
chromo-EM fields that are relevant for relativistic heavy-
ion collisions accompanied by EM fields. Suppose that the
chromo-electric field and the chromo-magnetic field are
parallel to each other, ~B∥~E, and that these strengths are
approximately equal to the saturation scale: jg~Bj ¼ jg~Ej ¼
1 GeV2 ∼Q2

s . This configuration of chromo-EM fields is
indeed realized at the very early stage of the glasma
evolution. Under this condition, we investigate light (up)
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FIG. 4 (color online). Light (up) quark production rate as a
function of θEchroBchro

, which stands for θEB with vanishing
electromagnetic fields. We take the strength of the chromo-
electric field as gE ¼ 1 GeV2.

OZAKI et al. PHYSICAL REVIEW D 92, 016002 (2015)

016002-10



quark productions with mq ¼ 0.5 MeV and Qq ¼ þ2=3.
Let us turn on the EM fields. In the heavy-ion collisions, the
dominant EM field is the magnetic field perpendicular to
the beam direction (equivalent to the direction of the
glasma fields). But here we consider the case je~Bj ≠ 0
and je~Ej ¼ 0, with arbitrary orientation. Then, the quan-
tities F2

i;f, and F i;f · ~F i;f read [see Eq. (33)]

F2
i;f ¼ 2½ðeQqÞ2B2 þ 2gωieQqBB cos θBB�;

F i;f · ~F i;f ¼ −4½ðgωiÞ2EB þ gωieQqEB cos θBB�; ð50Þ

with B ¼
ffiffiffiffiffiffi
~B2

p
. Here we have used the fact that

cos θEB ¼ cos θBB. Note that in the case of antiparallel
configuration of ~B and ~E, results are the same as those
of the parallel case, since this changes F i;f · ~F i;f →
−F i;f · ~F i;f, but it is squared in ai;f and bi;f.
Figure 5 shows the quark production rate as a function

of the angle θBB with several strengths of the magnetic
field. At the angle relevant for relativistic heavy-ion
collisions, θBB ¼ π=2, the production rate slightly
decreases with increasing B field. This can be understood
from Eq. (43) as follows: In this case, the quantity

ai;f ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðeQqÞ4B4 þ 16ðgωiÞ4EB

q
þ 2ðeQqÞ2B2

r
(or

bi;f¼1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðeQqÞ4B4þ16ðgωiÞ4EB

q
−2ðeQqÞ2B2

r
) increases

(decreases) with increasing B field, while the product

ai;fbi;f ¼ j~Ei;f · ~Bi;fj ¼ ðgωiÞ2EB is independent of B
field. Therefore, at θBB ¼ π=2, the quark production
rate monotonically decreases due to the exponential
factor expf−ðm2

q=bi;fÞnπg. This result is independent of
the sign of ωi.
On the other hand, Fig. 5 shows that the quark

production rate increases with increasing B field at

θBB ¼ 0 and π. This can be understood as follows:
At θBB ¼ 0; π, the quark production rate reads from
Eq. (43)

2ℑmLquark

¼ 1

4π2
XNc

i¼1

jgωijEBi;f

X∞
n¼1

1

n
e−

m2
q

jgωi jEnπ coth

�
Bi;f

jgωijE
nπ

�
;

ð51Þ

where the strength of the combined magnetic field has
been defined as Bi;f ¼ jgωiB þ eQqBj for θBB ¼ 0,
whereas Bi;f ¼ jgωiB − eQqBj for θBB ¼ π. This produc-
tion rate has a similar form with Eq. (49). First, we
consider the case jgωiBj > jeQqBj. When the chromo-
magnetic field and the magnetic field are (anti)parallel to
each other, θBB ¼ 0 (θBB ¼ π), with ωi > 0 (ωi < 0), the
strength of the combined magnetic field Bi;f linearly

increases with increasing B field, and thus coth ð Bi;f

jgωijE nπÞ
slightly decreases and approaches unity. When θBB ¼ 0
(θBB ¼ π) with ωi < 0 (ωi > 0), the field strength
Bi;f linearly decreases with increasing B field, but

coth ð Bi;f

jgωijE nπÞ increases. Then, after summing over all

the modes i, the production rate (51) at θBB ¼ 0
(θBB ¼ π) monotonically increases with increasing B
field. In the case of jgωiBj ≤ jeQqBj, the production
rate of both modes i ¼ 1; 2 increases with increasing B
field regardless of the sign of ωi, and thus the total
production rate also monotonically increases.
Furthermore, we again obtain the angle dependence
symmetric with respect to θBB ¼ π=2 in the produc-
tion rate.
Next, we consider the case with je~Ej ≠ 0 and je~Bj ¼ 0.

In this case, F2
i;f and F i;f · ~F i;f become [see Eq. (33)]

F2
i;f ¼ 2½−ðeQqfÞ2E2 − 2gωieQqiEE cos θEE�;

F i;f · ~F i;f ¼ −4½ðgωiÞ2EB þ gωieQqfBE cos θEE�: ð52Þ

In this expression, we have used cos θBE ¼ cos θEE. Again,

the results are the same as those of the case where ~B is

antiparallel to ~E. Figure 6 shows the quark production
rate as a function of the angle θEE with several values
of strength of the electric field. As the electric field
increases, the production rate increases for whole
angle regions. This can be understood in a similar way
to the previous case as follows: At θEE ¼ π=2, the

factor ai;fbi;f ¼ j~Ei;f · ~Bi;fj ¼ ðgωiÞ2EB is independent

of the electric field. As for each factor, ai;f ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðeQqÞ4E4 þ 16ðgωiÞ4EB

q
− 2ðeQqÞ2E2

r
decreases
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FIG. 5 (color online). Light (up) quark production rate in a B
field as a function of θBchroB

, which stands for θBB with a parallel
configuration of ~E and ~B. We take strengths of chromo-
electromagnetic fields as gB ¼ gE ¼ 1 GeV2.
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with increasing electric field, while bi;f ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðeQqÞ4E4 þ 16ðgωiÞ4EB

q
þ 2ðeQqÞ2E2

r
increases.

These behaviors are opposite to those of the previous case

with je~Ej ¼ 0 and je~Bj ≠ 0, and thus the production rate at
θ ¼ π=2 monotonically increases. At θEE ¼ 0; π, the quark
production rate (43) can be rewritten as

2ℑmLquark

¼ 1

4π2
XNc

i¼1

Ei;fjgωijB
X∞
n¼1

1

n
e
−

m2
q

Ei;f
nπ
coth

�jgωijB
Ei;f

nπ

�
;

ð53Þ

where the strength of the combined electric field has been
defined as Ei;f ¼ jgωiE þ eQqEj for θEE ¼ 0 and Ei;f ¼
jgωiE − eQqEj for θEE ¼ π. In the case of
jgωiEj > jeQqEj, when the chromo-electric field and the
electric field are (anti)parallel to each other, θEE ¼ 0
(θEE ¼ π), with ωi > 0 (ωi < 0), the strength of the
combined electric field Ei;f linearly increases with increas-

ing E field, and thus coth ðjgωijB
Ei;f

nπÞ monotonically

increases. When θEE ¼ 0 (θEE ¼ π) with ωi < 0
(ωi > 0), the field strength Ei;f linearly decreases with

increasing E field, and coth ðjgωijB
Ei;f

nπÞ slightly decreases

and approaches unity. Then, after summing over all the
modes i, the production rate (53) at θEE ¼ 0 (θEE ¼ π)
monotonically increases with increasing E field. On the
other hand, in the case of jgωiEj ≤ jeQqEj, the produc-
tion rate of both modes i ¼ 1; 2 increases with increasing
E field regardless of the sign of ωi, and thus the total
production rate also monotonically increases. From
these results, we expect that strong EM fields created

in the early stage of relativistic heavy-ion collisions
would largely affect quark productions from a glasma
(chromo-EM fields) depending on the field configura-
tions, and would thus possibly influence the formation
of QGP.

B. Weiss potential with electromagnetic fields

In this subsection, we will investigate the effects of EM
fields on the confinement-deconfinement phase transition
by using the effective potential of the Polyakov loop in the
presence of EM fields.
Prior to going into the details, let us briefly explain the

effective potential without external fields being imposed.
The one-loop calculation at finite temperature in SU(2)
gauge theory and in the massless fermion limit yields the
effective potential for the temporal component of the gauge

field ðC ¼ gĀ4

2πTÞ as [44–46]

VWeiss½C� ¼ VWeiss
YM ½C� þ VWeiss

quark ½C�; ð54Þ

where the YM and quark parts are given, respectively, by

VWeiss
YM ½C� ¼ −

3

45
π2T4 þ 3

4
π2T4C2ð1 − CÞ2; ð55Þ

VWeiss
quark ½C� ¼ −

7

90
π2T4 þ 1

6
π2T4C2ð2 − C2Þ: ð56Þ

This result is called the Weiss potential. In Fig. 7, we
show the Weiss potential VWeiss½C� and its breakdown.
We see that in the YM part, the minima appear at C ¼ 0
and C ¼ 1, reflecting the center symmetry C → Cþ 1
in SU(2). Thus, selecting one of the two minima
spontaneously breaks the center symmetry. Since the
system should be in the deconfined phase in the high-
temperature region where a perturbative approach
becomes valid, this result seems to be natural. The quark
part of the effective potential explicitly breaks the
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FIG. 7. Weiss potential as a function of C. Constant terms
which are independent of C are subtracted.
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center symmetry, and C ¼ 0 and C ¼ 1 are no longer
degenerated. In the presence of the quark part, C ¼ 0
is favored, which corresponds to the deconfined phase.
We are now going to investigate how this picture is
modified by the presence of external EM fields.

Now we come back to our most general results (26),
(27), and (40). Taking the vanishing limit of the chromo-
EM fields, ~E; ~B → 0, but keeping the Polyakov loop Ā4 and
EM fields nonzero in the results, we obtain the effective
potential

Veff ½Ā4; E; B� ¼ −
SeffR
dx4

¼ 1

32π2
XN2
c−1

h¼1

Z
∞

0

ds
s3

f4 − 2g2
X∞
n¼1

ei
n2

4T2s cos
�
gvhĀ4

T
n
�

−
1

8π2
XNc

i¼1

XNf

f¼1

Z
∞

0

ds
s3

e−im
2
qf
sðafsÞðbfsÞ cotðafsÞ cothðbfsÞ

× 2
X∞
n¼1

ð−1Þnei 1

4T2
hfðsÞn2 cos

�
gωiĀ4

T
n

�
; ð57Þ

where af and bf are just given by the EM fields as

af ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F4
f þ ðFf · ~FfÞ2

q
þ F2

f

r
; bf ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F4
f þ ðFf · ~FfÞ2

q
− F2

f

r
; ð58Þ

with F2
f ¼ 2ðeQqfÞ2ð~B2 − ~E2Þ and Ff · ~Ff ¼ −4ðeQqfÞ2 ~E · ~B. The factor hfðsÞ is given by

hfðsÞ ¼
b2f − e2f
a2f þ b2f

af cotðafsÞ þ
a2f þ e2f
a2f þ b2f

bf cothðbfsÞ; ð59Þ

where e2f ¼ ðuαFαμ
f ÞðuβFβ

fμÞ ¼ ðeQqfÞ2E2 with uμ ¼ ð1; 0; 0; 0Þ. Here we have subtracted divergences appearing in the
zero-temperature contribution, which are independent of Ā4.

1. Weiss potential in magnetic fields

Consider a pure magnetic field case, ~E → 0, ~B ≠ 0. Then, the effective potential reads

Veff ½Ā4; B� ¼
1

32π2
XN2
c−1

h¼1

Z
∞

0

ds
s3

f4 − 2g2
X∞
n¼1

ei
n2

4T2s cos

�
gvhĀ4

T
n

�

−
1

8π2
XNc

i¼1

XNf

f¼1

Z
∞

0

ds
s3

e−im
2
qf
sðejQqf jBsÞ cotðejQqf jBsÞ

× 2
X∞
n¼1

ð−1Þnei n2

4T2s cos

�
gωiĀ4

T
n

�
: ð60Þ

We rewrite the proper time integrals in two steps. Recall that the integral should be defined with an infinitesimally small
number δ which makes the contour slightly inclined to avoid the poles along the real axis (in the second term). Then we can
easily change the contour from ½0;∞� along the real axis to ½−i∞; 0� along the imaginary axis (the Wick rotation), since
there is no pole along the imaginary axis. Finally, by renaming the variable s as −iσ, we obtain the following representation
with integrals defined by real functions6:

6The second line of Eq. (61) coincides with Eq. (B.6) in the appendix of Ref. [21].
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Veff ½Ā4; B� ¼ −
1

8π2
XN2
c−1

h¼1

Z
∞

0

dσ
σ3

X∞
n¼1

e−
n2

4T2σ cos

�
gvhĀ4

T
n

�

þ 1

4π2
XNc

i¼1

XNf

f¼1

Z
∞

0

dσ
σ2

e−m
2
qf
σðejQqf jBÞ cothðejQqf jBσÞ

×
X∞
n¼1

ð−1Þne− n2

4T2σ cos

�
gωiĀ4

T
n

�
: ð61Þ

For simplicity, we shall restrict ourselves to Nc ¼ 2, which provides us with all the essential features of the perturbative
effective potential in the presence of EM fields. In this case, the eigenvalues ωi and vh are simply given by ωi ¼ �1=2 and
vh ¼ 0;�1. The effective potential reads

Veff ½C;B� ¼ −
3

45
π2T4 þ 3

4
π2T4C2ð1 − CÞ2

þ 1

2π2
XNf

f¼1

Z
∞

0

dσ
σ2

e−m
2
qf
σðejQqf jBÞ cothðejQqf jBσÞ

X∞
n¼1

ð−1Þne− n2

4T2σ cos ðCπnÞ: ð62Þ

The first line does not depend on the magnetic field and
corresponds to the YM part VYM. This is nothing but the
Weiss potential (55) [45]. The second line corresponds to
the quark part Vquark, and the integral and summation
over n can be easily performed numerically. From now
on, we further restrict ourselves to the one flavor f ¼ 1
with the electric charge Qqf ¼ 1 for simplicity. Now,
analytic expressions are available in two limiting cases:
One is the B → 0 and mq → 0 limit, where the quark part
of the effective potential is reduced to that of the Weiss
potential (55):

Vquark½C� ¼ −
7

90
π2T4 þ 1

6
π2T4C2ð2 − C2Þ ¼ VWeiss

quark ½C�:
ð63Þ

The other is the strong magnetic field limit: eB ≫ m2
q,

where the quark part can be written as

Vquark½C;B� ¼ −2
ðeBÞ
π2

T2

�
π2

12
−
ðCπÞ2
4

�
: ð64Þ

Figure 8 shows the magnetic field dependence of the
quark part of the effective potential which is given by
the second line of Eq. (62). Here, we show only one
flavor contribution with x ¼ m2

q=T2 ¼ 0.5. An important
observation is that as the magnetic field increases, the
explicit breaking of the center symmetry is enhanced,
and C ¼ 0 (deconfined phase) becomes more stable.
This is qualitatively consistent with the analytic repre-
sentation at strong magnetic fields [see Eq. (64)], in that
the potential value at C ¼ 0 becomes more negative and
the rising behavior becomes steeper with increasing

magnetic field. The enhancement of the center symmetry-
breaking effects due to increasing magnetic field indicates
that the quark loop interacting with magnetic fields can
be one of the important sources for reducing the (pseudo)
critical temperature Tc of confinement-deconfinement
phase transition, as observed in recent lattice QCD simu-
lations [21]. In the last part of this subsection, we will
see within a phenomenological model that this is indeed
the case.

2. Weiss potential in electric fields

In the case of a pure electric field, ~B → 0 and ~E ≠ 0, the
situation is a bit subtle. The effective potential of the quark
part can be written as
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FIG. 8 (color online). Quark part of the effective potential as a
function of C for several values of magnetic fields. x and y are
given as x ¼ m2

q=T2 and y ¼ eB=T2, respectively.
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Vquark½Ā4; E� ¼ −
1

2π2
XNf

f¼1

Z
∞

0

ds
s3

e−im
2
qf
sðejQqf jEsÞ coth ðejQqf jEsÞ

×
X∞
n¼1

ð−1Þnei n2

4T2s
ðejQqf

jEsÞ coth ðejQqf
jEsÞ cos

�
gĀ4

2T
n

�
: ð65Þ

Note that we cannot reach this result from Eq. (60) by replacing B with iE, unlike the zero-temperature contribution. This is
due to the form of the factor hfðsÞ ¼ ðejQqf jEsÞ cothðejQqf jEsÞ in the exponential. Because of this factor, the full
calculation (even numerical evaluation) is rather difficult. Furthermore, since there are singularities (poles) on the imaginary
axis, we cannot perform the Wick rotation of the proper time s, unlike the Weiss potential in magnetic fields. To avoid these
difficulties, we expand the effective potential with respect to the electric field. Using x coth x ∼ 1þ x2=3…, we get

Vquark½Ā4; E� ¼ −
1

2π2
XNf

f¼1

Z
∞

0

ds
s3

e−im
2
qf
s
X∞
n¼1

ð−1Þnei n2

4T2s cos
�
gĀ4

2T
n
�

−
1

6π2
XNf

f¼1

ðejQqf jEÞ2
Z

∞

0

ds
s
e−im

2
qf
s
X∞
n¼1

ð−1Þnei n2

4T2s

�
1þ n2

4T2s

�
cos

�
gĀ4

2T
n

�

þOðE4Þ: ð66Þ

At this stage, we can perform the Wick rotation for the proper time s. Then, the effective potential reads

Vquark½C;E� ¼
1

2π2
XNf

f¼1

Z
∞

0

dσ
σ3

e−m
2
qf
σ
X∞
n¼1

ð−1Þne− n2

4T2σ cos ðCπnÞ

−
1

6π2
XNf

f¼1

ðejQqf jEÞ2
Z

∞

0

dσ
σ
e−m

2
qf
σ
X∞
n¼1

ð−1Þne− n2

4T2σ

�
1 −

n2

4T2σ

�
cos ðCπnÞ

þOðE4Þ: ð67Þ

The systematic expansion with respect to the E field is
possible, and the integral and sum can be performed
numerically at each order.
In Fig. 9 we show the electric field dependence of the

quark part of the effective potential. From this figure, we

see that the electric field decreases the explicit breaking of
the center symmetry. This is completely opposite to the B
dependence of the effective potential. Thus, we expect that
Tc increases with increasing E field and approaches the Tc
of the pure YM theory.

3. Phenomenological analysis on TcðBÞ
We have seen that imposing magnetic fields enhances

the explicit breaking of the center symmetry. What we
have evaluated is a perturbative contribution (in the sense
that we assume that the coupling is small enough), and
thus we discussed how the Weiss potential (that is also
evaluated in a perturbative framework) is modified in the
presence of the EM fields. Within this perturbative
calculation, we are not able to approach the region
where phase transition will take place. Indeed, even if
the quark part of the effective potential depends on the
magnetic fields Vquark½C;B�, the total effective potential
Veff ½C;B� ¼ VYM½C� þ Vquark½C;B� selects the center bro-
ken state C ¼ 0, and thus confinement-deconfinement
phase transition never occurs within this perturbative
framework. However, recall that the magnetic field can
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FIG. 9 (color online). Quark part of the effective potential as a
function ofC for several values of electric fields. x and y are given
as x ¼ m2

q=T2 and y ¼ eE=T2, respectively.
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affect the effective potential of the Polyakov loop only
through the quark loop at leading order. Therefore, we
expect that even the perturbative evaluation of the quark
part Vquark½C;B� can make sense if combined with some
nonperturbative effective potential Vnonpert

YM ½C� for study of
the effects of magnetic fields on the phase transition.
Here we discuss whether this is indeed the case.
Let us introduce a simple model of a gluonic

potential reproducing confinement-deconfinement phase
transition,

U½C� ¼ −
1

2
aðTÞΦ2 þ bðTÞ ln ½1 − 6Φ2 þ 8Φ3 − 3Φ4�;

ð68Þ

with

aðTÞ ¼ a0 þ a1ðT0=TÞ þ a2ðT0=TÞ2;
bðTÞ ¼ b3ðT0=TÞ3: ð69Þ

Now, we consider the Nc ¼ 3 case. Here the parameters
are a0 ¼ 3.51; a1 ¼ −2.47; a2 ¼ 15.2; b3 ¼ −1.75, and
T0 ¼ 270 MeV, which are fixed to reproduce the quenched
lattice QCD results [55]. Instead of VYM, we employ this
phenomenological potential (68) and combine it with
Vquark½C;B�. In this way, we can study how the temperature
dependence of the Polyakov loop changes with magnetic
fields. Notice that the quark part of the perturbative
effective potential Vquark½C;B� with Nc ¼ 3 is the same
as that of the one with Nc ¼ 2, since the quark with ω3 ¼ 0
does not contribute to the potential. Therefore, we can use
the same potential evaluated in the second line of Eq. (62).
The result is shown in Fig. 10. In this analysis, we have
used ωi ¼ �1=2; 0 and a constituent quark mass
mq ¼ 350 MeV. Thanks to the explicit center symmetry
breaking, the Polyakov loop increases with increasing B
field, in particular below the phase transition temperature,
which eventually brings about decreasing pseudocritical

temperature TcðBÞ < TcðB ¼ 0Þ. This result is very
encouraging, but obviously we need to couple quark
dynamics to the gluon dynamics to understand the effects
of magnetic fields on the actual phase transition.
Very recently, the inverse magnetic catalysis of the

chiral sector, namely the decrease of the critical temper-
ature of the chiral phase transition, has been reproduced
from functional approaches including the Dyson-
Schwinger equations and the functional renormalization
group [24,25]. Once the inverse magnetic catalysis of the
chiral sector occurs, dynamical quark masses decrease
with increasing magnetic field around Tc. Then, the
quark loop contribution is enhanced, and thus the effect
of the explicit center symmetry breaking becomes larger.
Therefore, the inverse magnetic catalysis of chiral sector
would support the decreasing of the Tc of confinement-
deconfinement phase transition through the quark loop.

IV. SUMMARY AND CONCLUSION

In the present paper, we analytically derived the Euler-
Heisenberg action for QCDþ QED in the presence of the
Polyakov loop, called the Euler-Heisenberg-Weiss action,
by using the Schwinger proper time method. The
effective action contains EM fields and chromo-EM
fields as well as the Polyakov loop in a nonlinear form
and reproduces the known one-loop effective actions for
QED, QCD, QCDþ QED, and also the Weiss potential
for the Polyakov loop in appropriate limits.
As an application of our effective action, we investigated

quark pair productions under strong EM fields and chromo-
EM fields. Using the effective action of the quark part at
zero temperature, we derived the formula describing the
quark pair production rate in arbitrary configurations of the
QCD fields and QED fields. In particular configurations,
EM fields enhance the quark pair productions induced by
chromo-EM fields. This indicates that strong EM fields
created in relativistic heavy-ion collisions would largely
affect quark-antiquark pair productions from a glasma and
thus could give sizable contributions to the formation
of QGP.
We also studied the perturbative effective action of

the Polyakov loop in the presence of strong EM fields.
We found that the magnetic (electric) field enhances
(reduces) the explicit center symmetry breaking through
the quark loop. This indicates that the Polyakov loop
increases as the magnetic field increases, and thus the
(pseudo)critical temperature of confinement-deconfinement
phase transition decreases. In contrast, the electric field
would raise the critical temperature. In order to demon-
strate this, we combined the quark part of our perturbative
effective potential with a simple model which can repro-
duce the confinement-deconfinement phase transition. The
resultant Polyakov loop indeed increases with increasing B
field, and then (pseudo)critical temperature decreases. This
result is consistent with recent lattice data. Very recently,
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FIG. 10 (color online). Temperature dependence of the Poly-
akov loop for different values of magnetic field.
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G. Endrodi investigated QCD phase transitions in unprec-
edentedly strong magnetic fields from lattice simulations
of 1þ 1þ 1-flavor QCD [56]. He found strong evidence
for a first-order confinement-deconfinement phase transi-
tion in the asymptotically strong magnetic field regions. In
order to understand these lattice data, further nonpertur-
bative analyses will be necessary. As a future work, we
will extend the present work to nonperturbative analyses in
terms of functional approaches. The inclusion of the chiral

sector (quark-quark interaction mediated by gluons) will
also be an important ingredient in the future work.
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