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In recent lattice calculations it has been discovered that mesons upon truncation of the quasizero modes
of the Dirac operator obey a symmetry larger than the SUð2ÞL × SUð2ÞR × Uð1ÞA symmetry of the QCD
Lagrangian. This symmetry has been suggested to be SUð4Þ ⊃ SUð2ÞL × SUð2ÞR ×Uð1ÞA that mixes not
only the u- and d-quarks of a given chirality, but also the left- and right-handed components. Here it is
demonstrated that bilinear q̄q interpolating fields of a given spin J ≥ 1 transform into each other according
to irreducible representations of SUð4Þ or, in general, SUð2NFÞ. This fact together with the coincidence of
the correlation functions establishes SUð4Þ as a symmetry of the J ≥ 1 mesons upon quasizero mode
reduction. It is shown that this symmetry is a symmetry of the confining instantaneous charge-charge
interaction in QCD. Different subgroups of SUð4Þ as well as the SUð4Þ algebra are explored.

DOI: 10.1103/PhysRevD.92.016001 PACS numbers: 11.30.Rd, 12.38.Aw, 14.40.-n

I. INTRODUCTION

In recent NF ¼ 2 dynamical lattice simulations with the
manifestly chiral-invariant overlap Dirac operator, a new
symmetry of mesons of given spin has been discovered
upon truncation of the quasizero modes of the Dirac
operator, Refs. [1,2] (A hint for this symmetry had been
seen in a previous study, Ref. [3].) Namely, the J ¼ 1
mesons ρ; ρ0;ω;ω0; a1; b1; h1; f1 get degenerate after
removal of the lowest-lying Dirac eigenmodes.1 A similar
degeneracy is seen also in J ¼ 2 mesons, Ref. [4]. This
symmetry has been suggested to be SUð4Þ ⊃ SUð2ÞL ×
SUð2ÞR ×Uð1ÞA that mixes components of the fundamen-
tal vector ðuL; uR; dL; dRÞ, Ref. [5]. It is higher than the
broken SUð2ÞL × SUð2ÞR ×Uð1ÞA symmetry of the QCD
Lagrangian and should be considered as an emergent
symmetry in J ≥ 1 mesons that reflects the QCD dynamics
once the quasizero modes of the Dirac operator have been
removed. It has been proposed that this symmetry might be
a symmetry of the dynamical QCD string because there is
no color-magnetic interaction (field) in the system, Ref. [5].
In the present paper we extend findings of [5] and show

that the composite J ≥ 1q̄q bilinear operators (interpolating
fields) with nonexotic quantum numbers transform accord-
ing to irreducible dim ¼ 15 and dim ¼ 1 representations of
the SUð4Þ ⊃ SUð2ÞL × SUð2ÞR ×Uð1ÞA × Ci group. This
result holds irrespective of the observations made in
Refs. [1,2] as well as possible physics interpretations in
Ref. [5]. The correlation functions obtained with these
operators get indistinguishable after truncation, Ref. [2].
This fact establishes consequently the proposed SUð4Þ

symmetry as the symmetry of the J ≥ 1 spectra upon the
quasizero mode reduction. We also study different sub-
groups of SUð4Þ, the corresponding algebras as well as
transformation properties of the interpolators with respect
to these subgroups.
The outline of the article is as follows: In Sec. II we

review the classification of the spin-1 q̄q-bilinears with
respect to SUð2ÞL × SUð2ÞR and Uð1ÞA transformations,
Ref. [6]. In Sec. III we demonstrate that all these inter-
polators are connected with each other through the SUð4Þ
transformations that include not only the chiral rotations
but also a mixing between the left- and right-handed
components, specify interpolators that transform according
to different subgroups of SUð4Þ and construct the respec-
tive algebras. A generalization to SUð2NFÞ and to general
spin is also discussed. In the last section we show that the
observed SUð4Þ symmetry implies the absence of the color-
magnetic field in the confined system after the low-mode
elimination and can be considered as a manifestation of the
dynamical string in QCD.

II. CHIRAL CLASSIFICATION OF
THE J ¼ 1 BILINEAR OPERATORS

We work in Minkowski space with the chiral represen-
tation of the γ-matrices. In flavor space we use the Pauli
matrices τ. The basic definitions are collected in the
Appendix. With the notation

Ψ ¼
�
u
d

�
ð1Þ

we make explicit the two flavors in the quark field. The left-
and right-handed quark fields for one flavor are defined via
the projection operator P� ¼ 1=2ð1� γ5Þ, which can be
generalized for two quark flavors by defining the projectors
as Γ� ¼ ð1F ⊗ P�Þ:
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1It is not yet entirely clear from the lattice results whether

the f1 state is degenerate with other J ¼ 1 mesons. While the
quality of the effective mass plateau is excellent for the
ρ; ρ0;ω;ω0; a1; b1; h1 mesons it is not so for the f1 state.
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ΨL ¼ Γ−Ψ; ΨR ¼ ΓþΨ: ð2Þ
All q̄q-mesons and respective operators with nonexotic
quantum numbers can be arranged into irreducible
representations of the parity-chiral group SUð2ÞL×
SUð2ÞR × Ci, Ref. [7]. We use the notation ðIL; IRÞ, with
left-handed (IL) and right-handed (IR) isospin for each
irreducible representation of SUð2ÞL × SUð2ÞR. The clas-
sification of spin-1 meson operators is presented in Fig. 1.
Below each meson a corresponding interpolator JrðI;JPCÞ is
given with r being the index of an irreducible representa-
tion of the parity-chiral group.
As an example we now compare the combination of left-

and right-handed quarks within the interpolators of the two
isovectors 1−−. We start with the interpolators Jð1;0Þ⊕ð0;1Þ

ð1;1−−Þ ¼
Ψ̄ðτa ⊗ γkÞΨ and write it in terms of left- and right-handed
quarks:

Jð1;0Þ⊕ð0;1Þ
ð1;1−−Þ ¼ Ψ̄Lðτa ⊗ γkÞΨL þ Ψ̄Rðτa ⊗ γkÞΨR: ð3Þ

It has the chiral content L̄Lþ R̄R. The interpolator

Jð1=2;1=2Þbð1;1−−Þ ¼ Ψ̄ðτa ⊗ γ0γkÞΨ can be split up as

Jð1=2;1=2Þbð1;1−−Þ ¼ Ψ̄Lðτa ⊗ γ0γkÞΨRþ Ψ̄Rðτa ⊗ γ0γkÞΨL; ð4Þ

and has the chiral content L̄Rþ R̄L.
The axial part of the SUð2ÞL × SUð2ÞR transformations

is defined by

Ψ → Ψ0 ¼ ei
ε·τ
2
⊗γ5Ψ≡UΨ: ð5Þ

These axial transformations do not form a closed group.
However, we use SUð2ÞA as a shorthand notation for these
transformations in the text below and in Fig. 1.
The matrix U has the property U†ð1F ⊗ γ0Þ ¼

ð1F ⊗ γ0ÞU, from which Ψ̄0 ¼ Ψ̄U follows. It can be
expressed in closed form as

U ¼ ð1F ⊗ 1DÞ cos
�jεj
2

�
þ iðε̂ · τ ⊗ γ5Þ sin

�jεj
2

�
; ð6Þ

with ε̂ ¼ ε=jεj. We now apply the SUð2ÞA transformation
U on the individual interpolators of Fig. 1. For instance, the

interpolator Jð1=2;1=2Það0;1−−Þ transforms as

Ψ̄0ð1F ⊗ γ0γkÞΨ0 ¼ Ψ̄ð1F ⊗ γ0γkÞΨ · E

þ Ψ̄ðτa ⊗ γ5γ0γkÞΨ · F a; ð7Þ

with E ¼ cos jεj and F a ¼ iε̂a sin jεj being functions of the
rotation vector ε only. We find that the following pairs
become connected via the SUð2ÞA (see Fig. 1):

Jð1=2;1=2Það1;1þ−Þ ⟷ Jð1=2;1=2Það0;1−−Þ ; ð8Þ

Jð1=2;1=2Þbð1;1−−Þ ⟷ Jð1=2;1=2Þbð0;1þ−Þ ; ð9Þ

Jð1;0Þ⊕ð0;1Þ
ð1;1−−Þ ⟷ Jð1;0Þ⊕ð0;1Þ

ð1;1þþÞ : ð10Þ

Similarly, the Uð1ÞA transformation

Ψ → Ψ0 ¼ eiαð1F⊗γ5ÞΨ ð11Þ

connects interpolators from the ð1=2; 1=2Þa and
ð1=2; 1=2Þb representations which have the same isospin
but opposite spatial parity. These four interpolators form an
irreducible representation of SUð2ÞL × SUð2ÞR ×Uð1ÞA.
The interpolators from the ð1; 0Þ ⊕ ð0; 1Þ representation
are self-dual with respect to theUð1ÞA transformations. The
singlet interpolators from the (0,0) representations
are invariant with respect to both Uð1ÞA and SUð2ÞA
transformations.

III. EXTENDING SUð2ÞL × SUð2ÞR × Uð1ÞA × Ci
TO SUð4Þ

A. Left-right mixing

Our task is to find transformations that mix different
representations of the parity-chiral group. The representa-
tions ð1=2; 1=2Þ have the quark content L̄R� R̄L and the
representations ð0; 0Þ; ð1; 0Þ ⊕ ð0; 1Þ have the quark con-
tent L̄L� R̄R. Consequently, in order to connect these
representations one needs to find a symmetry transforma-
tion, which mixes left- and right-handed quarks, Ref. [5].
Consider the fundamental doublets

U ¼
�
uL
uR

�

and

FIG. 1 (color online). On the left column the irreducible
representations of the parity-chiral group are given. Each meson
is denoted as ðI; JPCÞ, with I isospin, J total spin, P parity and C
charge conjugation. Below each state a current from which it can
be generated is given. The SUð2ÞA and Uð1ÞA connections are
denoted by red and blue lines, respectively.
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D ¼
�
dL
dR

�

constructed from Weyl spinors. We can consider SUð2Þu
and SUð2Þd rotations of these doublets in an imaginary
three-dimensional space that mix the uL and uR as well as
the dL and dR spinors. It is similar to the well familiar
concept of the isospin space: The electric charges of
particles are conserved quantities, but rotations in the
isospin space mix particles with different electric charges.
In our case the chirality of a massless quark is a conserved
quantity but the SUð2Þu and SUð2Þd rotations mix quarks
with different chiralities:

U → U0 ¼ ei
ε·σ
2 U; D → D0 ¼ ei

ε·σ
2 D; ð12Þ

where σ are the standard Pauli matrices which obey the
suð2Þ algebra:

½σi; σj� ¼ 2iϵijkσk: ð13Þ

We refer to this imaginary three-dimensional space as the
chiralspin space.
Instead of the Weyl spinors we can consider the left- and

right-handed Dirac bispinors. Then, the required suð2Þ
algebra can be constructed with the 4 × 4 matrices

Σ ¼ fγ0; iγ5γ0;−γ5g; ð14Þ

with the commutation relation

½Σi;Σj� ¼ 2iϵijkΣk: ð15Þ

These rotations act in Dirac space only and are diagonal in
flavor space:

Ψ → Ψ0 ¼ eið1F⊗ε·Σ
2
ÞΨ≡ VΨ: ð16Þ

We denote this symmetry group as SUð2Þcs. We note that in
the compact notation of Eq. (16) two SUð2Þu and SUð2Þd
symmetries for the individual quark flavors u and d are
hidden.
In analogy to Eq. (6) we express V as

V ¼ ð1F ⊗ 1DÞ cos
�jεj
2

�
þ ið1F ⊗ ε̂ · ΣÞ sin

�jεj
2

�
: ð17Þ

Now we apply these chiralspin rotations on the interpola-
tors in Fig. 1 and find the following triplets2 of interpolators
that are connected to each other3:

Jð0;0Þð0;1−−Þ ↔ Jð1=2;1=2Það0;1−−Þ ↔ Jð1=2;1=2Þbð0;1þ−Þ ; ð18Þ

Jð1;0Þ⊕ð0;1Þ
ð1;1−−Þ ↔ Jð1=2;1=2Þbð1;1−−Þ ↔ Jð1=2;1=2Það1;1þ−Þ : ð19Þ

This means that, transforming any of the interpolators in
Eq. (18) with respect to V, the result can always be
decomposed as

Ψ̄ð1F ⊗ γkÞΨ · EðiÞ þ Ψ̄ð1F ⊗ γ5γ0γkÞΨ · F ðiÞ

þ Ψ̄ð1F ⊗ γ0γkÞΨ · GðiÞ; ð20Þ

with i ¼ 1; 2; 3 labeling the interpolators, and EðiÞ;F ðiÞ;GðiÞ
being functions of the rotation vector ε only. Performing a
transformation of the interpolating currents in Eq. (19)
leads to the same decomposition with τa instead of 1F in
flavor space. It is clear why we get two triplets of states: in
Eq. (16) two SUð2Þ symmetries, namely for up and down
quarks, appear.4 The interpolators

Jð0;0Þð0;1þþÞ ¼ Ψ̄ð1F ⊗ γ5γkÞΨ; ð21Þ

Jð1;0Þ⊕ð0;1Þ
ð1;1þþÞ ¼ Ψ̄ðτa ⊗ γ5γkÞΨ; ð22Þ

are invariant5 with respect to SUð2Þcs. In group-theoretical
language, we have shown the multiplication rule 2 ⊗ 2 ¼
3 ⊕ 1 for SUð2Þ.
The SUð2ÞCS triplets and singlets are shown in Fig. 2.
The Uð1ÞA symmetry is contained in SUð2Þcs as a

subgroup.
Let us, at the end of this section, emphasize that the

SUð2Þcs symmetry is not a symmetry of the QCD
Lagrangian. We apply a SUð2Þcs transformation on the
fermion part of the QCD Lagrangian:

Ψ̄0ð1F ⊗ γμDμÞΨ0 ¼ Ψ̄ð1F ⊗ γ0D0ÞΨ
− Ψ̄ð1F ⊗ γ0ÞV†ð1F ⊗ γ0γ ·DÞVΨ:

ð23Þ
The γ0-part is invariant under this transformation. The
spacial part would only be invariant if χ̄i ¼ χiði ¼ 1; 2; 3Þ,
see Eq. (A1), i.e., both the left- and right-handed fermions
fulfilled the same Weyl equations, as intended by the
symmetry.6 An invariance can also be achieved by a spatial
coupling in the Lagrangian of the form γ5γk, see Eq. (21).

2Consequently, the chiralspin 1 should be ascribed to these
fields.

3When applying V on Ψ̄ we have to be careful, since V
and ð1F ⊗ γ0Þ do not commute. We write Ψ̄0 ¼
Ψ̄ð1F ⊗ γ0ÞV†ð1F ⊗ γ0Þ.

4The symmetry SUð2ÞCS connects the interpolators with off-
diagonal γ-structure to interpolators with diagonal γ-structure (in
the chiral representation of the γ-matrices). This is how left- and
right-handed quarks are mixed.

5I.e., their chiralspin is 0.
6For example, this symmetry is manifestly violated by in-

stantons. Only the left-handed quark satisfies the Dirac equation
with zero eigenvalue in the field of an instanton, while only the
right-handed quark produces a zero mode in the field of an anti-
instanton, Refs. [8,9].
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B. SUð4Þ
When we try to find a common algebra for the SUð2ÞL ×

SUð2ÞR and the SUð2Þcs symmetries, we immediately
arrive at the suð4Þ algebra. This is due to the commutator

½ð1F ⊗ ΣiÞ; ðτa ⊗ Σ3Þ� ¼ 2iϵi3kðτa ⊗ ΣkÞ; ð24Þ

with a ¼ 1; 2; 3 and i; k ¼ 1; 2; 3. The 15 matrices
altogether,

fðτa ⊗ 1DÞ; ð1F ⊗ ΣiÞ; ðτa ⊗ ΣiÞg; ð25Þ

form the generators Tl of the suð4Þ algebra, satisfying the
following commutation relations:

½Tl;Tm� ¼ 2iflmnTn; flmn ¼ 1

8i
Tr½½Tl;Tm�Tn�; ð26Þ

fTl; Tmg ¼ 2δlm1þ 2dlmnTn;

dlmn ¼ 1

8
Tr½fTl; TmgTn�; ð27Þ

with flmn denoting the totally antisymmetric structure
constants and dlmn a totally symmetric tensor,
l; m; n ¼ 1; 2;…; 15. The formula

ðϵ · TÞðϵ · TÞ ¼ ϵ2 þ ðiflmn þ dlmnÞϵlϵmTn ð28Þ

follows from the (anti)commutation relations.
We denote this symmetry as

Ψ → Ψ0 ¼ eiϵ·T=2Ψ≡WΨ; ð29Þ

with the fundamental vector Ψ being four-dimensional:

Ψ ¼

0
B@

uL
uR
dL
dR

1
CA: ð30Þ

The SUð4Þ symmetry transformation mixes both quark
flavors and left/right-handed components. For instance, a
left-handed up quark now transforms as

uL → a · uL þ b · uR þ c · dL þ e · dR; ð31Þ
with a; b; c; d being functions of the rotation vector ε. The
new mixing, not present for SUð2ÞL × SUð2ÞR and
SUð2Þcs, is between uL and dR (and accordingly for the
other quark flavors).
In principle the matrix W could be written in linearized

form [according to Eqs. (6) and (17)]

W ¼ a0ð1F ⊗ 1DÞ þ a1ðiϵ · T=2Þ; ð32Þ

with the coefficients a0; a1 being expressions of fabc and
dabc, see Ref. [10]. We perform an analytical evaluation
with MATHEMATICA, where we express W by its spectral
decomposition. We calculate which fields (mesons) are
connected via SUð4Þ by transforming each interpolator in
Fig. 1 with respect to W, Eq. (29). We arrive that the
following interpolators get mixed via W:

Jð0;0Þð0;1−−Þ ↔ Jð1=2;1=2Það0;1−−Þ ↔ Jð1=2;1=2Þbð0;1þ−Þ ↔ Jð1;0Þ⊕ð0;1Þ
ð1;1−−Þ

↔ Jð1=2;1=2Það1;1þ−Þ ↔ Jð1=2;1=2Þbð1;1−−Þ ↔ Jð1;0Þ⊕ð0;1Þ
ð1;1þþÞ : ð33Þ

They form basis vectors for a dim ¼ 15 irreducible
representation of SUð4Þ. Hence, any of the currents above,
when transformed with respect to W, Eq. (29), can be
decomposed as

Ψ̄ðΞα ⊗ γkÞΨ · Eα
ðiÞ þ Ψ̄ðΞα ⊗ γ0γkÞΨ · F α

ðiÞ ð34Þ

þΨ̄ðΞα⊗ γ5γ0γkÞΨ ·Gα
ðiÞ þΨ̄ðτa⊗ γ5γkÞΨ ·Ka

ðiÞ; ð35Þ
where we used the compact notation Ξα ¼ ð1F; τaÞ,
(α ¼ 1; 2; 3; 4) and Eα

ðiÞ;F
α
ðiÞ;G

α
ðiÞ;K

a
ðiÞ are functions of

the rotation parameter ε only. The index i labels the
interpolators.
In this decomposition the interpolator

Jð0;0Þð0;1þþÞ ¼ Ψ̄ð1F ⊗ γ5γkÞΨ ð36Þ

is missing, because it is invariant with respect to W,
Eq. (29), i.e., represents a singlet representation of
SUð4Þ. We have thus shown the following SUð4Þ multi-
plication rule: 4̄ ⊗ 4 ¼ 15 ⊕ 1. The SUð4Þ singlet and
15-plet are shown in Fig. 2.

C. Other transformations

The SUð2ÞL × SUð2ÞR and SUð2Þcs symmetries are two
subgroups of SUð4Þ. The matrices

Ta;i ¼ fðτa ⊗ 1DÞ; ðτa ⊗ ΣiÞg; i ¼ 1; 2; ð37Þ

FIG. 2 (color online). The SUð2ÞCS triplets are denoted by
green lines; f1 and a1 are the SUð2ÞCS-singlets. The SUð4Þ
15-plet is indicated by purple lines; f1 is the SUð4Þ-singlet.
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with Σ1 and Σ2 given in Eq. (14), generate two additional
subgroups of SUð4Þ. The transformations

Ψ → Ψ0 ¼ eiðϵ·τ2 ⊗Σ1ÞΨ≡ XΨ; ð38Þ

Ψ → Ψ0 ¼ eiðϵ·τ2 ⊗Σ2ÞΨ≡ YΨ; ð39Þ

do not form closed subgroups but we denote them for
shortness as SUð2ÞX and SUð2ÞY . They can be expressed in
closed form according to Eq. (6) with γ0 (iγ5γ0) instead of
γ5 in Dirac space.
The following left/right-handed quark flavors mix with

uL via these symmetries:

uL → a · uL þ b · uR þ c · dR; ð40Þ

which means that uL mixes with all L=R-quark flavors
except dL. The same is true for uR, which mixes with all
flavors except dR. So the mixings of the chiral SUð2ÞL ×
SUð2ÞR symmetry, namely uL ↔ dL; uR ↔ dR, do not
occur for these two X and Y transformations.
We now identify which interpolators become connected.

We start with the transformation X, Eq. (38), for which the
following mixings occur:

Jð1=2;1=2Það0;1−−Þ ⟷ Jð1;0Þ⊕ð0;1Þ
ð1;1−−Þ ; ð41Þ

Jð1=2;1=2Það1;1þ−Þ ⟷ Jð1;0Þ⊕ð0;1Þ
ð1;1þþÞ ; ð42Þ

Jð1=2;1=2Þbð1;1−−Þ ⟷ Jð0;0Þð0;1−−Þ: ð43Þ

The interpolators

Jð0;0Þð0;1þþÞ ¼ Ψ̄ð1F ⊗ γ5γkÞΨ; ð44Þ

Jð1=2;1=2Þbð0;1þ−Þ ¼ Ψ̄ð1F ⊗ γ5γ0γkÞΨ; ð45Þ

are invariant.
Now we turn to the transformation Y, Eq. (39). Here the

particles with interpolators

Jð1=2;1=2Þbð0;1þ−Þ ⟷ Jð1;0Þ⊕ð0;1Þ
ð1;1−−Þ ; ð46Þ

Jð1=2;1=2Þbð1;1−−Þ ⟷ Jð1;0Þ⊕ð0;1Þ
ð1;1þþÞ ; ð47Þ

Jð1=2;1=2Það1;1þ−Þ ⟷ Jð0;0Þð0;1−−Þ; ð48Þ

form doublets. The interpolators

Jð0;0Þð0;1þþÞ ¼ ð1F ⊗ γ5γkÞ; ð49Þ

Jð1=2;1=2Það0;1−−Þ ¼ ð1F ⊗ γ0γkÞ; ð50Þ

are invariant.
To make our findings more transparent, in Fig. 3 we

show how the transformations SUð2ÞX (red), SUð2ÞY
(dotted blue) connect the different mesons of spin-1.

D. Generalization to arbitrary spin

The SUð4Þ symmetry holds also for arbitrary spin J ≥ 1,
because for any J ≥ 1 one can construct interpolators with
derivatives that have exactly the same chiral transformation
properties as those in Fig. 1, see for details Ref. [7].
For even spins, J ¼ 2n; n ¼ 1; 2;… we have the

following 15-plets:

Jð0;0Þð0;JþþÞ ↔ Jð1=2;1=2Það0;JþþÞ ↔ Jð1=2;1=2Þbð0;J−þÞ ↔ Jð1;0Þ⊕ð0;1Þ
ð1;JþþÞ

↔ Jð1=2;1=2Það1;J−þÞ ↔ Jð1=2;1=2Þbð1;JþþÞ ↔ Jð1;0Þ⊕ð0;1Þ
ð1;J−−Þ ; ð51Þ

and for mesons with spin J ¼ 2n − 1 we have

Jð0;0Þð0;J−−Þ ↔ Jð1=2;1=2Það0;J−−Þ ↔ Jð1=2;1=2Þbð0;Jþ−Þ ↔ Jð1;0Þ⊕ð0;1Þ
ð1;J−−Þ

↔ Jð1=2;1=2Það1;Jþ−Þ ↔ Jð1=2;1=2Þbð1;J−−Þ ↔ Jð1;0Þ⊕ð0;1Þ
ð1;JþþÞ : ð52Þ

The SUð4Þ-singlets are Jð0;0Þð0;J−−Þ for even spin and J
ð0;0Þ
ð0;JþþÞ for

odd spin.
For J ¼ 0 only the ð1=2; 1=2Þa and ð1=2; 1=2Þb chiral

representations are possible and the symmetry group
is SUð2ÞL ⊗ SUð2ÞR ×Uð1ÞA.

E. Generalization to three and NF flavors

The three flavor mesons are classified according to
SUð3ÞL ⊗ SUð3ÞR, and fall into the irreducible represen-
tations ð1; 1Þ; ð3̄; 3Þ ⊕ ð3; 3̄Þ; ð8; 1Þ ⊕ ð1; 8Þ. The sym-
metry connecting the interpolators in these distinct
irreducible representations is SUð6Þ with the 35 generators

FIG. 3 (color online). Symmetry transformations SUð2ÞX,
Eq. (38) (red), SUð2ÞY , Eq. (39) (dotted blue) connecting
spin-1 meson fields.
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Tl ¼ fðλa ⊗ 1DÞ; ð1F ⊗ ΣiÞ; ðλa ⊗ ΣiÞg; ð53Þ

and λa the Gell-Mann matrices (a ¼ 1;…; 8),
l ¼ 1; 2;…; 35. The fundamental vector Ψ is six dimen-
sional and we have for fixed spin J the multiplication rule:
6̄ ⊗ 6 ¼ 35 ⊕ 1. This can be further generalized to NF
flavors, by simply replacing the Gell-Mann λa matrices in
Tl with any other suðNFÞ-generators in flavor space. We
then arrive at the ð2NFÞ2 − 1 generators of the SUð2NFÞ
symmetry. All symmetry patterns derived in the above
sections for two flavors, apply for three and NF flavors
as well.

IV. IMPLICATIONS

We have mentioned in the Introduction that upon
subtraction of the lowest-lying Dirac modes from the
valence quark propagators a degeneracy of all mesons
from the 15-plet is observed. Clearly, this is not accidental
and reflects some inherent in QCD dynamics.
A priori one expects that elimination of the quasizero

modes should restore the chiral SUð2ÞL × SUð2ÞR sym-
metry in hadrons since the quark condensate of the
vacuum is connected with the density of the quasizero
modes via the Banks-Casher relation [11]. However, not
only degeneracy patterns from the groups SUð2ÞL ×
SUð2ÞR and Uð1ÞA are seen, but a larger symmetry
SUð4Þ ⊃ SUð2ÞL × SUð2ÞR ×Uð1ÞA.
Naively one could assume that all the interesting non-

perturbative physics is removed with the low-lying modes
and what remains is some output from perturbative inter-
actions. Such a simple assumption can be ruled out,
however. In Ref. [1] we have proven that a system of free
or weakly interacting quarks in a box is not compatible with
the degeneracy of the ground states with opposite spatial
parity seen in our lattice results. Such a degeneracy
necessarily implies that we deal with the bound (confined)
system of quarks. Second, within a perturbative approach
only the SUð2ÞL × SUð2ÞR symmetry can be obtained,
since it is a symmetry of the QCD Lagrangian and
consequently of perturbation theory. Third, the energy of
the quark-antiquark system with perturbative interactions
should be around two bare quark masses, and not of the
order 1 GeV.
The very fact that we observe a higher symmetry than the

symmetry of the QCD Lagrangian does imply that we deal
with a highly nontrivial nonperturbative system. In Ref. [5]
it has been proven that there is no color-magnetic field in
this bound (confined) system. There is only a color-electric
field that binds the quarks. Here we present an alternative
way to support this statement.
From Eq. (23) it follows that the color-Coulomb part of

the QCD Hamiltonian in Coulomb gauge (J denotes the
Faddeev-Popov determinant),

HC ¼ g2

2

Z
J−1ρaðxÞFabðx; yÞJρbðyÞ; ð54Þ

which describes the interaction between color charge
densities ρaðxÞ mediated by the color-Coulomb kernel
Fabðx; yÞ is invariant with respect to both SUð2ÞCS and
SUð4Þ transformations. Therefore such a term survives in
an SUð4Þ-symmetric hadron. It is the term which arises
from the longitudinal part of the color-electric Yang-Mills
Hamiltonian after resolving Gauss law.
However, the coupling of quarks to spatial gluons,

HT ¼ −g
Z

d3xΨ†ðxÞα · AðxÞΨðxÞ; ð55Þ

is not SUð2ÞCS- and SUð4Þ-symmetric and therefore its
expectation value must vanish in the SUð4Þ-symmetric
hadron wave function. The only interaction left is the color-
Coulomb part HC, Eq. (54).

7

We conclude that after reduction of the quasizero modes
the only interaction left in the system arises from the color-
electric field components and there is no color-magnetic
field contribution. In the untruncated case the color-
magnetic field contribution is still there, but only through
the quasizero modes. Indeed, e.g., the instanton fluctua-
tions, which do lead the quasizero modes [12,13], do
contain the magnetic field.
The instantaneous color-Coulomb potential, given as the

expectation value of Fab in the gluon sector, is confining
[14] and can be approximately obtained from the varia-
tional approach [15].
The linear color-Coulomb potential implies that lines of

the color-electric field are squeezed into a flux tube. A flux
tube between static quark sources has been observed on the
lattice, see Ref. [16] and references therein. The observed
SUð4Þ symmetry of hadrons after the low-mode elimina-
tion can be consequently connected to the existence of the
dynamical QCD string and its energy [5].

V. SUMMARY

We have found a new SUð4Þ symmetry of the bilinear
quark-antiquark fields of any spin J ≥ 1 with nonexotic
quantum numbers. This symmetry contains not only chiral
transformations, but also the left-right rotations of massless
quarks. We have classified interpolating fields according to
different irreducible representations of SUð4Þ and its
subgroups. These results are straightforwardly generalized
to NF massless flavors and the respective group is
SUð2NFÞ.

7It could be also seen directly from (23): the γ0 part of the
interaction Lagrangian represents the Coulombic interaction
coming from Gauss law, while the spatial part is due to the
interaction of the quark current with spatial gluons j ·A, where
color-magnetic contributions can occur.
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The very fact that the correlation functions calculated
with all operators from the 15-plet of SUð4Þ in Ref. [2]
upon subtraction of the quasizero modes of the Dirac
operator get indistinguishable, establishes the new SUð4Þ
symmetry of mesons after removal of the quasizero modes.
This symmetry is higher than the symmetry of the QCD
Lagrangian and should be consequently considered as an
emergent symmetry. This symmetry implies the absence of
magnetic interactions (of the color-magnetic field) in the
system and might be interpreted as a manifestation of the
dynamical QCD string, Ref. [5].
An interesting question is whether the f1 meson, which

belongs to the singlet representation of SUð4Þ, is degen-
erate or not with other J ¼ 1 mesons. If yes, then there
should exist a higher symmetry, which contains SUð4Þ as a
subgroup and that combines both the 15-plet and the singlet
representation into a higher representation. It cannot be
Uð4Þ, because a transition fromUð4Þ to its subgroup SUð4Þ
does not reduce the irreducible representations ofUð4Þ into
a sum of irreducible representations of SUð4Þ.
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APPENDIX: BASIC DEFINITIONS AND
CONVENTIONS

The chiral representation of γ-matrices enables us to
write γμ in a compact notation:

γμ ¼
�

0 χμ

χ̄μ 0

�
; χμ ¼ ð1; χ Þ; χ̄μ ¼ ð1;−χ Þ;

ðA1Þ

and the chirality matrix γ5 is given as

γ5 ¼
�
−1 0

0 1

�
; ðA2Þ

so that for a single flavor the quark field in L=R-
components is given as

ψ ¼
�
ϕL

ϕR

�
: ðA3Þ

Important for the construction of the meson symmetries are
matrices of the form MF ⊗ ND with M and N matrices in
flavor and Dirac space, respectively. As an example, we
construct

ð1F ⊗ γkÞ ¼

0
BBB@

0 χk 0 0

−χk 0 0 0

0 0 0 χk

0 0 −χk 0

1
CCCA; ðA4Þ

ðτ1 ⊗ γkÞ ¼

0
BB@

0 0 0 χk

0 0 −χk 0

0 χk 0 0

−χk 0 0 0

1
CCA; ðA5Þ

ðτ2 ⊗ γkÞ ¼ i

0
BB@

0 0 0 −χk
0 0 χk 0

0 χk 0 0

−χk 0 0 0

1
CCA; ðA6Þ

ðτ3 ⊗ γkÞ ¼

0
BB@

0 χk 0 0

−χk 0 0 0

0 0 0 −χk
0 0 χk 0

1
CCA: ðA7Þ
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