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We consider the minimal Uð1Þ0 extension of the standard model (SM) with conformal invariance at the
classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos
and a Uð1Þ0 Higgs field are introduced. In the presence of the three right-handed neutrinos, which are
responsible for the seesaw mechanism, this model is free from all the gauge and gravitational anomalies.
The Uð1Þ0 gauge symmetry is radiatively broken via the Coleman-Weinberg mechanism, by which the
Uð1Þ0 gauge boson (Z0 boson) mass as well as the Majorana mass for the right-handed neutrinos are
generated. The radiative Uð1Þ0 symmetry breaking also induces a negative mass squared for the SM Higgs
doublet to trigger the electroweak symmetry breaking. In this context, we investigate a possibility to solve
the SM Higgs vacuum instability problem. The model includes only three free parameters (Uð1Þ0 charge of
the SM Higgs doublet, Uð1Þ0 gauge coupling and Z0 boson mass), for which we perform parameter scan,
and identify a parameter region resolving the SM Higgs vacuum instability. We also examine naturalness of
the model. The heavy states associated with the Uð1Þ0 symmetry breaking contribute to the SM Higgs self-
energy. We find an upper bound on Z0 boson mass, mZ0 ≲ 6 TeV, in order to avoid a fine-tuning severer
than 10% level. The Z0 boson in this mass range can be discovered at the LHC Run-2 in the near future.
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I. INTRODUCTION

The gauge hierarchy problem is one of the most
important issues in the standard model (SM), which has
been motivating us to seek new physics beyond the SM for
decades. The problem lies in the fact that quantum
corrections to the self-energy of the SM Higgs doublet
quadratically diverges, and this divergence (cut off by some
new physics scale) should be canceled by a fine-tuning of
the Higgs mass parameter when the cutoff scale is much
higher than the electroweak scale, such as the Planck mass.
Because of the chiral nature of the SM, the SM Lagrangian
possesses the conformal (scale) invariance at the classical
level, except for the Higgs mass term. It has been argued in
[1] that once the classical conformal invariance and its
minimal violation by quantum anomalies are imposed on
the SM, it can be free from the quadratic divergences and
hence the gauge hierarchy problem. This picture fits a setup
first investigated by Coleman and Weinberg [2], namely, a
U(1) gauge theory with a massless Higgs field, where the
classical conformal invariance is broken by quantum
corrections in the Coleman-Weinberg effective potential,
and the U(1) gauge symmetry is radiatively broken
(Coleman-Weinberg mechanism).

Although it is tempting to apply this Coleman-Weinberg
mechanism to the SM Higgs sector, this cannot work with
the observed values of top quark and weak boson masses,
since the Coleman-Weinberg potential for the SM Higgs
field is found to be unbounded from below [3]. Therefore,
in order to pursue this scheme, it is necessary to extend the
SM. Among several new physics model proposals (see, for
example, [4,5]), classically conformal B-L extended SM
proposed in [6] is a very simple and well-motivated model.
The B-L (baryon number minus lepton number) is a unique
anomaly-free global symmetry in the SM, and it can be
easily gauged. Associated with gauging the B-L symmetry,
three generations of right-handed neutrinos and a B-L
Higgs field are introduced to make the model free from all
gauge and gravitational anomalies, and to break the B-L
gauge symmetry. Once the B-L gauge symmetry is broken,
the B-L gauge field (Z0 boson) and the right-handed
(Majorana) neutrinos obtain their masses. With the
Majorana heavy neutrinos, the seesaw mechanism [7] is
automatically implemented. In [6], under a requirement of
the classically conformal invariance, the radiative B-L
symmetry breaking by the Coleman-Weinberg mechanism
has been investigated. The B-L gauge symmetry breaking
also triggers the electroweak symmetry breaking by gen-
erating a negative mass squared for the SM Higgs doublet.
Naturalness of the model requires the B-L symmetry
breaking scale at or below the TeV scale [6], so that the
LHC Run-2 can test the model.
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In this work, we first consider an extra U(1) extension of
the SM with the classical conformal invariance, in order to
implement the Coleman-Weinberg mechanism for the sole
origin of the mass scale. When we add 3 generations of
right-handed neutrinos to the SM for the neutrino masses
and mixing, such an anomaly-free U(1) group [we call it
Uð1Þ0] is uniquely determined by assigning generation-
independent U(1) charges for fermions and requiring us to
reproduce the Yukawa structure in the SM [8] (see the next
section). In fact, this Uð1Þ0 turns out to be a linear
combination of the SM Uð1ÞY and the U(1) B-L gauge
groups. Hence, our model can reproduce the classically
conformal B-L model discussed above as a special limit. In
the following, we will see that general Uð1Þ0 charge
assignments which are different from those in the B-L
model yield a drastic change in phenomenological
consequences.
In this context, we consider the SM Higgs vacuum

stability. The SM Higgs boson has been discovered at the
LHC, and this marks the beginning of the experimental
confirmation of the SM Higgs sector. The observed Higgs
boson mass of around 125 GeV [9,10] (see also the recent
update from a combined analysis by the ATLAS and the
CMS [11]) indicates that the electroweak vacuum is
unstable [12], since the SM Higgs quartic coupling
becomes negative far below the Planck mass, for the top
quark pole mass mt ¼ 173.34� 0.76 from the combined
measurements by the Tevatron and the LHC experiments
[13]. This is a serious problem in our framework, since the
instability of the Higgs potential induces a large tree-level
mass for the Uð1Þ0 Higgs field through its interaction term
with the SM Higgs doublet field, and spoils the Coleman-
Weinberg mechanism for the Uð1Þ0 sector. In addition to the
proposal of the classically conformal Uð1Þ0 extend SM, the
main purpose of this work is to resolve the Higgs vacuum
instability in this context.

II. CLASSICALLY CONFORMAL Uð1Þ0
EXTENDED SM

The model we will investigate is the anomaly-free Uð1Þ0
extension of the SM with the classically conformal invari-
ance, which is based on the gauge group SUð3ÞC ×
SUð2ÞL × Uð1ÞY × Uð1Þ0. The particle contents of the
model are listed in Table I. The covariant derivative relevant
to Uð1ÞY×Uð1Þ0 is given by

Dμ ≡ ∂μ − iðg1Y þ ~gY 0ÞBμ − ig0Y 0Z0
μ; ð2:1Þ

where Y (Y 0) are Uð1ÞY (Uð1Þ0) charge of a particle, and the
gauge coupling ~g is introduced associated with a kinetic
mixing between the two U(1) gauge bosons. The particle
contents include three generations of right-hand neutrinos
νiR and a Uð1Þ0 Higgs field Φ, in addition to the SM particle
contents.

For generation-independent charge assignments, the
Uð1Þ0 charges of the fermions are defined to satisfy the
gauge and gravitational anomaly-free conditions:

Uð1Þ0 × ½SUð3ÞC�2∶ 2xq − xu − xd ¼ 0;

Uð1Þ0 × ½SUð2ÞL�2∶ 3xq þ xl ¼ 0;

Uð1Þ0 × ½Uð1ÞY �2∶ xq − 8xu − 2xd þ 3xl − 6xe ¼ 0;

½Uð1Þ0�2 × Uð1ÞY∶ x2q − 2x2u þ x2d − x2l þ x2e ¼ 0;

½Uð1Þ0�3∶ 6x3q − 3x3u − 3x3d þ 2x3l − x3ν − x3e ¼ 0;

Uð1Þ0 × ½grav�2∶ 6xq − 3xu − 3xd þ 2xl − xν − xe ¼ 0:

ð2:2Þ

In order to reproduce observed fermion masses and flavor
mixings, we introduce the following Yukawa interactions:

LYukawa ¼ −Yij
u qiL ~HujR − Yij

d q
i
LHdjR − Yij

ν li
L
~H νjR

− Yij
e li

LHejR − Yi
MΦν

ic
R ν

i
R þ h:c:; ð2:3Þ

where ~H ≡ iτ2H� and the third and fifth terms in the right-
handed side are for the seesaw mechanism to generate
neutrino masses. These Yukawa interaction terms impose

xH ¼ −xq þ xu ¼ xq − xd ¼ −xl þ xν ¼ xl − xe;

xΦ ¼ −2xν: ð2:4Þ

Solutions to these conditions are listed in Table I, which are
controlled by only two parameters, xH and xΦ. The two
parameters reflect the fact that the Uð1Þ0 gauge group can
be defined as a linear combination of the SM Uð1ÞY and the
U(1) B-L gauge groups. Since the Uð1Þ0 gauge coupling g0
is a free parameter of the model and it always appears as a
product xΦg0, we fix xΦ ¼ 2 without loss of generality
throughout this paper. This convention excludes the case
that Uð1Þ0 gauge group is identical with the SM Uð1ÞY . The
choice of ðxH; xΦÞ ¼ ð0; 2Þ corresponds to the Uð1ÞB−L
model. Another example is ðxH; xΦÞ ¼ ð−1; 2Þ, which

TABLE I. Particle contents. In addition to the SM particle
contents, the right-handed neutrino νiR (i ¼ 1, 2, 3 denotes the
generation index) and a complex scalar Φ are introduced.

SUð3Þc SUð2ÞL Uð1ÞY Uð1Þ0
qiL 3 2 þ1=6 xq ¼ 1

3
xH þ 1

6
xΦ

uiR 3 1 þ2=3 xu ¼ 4
3
xH þ 1

6
xΦ

diR 3 1 −1=3 xd ¼ − 2
3
xH þ 1

6
xΦ

li
L 1 2 −1=2 xl ¼ −xH − 1

2
xΦ

νiR 1 1 0 xν ¼ − 1
2
xΦ

eiR 1 1 −1 xe ¼ −2xH − 1
2
xΦ

H 1 2 þ1=2 xH ¼ xH
Φ 1 1 0 xΦ ¼ xΦ
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corresponds to the SM with the so-called Uð1ÞR symmetry.
When we choose ðxH; xΦÞ ¼ ð−16=41; 2Þ, the beta func-
tion of ~g at the 1-loop level becomes proportional to ~g (see
Appendix A). This is the orthogonal condition for the
Uð1ÞY and Uð1Þ0, under which ~g does not evolve once we
have set ~g ¼ 0 at an energy scale.
Imposing the classically conformal invariance, the scalar

potential is given by

V ¼ λHðH†HÞ2 þ λΦðΦ†ΦÞ2 þ λmixðH†HÞðΦ†ΦÞ; ð2:5Þ

where the mass terms are forbidden by the conformal
invariance. Clearly, if λmix is negligibly small, we can
analyze the Higgs potential separately for Φ and H. This
will be justified in the following sections. When the
Majorana Yukawa couplings Yi

M are negligible compared
to the Uð1Þ0 gauge coupling, the Φ sector is identical with
the original Coleman-Weinberg model [2], so that the
radiative Uð1Þ0 symmetry breaking will be achieved.
Once Φ develops a vacuum expectation value (VEV)
through the Coleman-Weinberg mechanism, the tree-level
mass term for the SM Higgs is effectively generated
through λmix in Eq. (2.5). Taking λmix negative, the induced
mass squared for the Higgs doublet is negative and, as a
result, the electroweak symmetry breaking is driven in the
same way as in the SM.

III. RADIATIVE Uð1Þ0 SYMMETRY BREAKING

Assuming λmix is negligibly small, we first analyze the
Uð1Þ0 Higgs sector. Without mass terms, the Coleman-
Weinbeg potential [2] at the 1-loop level is found to be

VðϕÞ ¼ λΦ
4
ϕ4 þ βΦ

8
ϕ4

�
ln

�
ϕ2

v2ϕ

�
−
25

6

�
; ð3:1Þ

where ϕ=
ffiffiffi
2

p ¼ ℜ½Φ�, and we have chosen the renormal-
ization scale to be the VEV of Φ (hϕi ¼ vϕ). Here, the
coefficient of the 1-loop quantum corrections is given by

βΦ ¼ 1

16π2

�
20λ2Φ þ 6x4Φð~g2 þ g02Þ2 − 16

X
i

ðYi
MÞ4

�
ð3:2Þ

≃ 1

16π2

�
6ðxΦg0Þ4 − 16

X
i

ðYi
MÞ4

�
; ð3:3Þ

where in the last expression, we have used λ2Φ ≪ ðxΦg0Þ4
as usual in the Coleman-Weinberg mechanism and set
~g ¼ 0 at hϕi ¼ vϕ, for simplicity. The stationary condition
dV=dϕjϕ¼vϕ ¼ 0 leads to

λΦ ¼ 11

6
βΦ; ð3:4Þ

and this λΦ is nothing but a renormalized self-coupling at
vϕ defined as

λΦ ¼ 1

3!

d4VðϕÞ
dϕ4

����
ϕ¼vϕ

: ð3:5Þ

For more detailed discussion, see [5].
Associated with this radiative Uð1Þ0 symmetry breaking

(as well as the electroweak symmetry breaking), the Uð1Þ0
gauge boson (Z0 boson) and the right-handed Majorana
neutrinos acquire their masses as

mZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxΦg0vϕÞ2 þ ðxHg0vhÞ2

q
≃ xΦg0vϕ;

mNi ¼
ffiffiffi
2

p
Yi
Mvϕ; ð3:6Þ

where vh ¼ 246 GeV is the SM Higgs VEV, and we have
used xΦvϕ ≫ xHvh, which will be verified below. In this
paper, we assume degenerate masses for the three Majorana
neutrinos, Yi

M ¼ yM (equivalently, mNi ¼ mN) for all
i ¼ 1, 2, 3, for simplicity. The Uð1Þ0 Higgs boson mass
is given by

m2
ϕ ¼ d2V

dϕ2

����
ϕ¼vϕ

¼ βΦv2ϕ ≃ 3

8π2
ððxΦg0Þ4 − 8y4MÞv2ϕ

≃ 3

8π2
m4

Z0 − 2m4
N

v2ϕ
: ð3:7Þ

When the Yukawa coupling is negligibly small, this reduces
to the well-known relation derived in the radiative sym-
metry breaking by the Coleman-Weinberg mechanism [2].
For a sizable Majorana mass, this formula indicates that the
potential minimum disappears for mN > mZ0=21=4, so that
there is an upper bound on the right-handed neutrino mass
for the Uð1Þ0 symmetry to be broken radiatively. This is in
fact the same reason as why the Coleman-Weinberg
mechanism in the SM Higgs sector fails to break the
electroweak symmetry when the top Yukawa coupling is
large as observed. In order to avoid the destabilization of
the Uð1Þ0 Higgs potential, we simply set m4

Z0 ≫ m4
N in the

following analysis. Note that this condition does not mean
that the Majorana neutrinos must be very light, even though
a factor difference betweenmZ0 andmN is enough to satisfy
the condition.

IV. ELECTROWEAK SYMMETRY BREAKING

Let us now consider the SM Higgs sector. In our model,
the electroweak symmetry breaking is achieved in a very
simple way. Once the Uð1Þ0 symmetry is radiatively
broken, the SM Higgs doublet mass is generated through
the mixing term between H and Φ in the scalar potential
[see Eq. (2.5)],

VðhÞ ¼ λH
4
h4 þ λmix

4
v2ϕh

2; ð4:1Þ
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where H ¼ 1=
ffiffiffi
2

p ð0; hÞ. Choosing λmix < 0, the electro-
weak symmetry is broken in the same way as in the SM [6].
However, the crucial difference from the SM is that in our
model the electroweak symmetry breaking originates from
the radiative breaking of the Uð1Þ0 gauge symmetry. At the
tree level, the stationary condition V 0jh¼vh ¼ 0 leads to the
relation jλmixj ¼ 2λHðvh=vϕÞ2, and the Higgs boson mass
mh is given by

m2
h ¼

d2V
dh2

����
h¼vh

¼ jλmixjv2ϕ ¼ 2λHv2h: ð4:2Þ

In the following renormalization group equation (RGE)
analysis, this is used as the boundary condition for λmix
at the normalization scale μ ¼ vϕ. Note that since
λH ∼ 0.1 and vϕ ≳ 10 TeV by the large electron-positron
collider (LEP) constraint [14,15], jλmixj≲ 10−5, which is
very small.
In our discussion about the Uð1Þ0 symmetry breaking, we

neglected λmix by assuming it to be negligibly small. Here
we justify this treatment. In the presence of λmix and the
Higgs VEV, Eq. (3.4) is modified as

λΦ ¼ 11

6
βΦ þ jλmixj

2

�
vh
vϕ

�
2 ≃ 1

2v4ϕ

�
11

8π2
m4

Z0 þm2
hv

2
h

�
:

ð4:3Þ

Considering the current LHC bound from the search for Z0
boson resonances [16,17], mZ0 ≳ 3 TeV, we find that the
first term in the parenthesis in the last equality is 5 orders of
magnitude greater than the second term, and therefore we
can analyze the two Higgs sectors separately.

V. SOLVING THE SM HIGGS
VACUUM INSTABILITY

In our classically conformal Uð1Þ0 extended SM, the
Uð1Þ0 gauge symmetry is radiatively broken by the
Coleman-Weinberg mechanism. Associated with this sym-
metry breaking, the negative Higgs mass squared is
generated to break the electroweak symmetry as in the
SM. In the SM with the observed Higgs boson mass
around 125 GeV, the renormalization group (RG) evolution
of the SM Higgs quartic coupling shows that the coupling
becomes negative at the intermediate scale μ≃
109–1011 GeV [12] (dependently of input masses for the
Higgs boson and top quark), and hence the electroweak
vacuum is unstable. This vacuum instability might not be a
serious problem in the SM, since the lifetime of the
electroweak vacuum is much longer than the age of the
Universe [18]. However, in our model, this SM Higgs
vacuum instability generates a large negative mass squared
of Φ through the λmix term, and hence the Coleman-
Weinberg mechanism in the Uð1Þ0 Higgs sector is spoiled.

In this section, we investigate RG evolution of the
Higgs quartic coupling and a possibility to solve the
Higgs vacuum stability problem in our Uð1Þ0 extended
SM. Without the classical conformal invariance, Ref. [19]
(see also [20]) has considered the same problem, and
identified parameter regions which can resolve the Higgs
vacuum instability. A crucial difference in our model is that
because of the classical conformal invariance and the
symmetry breaking by the Coleman-Weinberg mechanism,
the initial values of λΦ and λmix at vϕ are not free
parameters. Therefore, it is nontrivial to resolve the
Higgs vacuum instability in the present model. The
Higgs vacuum stability has been investigated in [5] for
the classically conformal extension of the SM with an
extend gauge groups and particle contents (including a dark
matter candidate).
For our RGE analysis, we employ the SM RGEs at

2-loop level [12] from the top pole mass to the Uð1Þ0 Higgs
VEV, and connect the RGEs to those of the Uð1Þ0 extended
SM at the 1-loop level. All formulas used in our analysis are
listed in Appendices. For inputs for the Higgs boson mass
and top quark pole mass, we employ a central value of the
CMS measurement mh ¼ 125.03 GeV [10], which is
slightly smaller than the ATLAS measurement mh ¼
125.36 GeV [9], while mt ¼ 173.34 which is the central
value of combined results of the Tevatron and the LHC
measurements of top quark mass [13]. There are only 3 free
parameters in our model, by which inputs at vϕ are
determined: xH, vϕ, and g0.
In Fig. 1(a), we show the RG evolution of the SM

Higgs quartic coupling in our model (solid line), along
with the SM case (dashed line). Here, we have taken
xH ¼ 2, vϕ ¼ 19 TeV, and g0ðvϕÞ ¼ 0.09 as an example.
Recall that we have fixed xΦ ¼ 2 without loss of
generality. The Higgs quartic coupling remains positive
all the way up to the Planck mass, so that the Higgs
vacuum instability problem is solved. There are complex,
synergetic effects in the coupled RGEs to resolve the
Higgs vacuum instability (see Appendices for RGEs). For
example, the Uð1ÞY gauge coupling grows faster than the
SM case in the presence of the mixing gauge coupling ~g,
which makes the evolution of top Yukawa coupling
decreasing faster than in the SM case. The evolution
of the mixing gauge coupling is controlled by the Uð1Þ0
gauge coupling. Both of them are asymptotic nonfree.
The gauge couplings positively contribute to the beta
function of the SM Higgs quartic coupling, while the top
Yukawa coupling gives a negative contribution. As a
result, the RG evolutions of the gauge and top Yukawa
couplings work to change the sign of the beta function
of the SM Higgs quartic coupling at μ≃ 1012 GeV in
Fig. 1(a). Figure 1(b) shows the RG evolutions of the
other Higgs quartic couplings. Note that the input of λΦ
and λmix are very small because of the radiative gauge
symmetry breaking, and the two couplings remain very
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small even after reaching the Planck scale. Thus, the
positive contribution of λmix to the beta function of the
SM Higgs quartic coupling is negligible. This is in sharp
contrast to U(1) extended modes without the conformal
invariance, where λmix is a free parameter and we can
take its input to give a large, positive contribution to the
beta function, so that the Higgs vacuum instability
problem is relatively easier to solve.
In order to identify parameter regions to resolve the

Higgs vacuum instability, we also perform parameter
scans for the free parameters xH, vϕ and g0. In this analysis,
we impose several conditions on the running couplings
at vϕ ≤ μ ≤ MP (MP ¼ 2.4 × 1018 GeV is the reduced
Planck mass): stability conditions of the Higgs potential
(λH; λΦ > 0), and the conditions that all the running
couplings remain in the perturbative regime, namely,

αgi ≡ g2i =ð4πÞ < 1, αg0 ≡ g02=ð4πÞ < 1, α~g ≡ ~g2=ð4πÞ < 1,
λH=ð4πÞ < 1 and λΦ=ð4πÞ < 1.
In Fig. 2 we show the results of parameter scans for xH

and g0 with a fixed vϕ ¼ 19 TeV (a), and for xH and vϕ
with a fixed g0 ¼ 0.09 (b), in ðmZ0 ; xHÞ-plane with
mZ0 ≃ xΦg0vϕ. As a reference, we also show horizontal
lines corresponding to xH ¼ 2, 0 [Uð1ÞB−L case], −16=41
[orthogonal case], and −1 [Uð1ÞR case]. The resultant
parameter space is very restricted. For example, the Higgs
vacuum instability cannot be resolved in the classically
conformal B-L extended SM, which is also observed in [5].
The result of parameter scan for vϕ and αg0 with a fixed

xH ¼ 2 is depicted in Fig. 3(a). The allowed region at the
TeV scale is magnified in Fig. 3(b). Here we also show the
current collider bounds from search for Z0 boson mediated
processes (details of this analysis will be presented in [21]).
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FIG. 1. (a) The evolutions of the Higgs quartic coupling λH (solid line) for the inputsmt ¼ 173.34 GeV andmh ¼ 125.03 GeV, along
with the SM case (dashed line). (b) The RG evolutions of λΦ (solid line) and λmix (dashed line). Here, we have taken xH ¼ 2,
vϕ ¼ 19 TeV and g0ðvϕÞ ¼ 0.09.
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FIG. 2. (a) The result of parameter scan for xH and g0 with a fixed vϕ ¼ 19 TeV, shown in ðmZ0 ; xHÞ-plane with

mZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxΦg0vϕÞ2 þ ðxHg0vhÞ2

q
≃ xΦg0vϕ. As a reference, horizontal lines are depicted for xH ¼ 2, 0 [Uð1ÞB−L case], −16=41

[orthogonal case], and −1 [Uð1ÞR case]. (b) Same as (a), but parameter scan for xH and vϕ with a fixed g0 ¼ 0.09.
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The dashed line is obtained by interpreting the LEP results
[14,15] for effective 4-Fermi interactions mediated by a
heavy Z0 boson,1 while the solid line corresponds to the
bound obtained by interpreting the CMS results of Z0 boson
search [17] (the bound obtained from the ATLAS results
[16] is similar, but slightly weaker). The region on the left
side of the lines are excluded. Naturalness bound, which
will be obtained in the next section, is also shown. This
naturalness bound is comparable to the current LHC limits.
We refer to Ref. [22] for a simulation study of Z0 boson
physics at the LHC with a 14 TeV collider energy and a
100/fb luminosity, which results in the LHC search reach as
mZ0 ≃ 5 TeV for the gauge coupling g0 ≃ 0.5. Although
this study is limited for the Z0 boson in the B-L model, we
can interpret this result to our model. In our result shown in
Fig. 3(b), we find g0 ∼ 0.1. Since Uð1Þ0 charges of quarks
for xH ¼ 2 are 3-9 times larger than those in the B-L model,

we expect that the Z0 boson production cross section will be
comparable to the B-L case, and the LHC search reach can
be as high as 5 TeV. Therefore, the parameter region
satisfying the naturalness bound for δ≳ 0.1 (see the next
section for the definition of δ) can be tested at the LHC
in the future. Same plot but for xH ¼ −2.5 is shown
in Fig. 4.

VI. NATURALNESS BOUNDS

Once the classical conformal symmetry is broken and a
mass scale is generated, it contributes to the SM Higgs
boson self-energy in general. Hence, if the Uð1Þ0 gauge
symmetry breaking scale is very large, we may need a fine-
tuning to cancel the radiative corrections by some heavy
states associated with the Uð1Þ0 gauge symmetry breaking.
See [23] for related discussions. We consider two heavy
states, the right-handed neutrino and Z0 boson, whose masses
are generated by the Uð1Þ0 gauge symmetry breaking.
Once the right-handed neutrinos obtain their Majorana

masses by the Uð1Þ0 gauge symmetry breaking, the
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FIG. 3. (a) The result of parameter scan for vϕ and g0 with a fixed xH ¼ 2, shown in ðmZ0 ; αg0 Þ-plane. (b) The allowed region at the
TeV scale in (a) is magnified, along with the LEP bound (dashed line) and the LHC bound (solid line) from direct search for
Z0 boson resonance. The region on the left side of the lines are excluded. Here, the naturalness bounds for 10% (dotted line) and 30%
(dashed-dotted line) fine-tuning levels are also depicted.
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FIG. 4. (a) Same as Fig. 3(a), but for xH ¼ −2.5. (b) Same as Fig. 3(b), but for xH ¼ −2.5

1We can also consider the LEP constraint for the mass mixing
between Z and Z0 bosons, which leads to the lower bound of
mZ0 ≳ 1 TeV [8].
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SM Higgs self-energy is induced through the Dirac
Yukawa coupling at the 1-loop level, which is roughly
estimated as

Δm2
h ∼

Y2
ν

16π2
m2

N ∼
mνm3

N

16π2v2h
; ð6:1Þ

where we have used the seesaw formula, mν ∼ Y2
νv2h=mN

[7], and the quadratic divergence has been dropped and
the logarithmic divergence has been ignored. For the
stability of the electroweak vacuum, we impose Δm2

h ≲
m2

h as the naturalness. For example, when the light
neutrino mass scale is around mν ∼ 0.1 eV, we have an
upper bound for the Majorana mass as mN ≲ 107 GeV.
This bound is much larger than the scale that we are
interested in, mN ≲ 1 TeV.
A more important contribution to the Higgs self-

energy is generated through the 1-loop diagram with the
Z0 gauge boson. This contribution is typical in the Uð1Þ0
extended SM, where the SM Higgs doublet has a
nonzero Uð1Þ0 charge. It is in sharp contrast to the
B-L extension where the SM Higgs doublet has no B-L
charge, and the Z0 boson contribution arises at the
2-loop level [6]. Since the SM Higgs self-energy at
the 1-loop level with the massive Z0 boson includes
quadratic and logarithmic divergences, this simple cal-
culation does not seem consistent with our scheme for
the Coleman-Weinberg mechanism. It may be more
reasonable to calculate a series of 1-loop corrections
with the Z0 boson running in the loop, with external
lines of ðH†HÞnðΦ†ΦÞm (n;m ¼ 0; 1; 2;…), and extract
a coefficient of ðH†HÞ with replacing the other lines by
their VEVs. Since vh ≪ vϕ, we expect that the dominant
contributions come from 1-loop corrections with exter-
nal lines of ðH†HÞðΦ†ΦÞm. We may simply calculate the
corrections from the Coleman-Weinberg potential in
Eq. (3.1),

VðϕÞ1-loop ¼
βΦ
8
ϕ4

�
ln

�
ϕ2

v2ϕ

�
−
25

6

�
; ð6:2Þ

which is from 1-loop corrections with Z0 boson running
in the loop, with external lines of ðΦ†ΦÞm. Here we
ignore Yi

M in βΦ.
2 With the 1-loop corrections, we

replace one combination of external line ðΦ†ΦÞ and a
corresponding vertex ðxΦg0Þ2 to ðH†HÞ with its vertex
ðxHg0Þ2. Thus, we evaluate the SM Higgs self-energy by

Δm2
h ¼

dV1-loop

dðϕ2Þ
����
ϕ2¼v2ϕ

×
x2H
x2Φ

× 2 ¼ −
11

4π
x2Hαg0m

2
Z0 : ð6:3Þ

If Δm2
h is much larger than the electroweak scale, we

need a fine-tuning of the tree-level Higgs mass (jλmixjv2ϕ=2)
to reproduce the correct value for the SM Higgs VEV, vh.
We simply evaluate a fine-tuning level as

δ ¼ m2
h

2jΔm2
hj
: ð6:4Þ

Here, δ ¼ 0.1, for example, indicates that we need to fine-
tune the tree-level Higgs mass squared at the accuracy of
10% level. Some fine-tuning levels are shown in Figs. 3 and
4, along with the results of parameter scans.

VII. CONCLUSIONS

The classical conformal symmetry with its violation
through quantum anomalies could be a solution to the
gauge hierarchy problem in the SM. Because of the absence
of the mass term in the Higgs potential in this system,
the gauge symmetry breaking should be radiatively induced
by the Coleman-Weinberg mechanism. Unfortunately, we
cannot simply apply this mechanism to the SM, since the
large top Yukawa coupling destabilizes the effective Higgs
potential. We have extended the SM by introducing an
anomaly-free Uð1Þ0 symmetry, along with three right-
handed neutrinos and a Uð1Þ0 Higgs field. The Uð1Þ0
symmetry is radiatively broken by the Coleman-
Weinberg mechanism, by which the Z0 boson as well as
the right-handed neutrinos acquire their masses. Through
mixing terms between the Uð1Þ0 Higgs and the SM Higgs
doublet fields, a negative mass squared for the SM Higgs
doublet is generated and, as a result, the electroweak
symmetry breaking is triggered. Therefore, all mass gen-
erations occur through the dimensional transmutation.
In the context of the classically conformal Uð1Þ0 model,

we have investigated a possibility to resolve the SM Higgs
vacuum instability. Since the gauge symmetry is broken by
the Coleman-Weinberg mechanism, all quartic couplings in
the Higgs potential except the SM Higgs one are very
small, and hence their positive contributions to Uð1Þ0 model
are not effective in resolving the SM Higgs vacuum
instability. On the other hand, in the Uð1Þ0 model, the
SM Higgs doublet has a nonzero Uð1Þ0 charge, and this
gauge interaction positively contributes to the beta func-
tion. In addition, the Uð1Þ0 gauge interaction negatively
contributes to the beta function of the top Yukawa coupling,
so that the running top Yukawa coupling is decreasing
faster than in the SM case, and its negative contribution to
the beta function of the SM Higgs quartic coupling
becomes milder. For three free parameters of the model,
we have performed parameter scan, and found a parameter
region to solve the SM Higgs vacuum instability problem.
We have also considered naturalness of our model. After

the Uð1Þ0 gauge symmetry breaking, the heavy states, Z0
boson and the right-handed neutrinos, contribute to the SM

2We may calculate the contributions from the right-handed
neutrinos in the same way by using YMs, although we have
concluded from the rough estimate of Eq. (6.1) that the
contributions are not significant.
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Higgs self-energy. Therefore, the self-energy exceeds the
electroweak scale, if the states are too heavy. Since the SM
Higgs doublet has nonzero Uð1Þ0 charge, the self-energy
corrections from Z0 boson occur at the one loop level. This
is in sharp contrast with the classically conformal B-L
model [6], where the Higgs doublet has no B-L charge, and
the self-energy corrections from Z0 boson occur at the two-
loop level. The naturalness constraint leads to the upper
bound on the Z0 boson mass asmZ0 ≲ 6 TeV. The Z0 boson
with this mass range will be tested at the LHC Run-2 in the
near future.
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APPENDIX A: THE Uð1Þ0 RGES AT
ONE-LOOP LEVEL

In this appendix we present the one-loop RGEs for the
Uð1Þ0 extension of the SM, which are used in our analysis.
The definitions of the covariant derivative, the Yukawa
interactions and the scalar potential are given by Eqs. (2.1),
(2.3), and (2.5), respectively. We only include the top quark
Yukawa coupling yt and the right-handed neutrino
Majorana Yukawa coupling Yi

M, since the other Yukawa
couplings are negligibly small. The Uð1Þ0 charges xi are
defined in Table I. The RGEs for the gauge couplings at the
one-loop level are given by

μ
dg3
dμ

¼ g33
ð4πÞ2 ½−7�;

μ
dg2
dμ

¼ g32
ð4πÞ2

�
−
19

6

�
;

μ
dg1
dμ

¼ g1
ð4πÞ2

�
12

�
1

6
g1 þ xq ~g

�
2

þ 6

�
2

3
g1 þ xu ~g

�
2

þ 6

�
−
1

3
g1 þ xd ~g

�
2

þ 4

�
−
1

2
g1 þ xl ~g

�
2

þ 2ðxν ~gÞ2 þ 2ð−g1 þ xe ~gÞ2 þ
2

3

�
1

2
g1 þ xH ~g

�
2

þ 1

3
ðxΦ ~gÞ2

�
;

μ
dg0

dμ
¼ g03

ð4πÞ2
�
12x2q þ 6x2u þ 6x2d þ 4x2l þ 2x2ν þ 2x2e þ

2

3
x2H þ 1

3
x2Φ

�
;

μ
d~g
dμ

¼ 1

ð4πÞ2
�
~g

�
12

�
1

6
g1 þ xq ~g

�
2

þ 6

�
2

3
g1 þ xu ~g

�
2

þ 6

�
−
1

3
g1 þ xd ~g

�
2

þ 4

�
−
1

2
g1 þ xl ~g

�
2

þ 2ðxν ~gÞ2 þ 2ð−g1 þ xe ~gÞ2þ
2

3

�
1

2
g1 þ xH ~g

�
2

þ 1

3
ðxΦ ~gÞ2

	

þ 2g02
�
12xq

�
1

6
g1 þ xq ~g

�
þ 6xu

�
2

3
g1 þ xu ~g

�
þ 6xd

�
−
1

3
g1 þ xd ~g

�

þ 4xl

�
−
1

2
g1 þ xl ~g

�
þ 2xνðxν ~gÞ þ 2xeð−g1 þ xe ~gÞ þ

2

3
xH

�
1

2
g1 þ xH ~g

�
þ 1

3
xΦðxΦ ~gÞ

	�
: ðA1Þ

For the RGEs for the Yukawa couplings at the one-loop level we have

μ
dyt
dμ

¼ yt
ð4πÞ2

�
9

2
y2t − 8g23 −

9

4
g22 − 6

�
1

6
g1 þ xq ~g

��
2

3
g1 þ xu ~g

�

− 3

�
1

2
g1 þ xH ~g

�
2

− 6ðxqg0Þðxug0Þ − 3ðxHg0Þ2
�
;

μ
dYi

M

dμ
¼ Yi

M

ð4πÞ2
�
4ðYi

MÞ2 þ 2
X
j

ðYj
MÞ2 þ ð6x2ν − 3x2ΦÞð~g2 þ g02Þ

�
: ðA2Þ
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Finally, the RGEs for the scalar quartic couplings are given by

μ
dλH
dμ

¼ 1

ð4πÞ2
�
λH

�
24λH þ 12y2t − 9g22 − 12

�
1

2
g1 þ xH ~g

�
2

− 12ðxHg0Þ2
	

þ λ2mix − 6y4t þ
9

8
g42 þ 6

�
1

2
g1 þ xH ~g

�
4

þ 6ðxHg0Þ4

þ 3g22

�
1

2
g1 þ xH ~g

�
2

þ 3g22ðxHg0Þ2 þ 12

�
1

2
g1 þ xH ~g

�
2

ðxHg0Þ2
�
;

μ
dλΦ
dμ

¼ 1

ð4πÞ2
�
λΦ

�
20λΦ þ 8

X
i

ðYi
MÞ2 − 12ðxΦ ~gÞ2 − 12ðxΦg0Þ2

	

þ 2λ2mix − 16
X
i

ðYi
MÞ4 þ 6fðxΦ ~gÞ2 þ ðxΦg0Þ2g2

�
;

μ
dλmix

dμ
¼ 1

ð4πÞ2
�
λmix

�
12λH þ 8λΦ þ 4λmix þ 6y2t þ 4

X
i

ðYi
MÞ2

−
9

2
g22 − 6

�
1

2
g1 þ xH ~g

�
2

− 6ðxΦ ~gÞ2 − 6ðxHg0Þ2 − 6ðxΦg0Þ2
	

þ 12

��
1

2
g1 þ xH ~g

�
ðxΦ ~gÞ þ ðxHg0ÞðxΦg0Þ

	
2
�
: ðA3Þ

APPENDIX B: THE SM RGES AT TWO-LOOP LEVEL

The RGEs for coupling constants of the SM up to two-loop level [12] are give by

μ
dg3
dμ

¼ g33
ð4πÞ2 ½−7� þ

g33
ð4πÞ4

�
−26g23 þ

9

2
g22 þ

11

6
g21 − 2y2t

�
;

μ
dg2
dμ

¼ g32
ð4πÞ2

�
−
19

6

�
þ g32
ð4πÞ4

�
12g23 þ

35

6
g22 þ

3

2
g21 −

3

2
y2t

�
;

μ
dg1
dμ

¼ g31
ð4πÞ2

�
41

6

�
þ g31
ð4πÞ4

�
44

3
g23 þ

9

2
g22 þ

199

18
g21 −

17

6
y2t

�
;

μ
dyt
dμ

¼ yt
ð4πÞ2

�
9

2
y2t − 8g23 −

9

4
g22 −

17

12
g21

�

þ yt
ð4πÞ4

�
y2t

�
−12y2t − 12λH þ 36g23 þ

225

16
g22 þ

131

16
g21

�

þ 6λ2H − 108g43 −
23

4
g42 þ

1187

216
g41 þ 9g23g

2
2 þ

19

9
g23g

2
1 −

3

4
g22g

2
1

�
;

μ
dλH
dμ

¼ 1

ð4πÞ2
�
λHð24λH þ 12y2t − 9g22 − 3g21Þ − 6y4t þ

9

8
g42 þ

3

8
g41 þ

3

4
g22g

2
1

�

þ 1

ð4πÞ4
�
λ2Hð−312λH − 144y2t þ 108g22 þ 36g21Þ

þ λHy2t

�
−3y2t þ 80g23 þ

45

2
g22 þ

85

6
g21

�
þ λH

�
−
73

8
g42 þ

629

24
g41 þ

39

4
g21g

2
2

�

þ y4t

�
30y2t − 32g23 −

8

3
g21

�
þ y2t

�
−
9

4
g42 −

19

4
g41 þ

21

2
g22g

2
1

�

þ 305

16
g62 −

379

48
g61 −

289

48
g42g

2
1 −

559

48
g22g

4
1

�
: ðB1Þ
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In our analysis, we numerically solve these SM RGEs with the following boundary conditions at μ ¼ mt [12]
3

g3ðmtÞ ¼ 1.1666þ 0.00314

�
α3ðmZÞ − 0.1184

0.0007

�
− 0.00046

�
mt

GeV
− 173.34

�
;

g2ðmtÞ ¼ 0.64779þ 0.00004

�
mt

GeV
− 173.34

�
þ 0.00011

�
mW − 80.384 GeV

0.014 GeV

�
;

g1ðmtÞ ¼ 0.35830þ 0.00011

�
mt

GeV
− 173.34

�
− 0.00020

�
mW − 80.384 GeV

0.014 GeV

�
;

ytðmtÞ ¼ 0.93690þ 0.00556

�
mt

GeV
− 173.34

�
− 0.00042

�
α3ðmZÞ − 0.1184

0.0007

�
;

λHðmtÞ ¼ 0.12604þ 0.00206

�
mh

GeV
− 125.15

�
− 0.00004

�
mt

GeV
− 173.34

�
; ðB2Þ

using the inputs, α3ðmZÞ ¼ 0.1184, mt ¼ 173.34 GeV, mh ¼ 125.03 GeV, and mW ¼ 80.384 GeV.
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