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Assuming the presence of physics beyond the Standard Model (SM) with a characteristic scale
M ∼Oð10Þ TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective
field theory (EFT) approach. We obtain the complete set of higher-dimensional effective operators (at any
dimension n ≥ 5) that give the leading one-loop EFT contributions to the Higgs mass with a Wilsonian-like
hard cutoff and discuss the (fine-) tuning between these terms and the SM one-loop contribution, which is
required in order to alleviate the little hierarchy problem. We then show that this tuning can be translated
into a condition for naturalness in the underlying new physics, a condition we denote by “EFT naturalness”
and which we express as constraints on the corresponding higher-dimensional operator coefficients up to
the scale of the effective action Λ < M. We also determine the types of physics that can lead to EFT
naturalness and discuss the current experimental constraints on the relevant operator coefficients. We show
that these types of new physics are best probed in vector-boson and multiple-Higgs production.
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I. INTRODUCTION

The recent LHC discovery of a light 126 GeV scalar
particle [1] brought us one step closer to understanding the
mechanism of electroweak symmetry breaking. Indeed, the
measurements of its production and decays to the SM
gauge bosons [2] are consistent (within large errors) with
the SM. Moreover, in view of the fact that no evidence for
new physics has been observed yet up to energies of
∼1–2 TeV and that the SM with a 126 GeV Higgs seems to
be a consistent theory up to the Planck scale (favoring a
metastable EW vacuum [2–4]), this discovery exacerbates
the long-standing fundamental difficulty of the SM known
as the hierarchy problem. Simply put, the presence of a
fundamental Higgs with an EW-scale mass appears unnatu-
ral, since if the SM is the only physics present up to
some high scale Λ, it is then hard to see why the Higgs
boson mass mh does not receive large corrections
of OðΛÞ. This technical difficulty is also known as the
naturalness or fine-tuning problem of the SM. It becomes
evident when one calculates the SM’s leading OðΛ2Þ one-
loop corrections to the Higgs mass squared with a hard
cutoff:

δm2
hðSMÞ ¼ Λ2

16π2
½24x2t − 6ð2x2W þ x2Z þ x2hÞ� ∼ 8.2

Λ2

16π2
;

xi ≡mi

v
ðv≃ 246 GeVÞ; ð1Þ

where the dominant contribution is generated by the
top-quark loop. This gives δm2

hðSMÞ ≈m2
h already for

Λ ∼ 550 GeV when mh ∼ 125 GeV, and the Higgs mass
is then said to be unnatural above this scale.
In Wilson’s approach [5], the hard cutoff Λ in Eq. (1)

corresponds to the scale of the effective action—in the
following we will use this picture to investigate the
behavior of δm2

h in the presence of new physics (NP) with
a mass scale M > Λ. Indeed, this approach [Eq. (1)] has
been the underlying rationale for intensive theoretical
studies of physics beyond the SM over the past four
decades [6–8]. In particular, although the cutof-dependent
δm2

hðSMÞ is an unobservable quantity, the question of
naturalness in the Higgs sector becomes meaningful if one
suspects that there is an actual physical cutoff at high
energy. In such a case, the insight provided by Eq. (1) is
regularization-scheme independent, since even within
dimensional regularization a new heavy mass threshold
M will yield an additive (one-loop) correction to the Higgs
mass of OðM2=ð16π2ÞÞ [7,9], which in Eq. (1) is repre-
sented by Λ2=ð16π2Þ.
The first to address the naturality consequences of the

quadratic cutoff behavior in δm2
hðSMÞ was Veltman [6],

who suggested that a conspiracy or symmetry (possibly
supersymmetry) leads to the cancellation 24x2t −
6ð2x2W þ x2Z þ x2hÞ ¼ 0 in Eq. (1). Our approach in this
work bares some similarity to Veltman’s concept.
In particular, let us imagine the presence of NP with a

characteristic scale M > Λ > v. As mentioned above, in
this case Eq. (1) will be modified as the heavy excitations
will generate new contributions to δm2

h. These contribu-
tions can be derived within specific models such as
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little-Higgs and supersymmetric theories or within phe-
nomenological extensions of the SM which contain
additional heavy scalars and/or fermions [9–12]. In such
a case, one assumes full knowledge of the physics up to a
yet higher scale (i.e., larger than M), above which the
selected model breaks down (or is subsumed by a more
fundamental theory); accordingly, in model-dependent
studies the scale of the effective action, Λ, can be
extended beyond M, i.e., beyond the typical mass scale
of the new particles of a specific theory.
Alternatively, one can adopt a model-independent

approach using an effective field theory (EFT). The EFT
approach refrains from selecting a specific model but
allows a reliable calculation of δm2

h only when the cutoff
is below M; this approach can be used to impose general
restrictions on the parameters of the unknown underlying
theory by imposing the condition that the EFT remains
natural for all scales Λ < M.
In this paper we wish to investigate naturalness using this

EFT approach, following Wilson’s prescription with a hard
cutoff and assuming also that the NP is weakly coupled and
renormalizable (or, alternatively, that all nonrenormalizable
terms in the theory are suppressed by inverse powers of a
much higher scale≫ M). Thus, at scales belowM the NP is
not directly observable,1 but it can have important virtual
effects that generate both renormalization of the SM
parameters and an infinite tower of effective operators
with dimension ≥ 5.
We find the complete set of higher-dimensional effective

operators (at any dimension n ≥ 5) that can yield OðΛ2Þ
contributions to δm2

h and classify the underlying heavy
theories that can generate these operators at tree level. We
then evaluate their effect on δm2

h and discuss the tuning
between these EFT terms and the SM contribution that is
required in order to obtain “EFT-naturalness” conditions.
Namely, the conditions and relations among the EFT
parameters for which naturalness in the SM Higgs sector
can be ameliorated, i.e., addressing the little hierarchy
problem of the SM Higgs sector up to the scale of the
effective action Λ2; if the tuning needed is of Oð10−4Þ or
worse, then we implicitly assume that there is an underlying
symmetry responsible for our EFT-naturalness conditions.
Let us denote the higher-dimensional operators by OðnÞ

i
(n denotes the dimension and i all other distinguishing
labels), which are local, gauge- and Lorentz-invariant

combinations of SM fields and their derivatives. They
result from integrating out the heavy degrees of freedom of
the heavy NP theory that underlies the SM and expanding
in inverse powers ofM after appropriate renormalization of
the SM parameters.3

The effective Lagrangian then takes the form [16–19]

Leff ¼
X∞
n¼5

1

Mðn−4Þ
X
i

fðnÞi OðnÞ
i : ð2Þ

Different types of NP can generate the same operators,
but, in general, with different coefficients, so that the SM
renormalization constants and the operator coefficients
parametrize all possible types of NP. Moreover, some of
the O’s are necessarily generated by loops involving only
heavy particles [17,19], and we label such operators “loop-
generated” (LG); this is a useful distinction because graphs
involving LG operators and l SM loops are considered to
be at least lþ 1 loop diagrams.

II. EFT AND THE ONE-LOOP HIGGS MASS
CORRECTIONS

In general, all (SM and NP) one-loop corrections to m2
h

are generated by the graphs in Fig. 1. In the scenarios we
are interested in here, these corrections can be separated
into three categories:
δm2

hðSMÞ: When all internal lines are the light SM fields.
The contributions from this category are given in Eq. (1).
δm2

hðHvyÞ: When all internal lines are heavy fields of the
underlying NP. The contributions from this category are
contained in the renormalization of the parameters of the
SM that follows upon integration of the heavy particles.
This is included in what we denote here as “tree-level”
parameters, i.e., m2

hðtreeÞ ¼ m2
hðbareÞ þ δm2

hðHvyÞ.
δm2

hðeffÞ: When one line is heavy and the other is light (in
graphs (b) and (c) in Fig. 1). The contributions in this
category are generated by the effective Lagrangian in
Eq. (2) and are the ones we are interested in here.
As noted earlier, the “little hierarchy problem” of the SM

refers to the fact that δm2
hðSMÞ > m2

hðtreeÞ when
Λ≳ 500 GeV, assuming mhðtreeÞ is close to the observed
value mhðtreeÞ≃mh ≃ 125 GeV. Our aim here is only to
address this problem at scales below Λ, viewed as the scale
of the Wilsonian effective action; we will not be concerned
with the issues related to the UV completion of the SM or
EW-Planck hierarchy or with any details of the underlying
theory giving rise to Eq. (2). Specifically, we will study the
role that the effective interactions in Eq. (2) may play in

1At scales aboveM the NP becomes manifest, and naturalness
issues related to quadratic divergences may arise in connection
with new heavy scalar particles that might be present, but such
complications will not affect the conditions under which heavy
new physics may tame the little hierarchy problem at scales below
Λ, which is our only concern in this paper. Note that fermionic
solution(s) do not suffer from this difficulty.

2We note in passing that higher-dimensional NP operators in
the SM Higgs sector may also have a significant effect on the
stability of the EW vacuum [13].

3We adopt the minimal coupling scheme in constructing the
higher dimensional effective operators below, which is consistent
with the assumption of a weakly coupled and renormalizable
underlying NP (see e.g., [14]); the compatibility of minimal
coupling with EFT was recently discussed in the literature (see
[14,15]).
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restoring naturalness to the Higgs sector at any given
intermediate scale v < Λ < M4 and determine the condi-
tions under which δm2

hðSMÞ þ δm2
hðeffÞ≲m2

h when
mh ≪ Λ ≤ M. We now proceed to the calculation
of δm2

hðeffÞ.
To illustrate the manner in which the effective operators

contribute to δm2
h, we consider the contributions to the

Higgs mass generated by the diagrams in Fig. 2. Expanding
the heavy propagator in powers of its (large) mass M, one
generates an infinite series of vertices suppressed by
inverse powers of M (see Fig. 2 for a schematic depiction).
As mentioned above, we will evaluate loop graphs using a
cutoff prescription (with Λ being the cutoff) so that this
expansion remains valid for the graphs in Fig. 2 (recall that
M ≥ Λ) and the effective vertices correspond to those
generated by the effective operators in Eq. (2). We, there-
fore, need the set of operators O which are not LG, and
contribute to graph Fig. 1(a), where the vertex is generated
by the effective operator.
The non-LG operators that give OðΛ2Þ contributions to

δm2
h can be characterized using the following arguments:

the internal lines in the graphs on the right-hand side of
Fig. 2 (with the O-generated vertices) can be either the SM
scalar, fermions or vectors. For the first case, O must
contain at least four SM scalar doublets; but if it contains
more than four such scalar fields, the corresponding
contributions to δm2

h are suppressed by powers of ðv=MÞ
and are, therefore, subdominant. Thus, leading contribu-
tions with a scalar internal line are generated by effective
operators with precisely four scalar doublets. Similarly, if

the internal lines are fermions or vectors, the operators must
contain two SM scalar doublets. Lastly, it is straightforward
to show [17,19] that operators with two SM scalar doublets,
no fermions and any number of vectors are LG and are also
subdominant.
Summarizing: the operators that generate one-loop

OðΛ2Þ contributions to δm2
h can be of only two types:

(i) Type I: O contains four scalar fields, any number of
derivatives and is not LG.

(ii) Type II: O contains two fermions and two scalar
fields, any number of derivatives and is not LG.

The simplest way to determine the form of the operators
of types I and II is by recalling that these operators are
generated at tree level in the underlying heavy theory by the
graphs in Fig. 3, where the relevant O is obtained by
expanding the propagators in inverse power of the internal
heavy mass and imposing gauge invariance. We can also
eliminate operators with derivatives that act on scalar fields
connected to the external legs, since δm2

h is evaluated at
zero momentum.5

A further simplification follows from a more careful
study of the diagram shown in Fig. 3(c), which contributes
to δm2

h only through graphs of the type depicted in
Fig. 1(c), for which the heavy boson must be a scalar.
This heavy scalar must also be an SUð2Þ triplet or singlet
(since it couples to two SM isodoublets), which implies that
the fermions must have the same chirality (since a pair of
fermions with different chirality cannot form a singlet or a
triplet). It then follows that the loop in Fig. 1(c) must
involve a chirality flip, so that its contribution to δm2

h will

FIG. 1 (color online). The one-loop graphs generating δm2
h. The internal lines represent bosons or fermions from either the SM or the

heavy NP.

FIG. 2 (color online). Description of the manner in which the effective Lagrangian in Eq. (2) generates graphs in category δm2
hðeffÞ

defined in the text.

4It is important to note that Eq. (2) can be used to calculate
such NP effects provided all energies (including those that appear
within loop calculations) are kept below M so the cutoff must
obey Λ < M.

5If δm2
h is evaluated at some other low scale, e.g., at μ ¼ mh,

then vertices where a derivative acts on an external leg are also
subdominant since their contribution will be suppressed by a
factor of mh=Λ.
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be suppressed by a factor of mψ=Λ and is, therefore, also
subdominant. We, thus, conclude that we can neglect the
effective operators associated with Fig. 3(c).
With the above comments, it is a straightforward exercise

to obtain the relevant set of effective operators of interest.
Those generated by heavy scalar exchanges in Fig. 3(a) are

Oð2kþ4Þ
S ¼ 1

2
jϕj2□kjϕj2;

Oð2kþ4Þ
χ ¼ 1

2
ðϕ†τIϕÞD2kðϕ†τIϕÞ;

Oð2kþ4Þ
~χ ¼ 1

4
ðϕ†τI ~ϕÞD2kð ~ϕ†τIϕÞ; ð3Þ

which correspond to the cases where the heavy scalar is a
SM gauge singlet (labeled S) or an isotriplet of hypercharge
0 or 1 (labeled χ and ~χ , respectively). There are no other
operators of this type since S; χ , and ~χ are the only possible
three states that can be formed with two SM scalar
isodoublets. In the following, we denote these heavy scalars
collectively by Φ.
Similarly the operators generated by heavy vector

exchanges in Fig. 3(a) are

Oð2kþ6Þ
v ¼ 1

2
jμ□kjμ; Oð2kþ6Þ

~v ¼ ~j†μ□k~jμ;

Oð2kþ6Þ
V ¼ 1

6
JIμD2kJμI ; ð4Þ

where the currents are

jμ ¼ iϕ†Dμϕþ H:c:; ~jμ ¼ i ~ϕ†Dμϕ;

JμI ¼ iϕ†τIDμϕþ H:c:; ð5Þ
and the labels in Eq. (4) refer to heavy vector isosinglets
(v; ~v) of hypercharge 0 or 1, respectively, and a heavy
vector isotriplet (V) of hypercharge 0. In the following we
will collectively denote these heavy vectors by X.6

Finally, the graph in Fig. 3(b) involves an exchange of a
heavy fermionΨ which may or may not be colored and has
the same quantum numbers as ϕψ or ~ϕψ. That is, Ψ can be
an isosinglet, doublet or triplet heavy lepton or quark of
hypercharge yΨ ¼ yψ � 1=2 (yr denotes the hypercharge
of r). These Ψ-generated operators are

Oð2kþ4Þ
Ψ−ψ ¼ jϕj2ψ̄ðiDÞ2k−1ψ ; ðk ≥ 1Þ; ð6Þ

where ψ is any SM fermion.7 Another type of operator
that may be generated by the heavy-fermion exchange is
ðϕ†τIϕÞðψ̄τID2k−1ψÞ, where ψ is an isodoublet. However,
this operator will yield a contribution to δm2

h which is
suppressed by a factor of m2

ψ=Λ2 and is, therefore, also
subdominant.
Note that the graphs in Fig. 3 represent the possible types

of NP that can generate the effective operators in Eqs. (3),
(4) and (6) at tree level. There are other types of NP that can
also generate these operators, but only via loop diagrams. It
then follows that the coefficients of the operators associated
with the same heavy particle are correlated; we return to
this point below.
Calculating the one-loop quadratic corrections to m2

h
which are generated by the operators in Eqs. (3), (4) and
(6), we obtain

δm2
hðeffÞ ¼ −

Λ2

16π2
FðeffÞ; ð7Þ

where (Φ ¼ S; χ ; ~χ and X ¼ v; ~v;V)8

FIG. 3 (color online). Tree-level graphs that generate the effective operators of type I (diagram a) and II (diagrams b and c) that can
produce leading corrections to δm2

h. ϕ and ψ denote the SM scalar doublet and fermions, respectively, and all vertices are understood to
be invariant under SM gauge transformations.

6There is a fourth current that can be constructed using two
scalar fields, namely, ~Jμ ¼ i ~ϕ†τDμϕ; however, since ~Jμ ¼ DμP
with P≡ ði=2Þ ~ϕ†τϕ holds identically, and since vector bosons do
not have tree-level couplings to total derivatives, there are no tree-
level operators involving ~J. None of the other currents in Eq. (5)
can be written as derivatives of scalar operators.

7It is, in principle, possible to eliminate the operator in Eq. (6)
using the “equivalence theorem” of [19]. However in a cutoff
scenario like the one we consider, this procedure involves a
nontrivial Jacobian that will generate terms of the form jϕj2Λ2,
which will reproduce the contributions to δm2

h generated
by OΨ−ψ.

8When evaluating the contributions associated with the heavy
vectors (sum over X) it is convenient to use a renormalizable
gauge. The calculation in the unitary gauge is more involved
since, in this case, the longitudinal component of the vector
propagators are proportional to 1=v2, and this complicates
isolating the leading contributions.
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FðeffÞ ¼
X∞
k¼0

ðΛ=MÞ2k
kþ 1

X
Φ

fð2kþ4Þ
Φ

−
X∞
k¼0

ðΛ=MÞ2kþ2

kþ 2

X
X

fð2kþ6Þ
X

−
X∞
k¼1

ð−1ÞkðΛ=MÞ2k
kþ 1

X
Ψ;ψ

fð2kþ4Þ
Ψ−ψ : ð8Þ

Defining the measure for fine-tuning to be
Δh ≡ jδm2

hj=m2
h, where δm2

h ¼ δm2
hðSMÞ þ δm2

hðeffÞ and
m2

h is the physical mass, m2
h ¼ m2

hðtreeÞ þ δm2
h, we have9

Δh ¼
Λ2

16π2m2
h

jFðeffÞ − 8.2j: ð9Þ

It is evident from Eq. (9) that in order to restore
naturalness at the effective action scale Λ < M, there must
be a cancellation10 between the OðΛ2Þ one-loop expres-
sions generated in the SM [Eq. (1)] and those produced by
the effective operators [Eq. (7)]; this cancellation can be
partial or exact (e.g., due to a model or symmetry), leading
to δm2

h ¼ Oðv2Þ—in this case the tree-level contribution
m2

hðtreeÞ will be of this order as well. It should be
emphasized again that FðeffÞ is the one-loop contribution
to the Higgs mass calculated only from effective operators
which are generated at tree level in the underlying NP [the
ones given in Eqs. (3), (4) and (6)]; it is, thus, a
dimensionless function of the NP parameters and the ratio
Λ=M, so that the cancellation conditions will depend on Λ
as well. Our requirement that Λ be the scale below which
the SM little-hierarchy problem is solved is consistent
within our EFT-naturalness scenario because of the require-
ment M > Λ.
Rewriting the above defined fine-tuning condition as

jm2
hðtreeÞ=δm2

h þ 1j ¼ 1=Δh, it is evident that this cancel-
lation must occur to a precision of 1=Δh, so that a larger Δh
corresponds to a less natural theory. Therefore, a theory
(i.e., FðeffÞ) for which Δh ¼ 1 is natural, while one with
Δh ¼ 10ð100Þ suffers from fine-tuning of 10%(1%).
In Fig. 4 we plot regions in the FðeffÞ − Λ plane that

correspond to an effective action which is natural (i.e.,
enclosed within the Δh ¼ 1 region) and those that suffer
from fine-tuning of no worse than 10% and 1%, corre-
sponding to Δh ¼ 10 and Δh ¼ 100, respectively. This
figure illustrates the (fine-) tuning between the EFTand SM
one-loop terms which is required to alleviate the little

hierarchy problem, following Eq. (9). For example, theories
for which 8.17≲ FðeffÞ ≲ 8.23 are natural at Λ ∼ 10 TeV,
while theories with 7.95≲ FðeffÞ ≲ 8.45 or 5.73≲ FðeffÞ ≲
10.67 will suffer from 10% or 1% fine-tuning, respectively,
at Λ ∼ 10 TeV. Note also that if the scale of EFT
naturalness is Λ ∼ 5 TeV, then a much wider range of
theories, those giving 0≲ FðeffÞ ≲ 18, are allowed if one is
willing to tolerate 1% fine-tuning. It should also be noted
that the EFT-naturalness regions shown in Fig. 4 may, in
general, be subject to additional constraints (e.g., from
perturbativity), depending on the details of the specific
underlying theory.
Given the specific form of the graphs in Fig. 3 which

generate the leading operators in Eqs. (3), (4) and (6), it is
possible to express the EFT coefficients f in terms of some
of the couplings of the heavy particles to the SM.
Specifically, defining uΦ, gX and yΨ−ψ to be the couplings
of a heavy scalar Φ ¼ S; χ ; ~χ to ϕ2 (i.e., uΦϕ†Φϕ), of a
heavy vector bosonX ¼ v; ~v;V to the currents JX ¼ j; ~j; JI
in Eq. (5) (i.e., gXXμJ

μ
X), and of a heavy fermion Ψ to ψϕ

(i.e., yΨ−ψ ψ̄Ψϕ), respectively, and allowing for the
(generic) case of different scales of NP: MΦ;Ψ;X ≳ Λ
corresponding to the mass scale of the heavy scalars,
vectors and fermions, respectively, we find

fð2kþ4Þ
Φ ðuΦ;MΦ;MÞ ¼

���� uΦMΦ

����
2
�
−M2

M2
Φ

�
k

;

fð2kþ4Þ
Ψ−ψ ðyΨ−ψ ;MΨ;MÞ ¼ 1

2
IΨjyΨ−ψ j2

�
M2

M2
Ψ

�
k

;

fð2kþ6Þ
X ðgX;MX;MÞ ¼ IXjgXj2

�
−M2

M2
X

�
kþ1

; ð10Þ
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h
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FIG. 4. Regions in the FðeffÞ − Λ plane where naturalness can
be restored with no fine-tuning (Δh ¼ δm2

h=m
2
h ¼ 1, in black)

and with fine-tuning at the level of 10% (dark gray) and 1% (light
gray), corresponding to Δh ¼ δm2

h=m
2
h ¼ 10 and 100, respec-

tively. See also text.

9Our measure for naturalness corresponds to what is known
as the Barbieri-Giudice criteria [20]: Δ ¼ j∂ lnOj=j∂ ln fj, for
O ¼ m2

h and f ¼ FðeffÞ − 8.2.
10If no cancellation occurs between the radiative corrections

then δm2
h ¼ OðΛ2Þ, which must be balanced by an OðΛ2Þ tree-

level contribution to the Higgs mass in order to explain the
experimentally observed value of the physical massm2

h ¼ Oðv2Þ.
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where Iζ ¼ 1; 2; 3 when the field ζ ¼ Ψ or X is an
isosinglet, doublet or triplet, respectively. Thus, inserting
Eq. (10) in Eq. (8) and performing the sum over k, we
obtain

FðeffÞðΛÞ ¼
X
Φ

juΦj2
M2

Φ

A

�
Λ2

M2
Φ

�

þ 1

2

X
Ψ;ψ

IΨjyΨ−ψ j2
�
1 − A

�
Λ2

M2
Ψ

��

þ
X
X

IXjgXj2
�
1 − A

�
Λ2

M2
X

��
; ð11Þ

where AðxÞ ¼ lnð1þ xÞ=x, so that 1 > AðxÞ ≥ 0, from
which it follows that FðeffÞ > 0.
Assuming that the heavy masses are clustered around a

value M, the above expression simplifies to

FðeffÞðΛÞ ¼ ðξ − ηÞA
�
Λ2

M2

�
þ η; ξ ¼

X
Φ

juΦj2
M2

Φ

;

η ¼ 1

2

X
Ψ;ψ

IΨjyΨ−ψ j2 þ
X
X

IXjgXj2; ð12Þ

where we expect ξ; η ∼Oð1 − 10Þ, e.g., uΦ ∼ 3MΦ and/or a
triplet heavy vectorlike (colored) quark with yΨ−ψ ∼ 1 will
give ξ; η ∼ 10.
In Fig. 5 we plot the regions in the ξ − η plane which

correspond to Δh ¼ 1 (natural) and Δh ¼ 10 (10% fine-
tuning), for an EFT-naturalness scale in the range 3 TeV <
Λ < 10 TeV and NP scale Λ < M < 3Λ. The shaded
region in the ξ − η scatter plots corresponds to the shaded
regions in the Λ −M plane (matching colors). In particular,
we can find the values of (ξ; η) for which the EFT
corrections to Δm2

h can restore naturalness in the Higgs
sector at a certain Λ for some value M of the NP threshold.
For example, extensions of the SM with a typical mass

FIG. 5. Upper plot: regions in the Λ −M plane, corresponding to 1 < M=Λ < 1.5 (black), 1.5 < M=Λ < 2 (dark gray), 2 < M=Λ <
2.5 (gray) and 2.5 < M=Λ < 3 (light gray), for a naturalness scale 3 TeV < Λ < 10 TeV andM being the typical NP mass scale. Lower
plots: scatter plots in the ξ − η plane [see Eq. (12)] corresponding to the regions in the Λ −M plane (corresponding shading colors),
where the NP (with scale M) restores naturalness (left plot) or suffers from 10% fine-tuning (right plot).
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scale of M ∼ 7 TeV that give ξ ∼ 9 and η ∼ 5 will yield an
effective action which is natural up to Λ ∼ 5 TeV (an order
of magnitude improvement over the pure SM).

III. SIGNALS OF EFT NATURALNESS

Let us briefly discuss the potential signals of our EFT-
naturalness operators or, equivalently, of the tail of the NP
that can restore naturalness at energy scales which are
accessible to current and future high-energy colliders. In
particular, apart from their contribution to δm2

h, these
operators also shift the SM Higgs self-couplings h3 and
h4, the SM Higgs couplings to the gauge bosons hVV and
h2V2 (V ¼ W or Z) and the Higgs Yukawa couplings hψψ
(ψ being a SM fermion). In addition, they also give rise to
new higher-dimensional contact terms such as h3V2, h4V2

and h2ψ2.
In Table I we list the expected deviations in the SM

couplings and the new contact terms which are generated
by each of the operators in Eqs. (3), (4) and (6). Evidently,
the tail of the NP generating the EFT-naturalness operators
can be searched for in multiboson scattering processes of
the form ψψ̄=VV → n · hþm · V þ X, where n;m ¼
0; 1; 2;…. In particular, one can search for correlations
in the various channels or look for differences between
W-boson- versus Z-boson-associated production processes.

For example, whileOð2kþ4Þ
χ will effectWh production at the

LHC, i.e., pp → Whþ X, the operator Oð2kþ6Þ
v is expected

to contribute only to Z-boson-associated production proc-
esses such as pp → Zhþ X.
Clearly, though, the search for the tail of these NP effects

in Higgs–gauge-boson processes will require a sensitivity
to these couplings at the percent level, to be probed at
Λ ∼Oð5–10 TeVÞ. This will be challenging even at the
high-luminosity LHC and may require future colliders at
the high-energy/high-luminosity frontiers, such as a future
30 or 100 TeV hadron collider and/or an OðTeVÞ eþe−
collider. Nonetheless, from our considerations we expect
better prospects for detection of NP at the LHC in the low-
multiplicity Higgs–gauge-bosons production processes,

e.g., pp → hW; hZ þ X, and in processes involving the
new contact terms listed in Table I. This will be studied in a
future work.

IV. CONSTRAINTS FROM EW PRECISION DATA
AND HIGGS SIGNALS

Let us now examine the limits that the current data
impose on the coefficients of our effective operators. Since
the most important effects are generated by the lowest-
dimensional operators, we will only investigate the limits

on the dimension-six coefficients fð6ÞΦ;Ψ−ψ ;X, which are
mainly of two types [to simplify the expressions we define
ϵ ¼ ðv=MÞ2].

1. A shift to the ρ parameter:
The scalar-triplet operators Oð6Þ

χ ; ~χ and the vector

operators Oð6Þ
X modify the SM gauge-boson masses

according to

δM2
Z

M2
Z
¼ ϵ

�
fð6Þv þ 1

3
fð6ÞV − fð6Þ~χ

�
;

δM2
W

M2
W

¼ ϵ

�
1

2
fð6Þ~v þ 1

3
fð6ÞV − fð6Þχ −

1

2
fð6Þ~χ

�
; ð13Þ

which shift the ρ parameter accordingly:

δρ ¼ ϵ

�
1

2
fð6Þ~v − fð6Þv þ 1

2
fð6Þ~χ − fð6Þχ

�
: ð14Þ

This is the strongest constraint from precision EW
observables; it is suppressed by a factor of ϵ because
the heavy physics being considered here (the heavy
Φ, X and Ψ states) does not break the SM gauge
invariance (this happens only at the EW scale v). If
we assume that the operator coefficients f are Oð1Þ
and that there are no cancellations, then the con-
straint jδρj < 0.0007 [21] impliesM ≳ 9.3 TeV; but
this can be considerably reduced if some cancella-
tions do occur.

TABLE I. Vertices involving the Higgs, gauge-bosons and fermions which are generated by the operators in Eqs. (3), (4) and (6).
A check mark is used to indicate that the vertex is affected by the specific operator.

Operator h3 h4 hWW h2W2 h3W2 h4W2 hZZ h2Z2 h3Z2 h4Z2 hψψ h2ψ2

Oð2kþ4Þ
S ✓ ✓

Oð2kþ4Þ
χ ✓ ✓ ✓ ✓ ✓ ✓

Oð2kþ4Þ
~χ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Oð2kþ6Þ
v ✓ ✓ ✓ ✓

Oð2kþ6Þ
~v ✓ ✓ ✓ ✓

Oð2kþ6Þ
V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Oð2kþ4Þ
Ψ−ψ ✓ ✓
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2. A shift of the Higgs boson couplings to fermions and
SM gauge bosons: This effect can be divided into
three parts:
(i) The scalar operators Oð6Þ

Φ modify the Higgs
kinetic term. Thus, in order to recover a
canonically normalized Higgs field we need

to rescale h → ½1þ ðϵ=2ÞP fð6ÞΦ �h. This modi-
fies the Higgs couplings to all other SM fields
(denoted by x),

δΦ ≡ δghxx
gSMhxx

¼ ϵ

2

X
Φ

fð6ÞΦ ; ð15Þ

and changes all Higgs decay widths into any
final state x by the same factor (so that branch-
ing ratios remain the same): δΓðh →
xxÞ ≈ ϵ

P
fð6ÞΦ ΓSMðh → xxÞ (to lowest order

in Λ).
(ii) The fermion operatorsOð6Þ

Ψ−ψ modify the Higgs-
Yukawa coupling to the SM fermions (ψ):

δΨ−ψ ≡ δghψψ
gSMhψψ

¼ −ϵ
X
Ψ

fð6ÞΨ−ψ : ð16Þ

Note that this shift in the htt coupling also
modifies the top-quark loop contribution in the
gluon-fusion Higgs production cross section as
well as in the one-loop decays h → γγ
and h → Zγ.

(iii) The scalar-triplet operators Oð6Þ
χ ; ~χ and the vector

operators Oð6Þ
X modify the couplings of the

Higgs to the vector bosons,

δW ≡δghWW

gSMhWW

¼ ϵ

�
fð6Þ~v þ2

3
fð6ÞV −

1

2
fð6Þχ −

1

4
fð6Þ~χ

�
;

ð17Þ

δZ ≡ δghZZ
gSMhZZ

¼ ϵ

�
2fð6Þv þ 2

3
fð6ÞV −

1

2
fð6Þ~χ

�
; ð18Þ

and therefore changes the Higgs decay width to
a pair of SM gauge bosons.

Turning now to the overall effect of the above mod-
ifications on the Higgs couplings to the SM fermions and
gauge bosons, let us analyze the constraints that can be
imposed from the recently measured Higgs signals (see also
[22]). In particular, defining

wxx ≡ Γðh → xxÞ
ΓðhSM → xxÞ ; RTotal ≡ ΓTotal

h

ΓTotal
hSM

; ð19Þ

the normalized branching ratios for each channel are given
by

RBR
xx ≡ BRðh → xxÞ

BRðhSM → xxÞ ¼
wxx

RTotal : ð20Þ

The “signal strength” for each Higgs production and
decay mode is then given by

μiixx ≡ σðii → h → xxÞ
σðii → hSM → xxÞ ¼

wiiwxx

RTotal ; ð21Þ

so that

ð22Þ
Note that, since the one-loop hgg coupling is controlled primarily by the top-quark Yukawa coupling, we have wgg ¼ wtt.

To lowest order in ϵ, we then find

wψψ ≈1þ2~δψ ; wgg≈wtt; wWW≈1þ2~δW; wZZ≈1þ2~δZ; wγγ≈1þ2.56~δW−0.56~δt; wZγ≈1þ2.1~δZ−0.1~δt;

ð23Þ
and

RTotal ≈ 1þ 2

�
BRWW

SM
~δW þ BRZZ

SM
~δZ þ BRgg

SM
~δt þ

X
ψ

BRψψ
SM

~δψ

�
; ð24Þ

where BRxx
SM ≡ BRðhSM → xxÞ are the SM branching

ratios, ~δψ ≡ δΦ þ δΨ−ψ , ~δW ≡ δΦ þ δW , ~δZ ≡ δΦ þ δZ
and δΦ; δΨ−ψ ; δW; δZ are given in Eqs. (15)–(18).
We see that if the coefficients of the higher-dimensional

operators fð6ÞΨ ; fð6ÞΦ and fð6ÞX are of Oð1Þ, then the typical

correction to the Higgs signal strengths is of OðϵÞ. Thus,
given that the LHC is expected to probe the Higgs
couplings to at most 10% accuracy (this includes the high
luminosity run of the LHC [23]), a rather weak bound of
M ≳Oð1 TeVÞ can be imposed on the scale of the new
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heavy physics that can lead to EFT naturalness in the Higgs
sector. A future eþe− collider may be able to improve the
accuracy to Oð0.01Þ [23], in which case EFT naturalness
can be probed up to Λ ∼ 2–3 TeV. We conclude that
precision Higgs measurements are not expected to impose
significant constraints on our EFT-naturalness scenario.
Finally, we note that none of the operators in Eqs. (3), (4)

and (6) breaks any of the global symmetries of the SM, so
no strong limits can be obtained from CP, flavor or lepton
and baryon number conservation experiments.

V. SUMMARY

We have used EFT techniques to study the little
hierarchy problem of the SM Higgs sector assuming the
presence of weakly coupled and decoupling heavy physics
with scale M. Following Wilson’s approach, we calculate
the one-loop contribution to the Higgs mass in the EFT as a
function of the scale of the effective action Λ (Λ ≫ mW)
and discuss the tuning between these EFT terms and the
SM one-loop contribution, which is required in order to
alleviate the little hierarchy problem. In particular, we
determine the conditions under which these quadratic new
heavy-physics contributions can balance those generated
by the SM at the scale Λ, where we implicitly assume that
there is an underlying symmetry responsible for that,
especially if the needed tuning is of Oð10−4Þ or worse.
We analyze the complete set of higher-dimensional

effective operators (at any dimension n ≥ 5) that can yield
OðΛ2Þ contributions to δm2

h in the EFT and classify the
underlying heavy theories that can generate these operators
at tree level. In particular, we find that heavy new physics

theories that can lead to EFT naturalness (i.e., that can
restore naturalness in the effective action at, e.g.,
Λ ∼ 5–10 TeV) must contain one or more singlet or triplet
heavy bosons or else a singlet, doublet or triplet fermions,
all heaving typical masses larger than Λ. We then estimate
the coefficients of the EFT-naturalness higher-dimensional
operators using the relevant phenomenological interactions
of these heavy particles.
We have also studied the constraints that precision

electroweak data and the recently measured Higgs signals
impose on our EFT-naturalness setup and find that heavy
scalar singlets and/or heavy fermions (singlets, doublets or
triplets) are more likely to play a role in softening the fine-
tuning in the SM Higgs sector if the scale of the new heavy
physics is below ∼10 TeV.
Finally, we have discussed the expected signatures that

the tail of the NP (responsible for EFT naturalness) can
have at the LHC and at future colliders. In particular, we
find that signals of EFT naturalness are likely to be
manifest as deviations in processes involving Higgs +
gauge-boson production, e.g., pp or eþe− → hh, hW,
hZ, WW, ZZ þ X and/or processes with higher Higgs/
gauge-boson multiplicities in the final state.
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