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I. INTRODUCTION

Thediscoveryof theHiggs-likeparticle at theLHCfurther
supports the remarkable success of the Glashow, Salam, and
Weinberg (GSW) theory of electroweak interactions.
The GSW theory augmented with quantum chromody-

namics (QCD) is known as the standard model of particle
interactions (SM). Any extension of the SM must closely
reproduce the GSW theory, including the Higgs sector. It is
therefore natural to explore extensions where the low
energy effective GSW theory is partially protected against
contributions from new sectors via the presence of addi-
tional symmetries.
One may either consider perturbative or nonperturbative

extensions of the GSW theory. Here we consider the
possibility that the new extension features massive spin-
1 resonances in the TeV region. This is, for example,
expected in any model of composite dynamics near the
electroweak scale while many perturbative extensions also
feature, via new Higgs mechanisms, massive spin-1 states,
e.g., so-called Z0 states.
Our model respects the custodial symmetry of the GSW

theory, i.e., G ¼ SUð2ÞL × SUð2ÞR that protects the mass
relation between the electroweak W and Z bosons. It
features an additional unbroken global G0 ¼ SUð2Þ0L ×
SUð2Þ0R symmetry acting on the heavy spin-1 resonances.
The effective Lagrangian thus features two global sym-
metries G and G0. The former breaks to H ¼ SUð2ÞV and
the latter remains intact. The breaking G → H is identified
with the GSW custodial symmetry breaking pattern
SUð2ÞL × SUð2ÞR → SUð2ÞV while G0 acts only on the
new heavy vector resonances and serves to protect the S
parameter as well as longitudinalWW scattering from large
contributions from the heavy resonances.

We model the Higgs sector as in the GSW theory. By
construction, our model then has the GSW theory as a well-
defined decoupling limit when sending the mass of the new
resonances to infinity. We shall call our model the custodial
vector model (CVM).
A discussion of possible strong dynamics underlying the

CVM are given in [1–3]. The spectral symmetry of the
vector resonances in the CVM was discussed in [4] and
built into the so-called degenerate breaking electroweak
symmetry strongly (D-BESS) model [5] without featuring a
Higgs particle. The CVM can also be interpreted as an
extension of the GWS theory with multiple scalars, in
which the massive spin-one bosons arise from new gauge
sectors; see e.g., [6–9].
In this paper we introduce the CVM and investigate its

LHC phenomenology. The model features a very distinct
pattern of narrow spin-1 resonances in the diboson,
dilepton, and associated Higgs search channels allowing,
in principle, to pin it down. Specifically the CVM
predicts closely spaced spin-1 resonance double peaks
in the dilepton invariant mass distributions, single reso-
nance peaks in the single charged lepton channels, and
suppressed peaks or no signal in the diboson channels.
This is in contrast to general effective descriptions of
composite dynamics leading to broad, well-spaced res-
onances with large branching ratios to diboson channels,
e.g., [10–13], or to specific spin-1 spectra appearing in
composite Higgs models and extra-dimensional theories;
see e.g., [14–16].
Higgs production in association with vector bosons is

also an important search channel, which depending on the
parameter space can be substantially enhanced with respect
to the GSW theory.
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The outline of the paper is as follows. In Sec. II we
discuss current LHC constraints on spin-1 resonances.
The CVM Lagrangian is discussed in Sec. III. Here
we also outline the qualitative phenomenology. We
compare the model predictions with the electroweak
precision measurements in Sec. IV. The detailed phe-
nomenological analysis is provided in Sec. V. Finally in
Sec. VI we summarize our findings and discuss further
developments.

II. CURRENT CONSTRAINTS ON GENERIC
VECTOR RESONANCES

Several studies have been dedicated to the LHC phe-
nomenology of heavy spin-1 particles; see for instance [17]
for a recent discussion. Here, we focus on the latest
experimental results to summarize the relevant LHC
searches for vector resonances that will be used to constrain
the CVM parameter space in Sec. III.
We consider a set of narrow charged and neutral spin-one

resonances, R�
i and R0

i , respectively, with i counting the
number of independent mass eigenstates. With H we
denote the 125 GeV Higgs-like particle. The relevant
effective interaction vertices are summarized via contact
operators in the Lagrangian:

LR ¼ LR
kinetic þ LR

self þ LR
fermion þ LR

gauge þ LR
H: ð1Þ

The vertices linking the spin-one resonances with the SM
fermions are

LR
fermion ¼

X
i

X
u;d

ūRþ
i ðgLRiud

PL þ gRRiud
PRÞdþ H:c:þ

X
i

X
f

f̄R0
i ðgLRif

PL þ gRRif
PRÞf

¼
X
i

X
u;d

ūRþ
i ðgVRiud

− gARiud
γ5Þdþ H:c:þ

X
i

X
f

f̄R0
i ðgVRif

− gARif
γ5Þf; ð2Þ

where u (d) runs over all up-type (down-type) quarks and
leptons, f runs over all quark and lepton flavors, and we
have expressed the vertices both in left-right and vector-
axial basis, with PL=R ¼ ð1� γ5Þ=2.
The CP-invariant trilinear interactions of the spin-one

resonances with H are

LR
H ⊃

X
i

gRiZHR
0
iμZ

μH þ gRiWHðRþ
iμW

−μ þR−
iμW

þμÞH

þ 1

2

X
i;j

gR0
iR

0
jH
R0

iμR
0μ
j H þ gRþ

i R
−
j H
Rþ

iμR
−μ
j H: ð3Þ

Note that a vertex with one spin-one resonance and two
scalars H is not CP invariant, and is therefore not included
in LR

H [18].
For single resonance production and subsequent decay,

in LR
gauge we only need to consider the vertices with one

resonance and two SM gauge bosons, as triboson final
states are suppressed compared to the diboson ones, due to
smaller available phase space. The C- and P-invariant
interactions are

LR
gauge ⊃

X
i

½gð1ÞRiWW ½½WþW−R0
i �� þ gð2ÞRiWW ½½R0

i W
þW−��

þ gð1ÞRiWZðRþ
iμνW

−ν −R−
iμνW

þν þWþ
μνR−ν

i

−W−
μνR

þν
i ÞZμ þ gð2ÞRiWZðRþ

iμW
−ν −R−

iμW
þνÞZμν�

ð4Þ

where

½½V1V2V3��≡ i∂μV1νV
½μ
2 V

ν�
3 þ H:c:;

Rμν ≡ ∂μRν − ∂νRμ: ð5Þ

The 2-body decay modes of R�
i and R0

i may be then
summarized as

ΓR�
i
¼

X
u;d

Γud
R�

i
þ
X
ν;e

Γνe
R�

i
þ ΓWZ

R�
i
þ ΓWH

R�
i
;

ΓR0
i
¼

X
q

Γqq̄
R0

i
þ
X
l

Γll̄
R0

i
þ
X
ν

Γνν̄
R0

i
þ ΓWW

R0
i
þ ΓZH

R0
i
; ð6Þ

FIG. 1 (color online). ATLAS and CMS 95% C.L. exclusion
limits on production cross section times branching ratio, σ × BR,
for a new neutral or charged vector resonance. The charged vector
final states are lν, WZ, and WH. Data references are given in
Table I.
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where the formulas for the partial widths are provided in
Appendix C. We disregard the subdominant 3- and 4-body
decay modes.
The relevant current LHC limits for a single charged or

neutral vector resonance are given in Fig. 1 and the
corresponding data listed in Table I. The dilepton limits
are at least an order of magnitude stronger than any of the
diboson limits at any resonance mass.
The ATLAS dilepton limit on the figure is the one

relevant for a sequential standard model (SSM) Z0 in [20].
The CMS limits on the lþl− production [19] are expressed
in terms of Rσ ≡ σðpp→Z0þX→llþXÞ

σðpp→ZþX→llþXÞ . We convert the bounds

on Rσ to bounds on the total inclusive cross section. We use
the total standard model cross section for the Drell Yan Z
boson production given in [31]. Similarly, for the associ-
ated Higgs production, the limits in [25] are given in terms
of the signal strength, μ≡ σ=σSM. We convert this to a limit
on the cross section, σBSM ¼ σ − σSM. For σSM we use the
prediction at NNLO QCD and NLO electroweak accuracy
[32]. The WZ channel CMS search gives exclusion for the
fully decayed three leptons and missing energy final state;
therefore, we obtain the limit on the WZ cross section by
correcting for the W and Z branching ratios.

III. THE CUSTODIAL VECTOR MODEL

The CVM, like the GSW theory, possesses a global
SUð2ÞL × SUð2ÞR chiral symmetry which breaks sponta-
neously to the diagonal SUð2ÞV symmetry. It is well known
that this custodial symmetry protects the T parameter. The
electroweak gauge symmetry group SUð2ÞL × Uð1ÞY is
embedded in SUð2ÞL × SUð2ÞR and therefore provides a
small breaking of the custodial symmetry. Upon sponta-
neous symmetry breaking the final intact gauge symmetry
is Uð1ÞQED.
The CVM features the Higgs state H and two weak

isospin triplet vector resonances. The GSW custodial
symmetry is encoded in the Higgs Lagrangian and the

model includes yet another custodial symmetry acting on
the vector sector. The new custodial symmetry is simply
SUð2Þ0L × SUð2Þ0R and protects the S parameter and WW
scattering from large corrections coming from the vector
sector [2–5,33–35], as we shall show below.
To elucidate the patterns of chiral symmetry breaking we

use a linear representation of the original chiral symmetry
group, both for the Higgs and vector sector. The Higgs H
and the electroweak Goldstone bosonsΠa constitute a weak
doublet that can be represented via

Σ ¼ 1ffiffiffi
2

p ½vþH þ 2iΠaTa�; ð7Þ

where Ta ¼ τa=2 with τa the Pauli matrices. Here v is the
vacuum expectation value (VEV) and Σ transforms as a
bifundamental of the chiral symmetry group:

Σ → uLΣu
†
R; uL=R ∈ SUð2ÞL=R: ð8Þ

The electroweak gauge boson interactions with Σ are
introduced via the covariant derivative

DμΣ ¼ ∂μΣ − ig ~Wa
μTaΣþ ig0Σ ~BμT3; ð9Þ

where the tildes over the gauge fields indicate that these are
not yet mass eigenstates. The new heavy vectors, AL ≡
Aa
LT

a and AR ≡ Aa
RT

a, are formally introduced, following
[2], as gauge fields transforming under the original chiral
symmetry group, i.e.,

Aμ
L=R → uL=R

�
Aμ
L=R þ i

~g
∂μ

�
u†L=R; uL=R ∈ SUð2ÞL=R;

ð10Þ

where ~g is the self-coupling. Note that we have used a
single coupling for both AL and AR: in fact we assume that
the new CVM sector is invariant under parity, i.e.,

TABLE I. LHC searches used to constrain the CVM.

Channel [Exp] L [fb−1] Mass range [GeV] Reference

pp → lþl− [CMS] 20.6 (8 TeV) 300–2500 [19]
pp → lþl− [ATLAS] 20.3 (8 TeV) 200–3000 [20]
pp → WZ a[ATLAS] 20.3 (8 TeV) 200–2000 [21]
pp → WZb [CMS] 19.6 (8 TeV) 200–2000 [22]
pp → WWc [ATLAS] 4.7 (7 TeV) 200–1500 [23]
pp → WW [CMS] 19.7 (8 TeV) 800–2500 [24]
pp → Z=WH [CMS] 18.9 (8 TeV) * [25]
pp → WHd [ATLAS] 20.3 (8 TeV) * [26]
pp → lν [CMS] 20 300–4000 [27]
pp → lν [ATLAS] 20.3 300–4000 [28]

aFully leptonic analysis, see [29] for similar limits from a semileptonic analysis.
bSemileptonic analysis, see [30] for a boosted semileptonic analysis.
cNot shown in Fig. 1 due to the low luminosity.
dThe ZH analysis of ATLAS is not relevant as explained in Sec. V C.
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Σðt; ~xÞ↔Σ†ðt;−~xÞ; ALðt; ~xÞ↔ARðt;−~xÞ: ð11Þ

The linear combinations [2]

CLμ ≡ ALμ −
g
~g
~Wμ; CRμ ≡ ARμ −

g0

~g
~Bμ; ð12Þ

transform homogeneously under the electroweak subgroup and can be immediately used to build Lagrangian invariants. As
shown in [2] the following Lagrangian

Lboson ¼ −
1

2
Tr½ ~Wμν

~Wμν� − 1

4
~Bμν

~Bμν −
1

2
Tr½FLμνF

μν
L þ FRμνF

μν
R �

þ 1

2
Tr½DμΣDμΣ†� þ ~g2f2

4
Tr½C2

Lμ þ C2
Rμ� þ

~g2s
4

Tr½C2
Lμ þ C2

Rμ�Tr½ΣΣ†�

þ μ2

2
Tr½ΣΣ†� − λ

4
Tr½ΣΣ†�2 ð13Þ

preserves SUð2ÞL × SUð2ÞR × SUð2Þ0L × SUð2Þ0R when
the electroweak gauge interactions are switched off. It is
straightforward to see that in this limit the vectors can be
transformed independently as

AL=R → u0L=RAL=Ru
0†
L=R; u0L=R ∈ SUð2Þ0L=R: ð14Þ

Adding an SUð2ÞL × SUð2ÞR-invariant term like
Tr½CLμðΣDμΣ† −DμΣΣ†Þ� þ ðL↔RÞ would break the
SUð2Þ0L × SUð2Þ0R symmetry and contribute to the electro-
weak S parameter as computed in e.g., [10].
In the Lagrangian ~Wμν and ~Bμν are the ordinary electro-

weak field strength tensors, whereas FLμν and FRμν are the
field-strength tensors built out of the spin-one fields AL and
AR, respectively. The coupling s is real and f is a new mass
scale for the heavy vectors.
Because μ2 is positive, Σ acquires a VEV, given at tree

level by

v ¼ μ=
ffiffiffi
λ

p
: ð15Þ

Upon diagonalizing the mass matrices we end up with
the ordinary GSW gauge bosons, and two nearly mass-
degenerate triplets of heavy vectors. The physical heavy
vectors are denoted by L�;0 and R�;0. They are dominantly
AL and AR, respectively. In Appendixes A, B, and C we
diagonalize the mass matrices and evaluate the couplings
and widths of the spin-one resonances.
It is useful to sketch the basic qualitative features of the

CVM phenomenology before the quantitative study pre-
sented in Sec. V. The new SUð2Þ0L × SUð2Þ0R custodial
symmetry over the vectors has an immediate impact on the
partial decay widths of the vectors into either fermions or
bosons, which scale as

Γf̄f0
Ri

∼ ΓVV 0
Ri

∼
1

a
ΓHV
Ri

∼
MR

~g2
; ð16Þ

where

M2
R ≡ ~g2

4
ðf2 þ sv2Þ ð17Þ

is the mass of the vectors in the absence of the subdominant
electroweak corrections. V; V 0 denote the W;Z bosons. We
also trade the parameter s for the parameter

a ¼ f2

f2 þ sv2
¼ ~g2f2

4M2
R
; ð18Þ

because it controls the ratio of the partial width ΓHV
Ri

to the
other partial widths of the model; see (16).
The dominant production mode of the CVM vectors is

the Drell-Yan (DY) process. From the partial widths scaling
above and from the LHC limits shown in Fig. 1 it follows
that for the CVM the strongest constraints arise from the
dilepton final state provided a is not much larger than unity.
The LHC constraint from the associate Higgs production
final states HV is dominant when a is large.1 We detail this
in Sec. V C. a is not expected to be too large either: this
would correspond to a situation where MR, because of a
cancellation between f2 and sv2, becomes significantly
smaller than f (for reasonable values of ~g). For instance if
MR ∼ f and ~g ∼ 10, then a ∼ 25; we will not consider
values of a larger than this. Typically, a should be of Oð1Þ
while a ¼ 0 corresponds to f ¼ 0 and the mass scale of
new physics provided by sv2 alone.

1Notice a can assume negative values if a negative f2 is
allowed (compensated by a positive sv2), the interpretation of
which, however, is unclear though we still allow it in our analysis;
while DY production depends on a only through the Higgs
contribution to the CVM vector width, which is proportional to
jaj2, associated Higgs production receives contributions propor-
tional to a and a − 1.

DIEGO BECCIOLINI et al. PHYSICAL REVIEW D 92, 015013 (2015)

015013-4



It is useful to define δ, the fractional difference between
the ZZ-Higgs coupling in the CVM with respect to the
GSW Higgs, as an alternative to a; a is indeed the
parameter directly controlling δ,

1 − δ≡ gHZZ

gSMHZZ
with gSMHZZ ≡ 2

v
M2

Z; ð19Þ

where MZ is the Z mass, and the sign of δ is chosen such
that it coincides with the one of a. From the explicit
expression of gHZZ derived in Eq. (B9) we get the
approximate expression

δ≃ a
v2ðg04 þ g4Þ

4~g2M2
R

≃ a
1

~g2

�
55 GeV
MR

�
2

; ð20Þ

obtained assuming MR ≫ MW and ~g ≫ 1; note that δ is
exactly proportional to a, not only in the limit of large MR
and ~g. On the other hand, the deviation from the GSW
relation for the WW-Higgs coupling, δW , does not vanish
when a ¼ 0 because the tree-level W-boson mass is
modified in the CVM. The relation is given in
Eq. (B10), and is approximately

δW ≃ 0.9δ −
1

~g2

�
40 GeV
MR

�
2 ≃ ða − 0.6Þ 1

~g2

�
50 GeV
MR

�
2

:

ð21Þ
The Yukawa sector of the CVM is modeled after the

GSW theory to include minimal flavor violation and
consequently minimize tension with experimental results
from flavor physics.
Intriguingly the CVM is challenging to uncover at the

LHC even for vector masses in the TeV region and not too
large values of ~g. The reason being that, for order unity
values of all the couplings, the vectors are very narrow and
therefore their line shapes are difficult to reconstruct with
current experimental resolution. Furthermore for ~g≳ 2
even the spacing in the mass of the two resonances is less
than the current experimental resolution in the dilepton
invariant masses making it impossible to resolve them.
For sufficiently large values of a the partial width of

R → HV grows and of course the overall width grows too.
In this case one can reconstruct the overall line shape but
cannot resolve the two closely spaced resonances because
they significantly overlap.
We also note that due to the enhanced symmetry over the

vectors, the charged right resonances R� are stable.
However we expect the CVM symmetry to be only
approximate in the full theory. If the breaking is very
small the R� are long lived. They are pair produced via a
Drell-Yan process and will leave tracks in the CMS tracker
and muon system [36]. The exclusion limit shown in Fig. 2
is independent of ~g and a to leading order and rules out
values of MR below ≃300 GeV so this constraint is
currently weak.

IV. ELECTROWEAK PRECISION TESTS

Contributions from the CVM to the electroweak observ-
ables are suppressed relative to generic models with vector
resonances and scalars for two reasons: the global
symmetry acting on the vectors, and the presence of a
very SM-like Higgs state. We will now discuss in turn these
contributions.

A. Vector sector

The CVM contributions to the electroweak parameters S
and T from the heavy vector bosons vanish because of the
two custodial symmetries of the model. The vector con-
tribution to the T parameter is zero at tree level because the
model respects ordinary custodial symmetry. The contri-
bution to the S parameter stemming from the heavy spin-1
resonances vanishes because the SUð2Þ0L × SUð2Þ0R insures
parity doubling of the vector spectrum and decay constants.
To elucidate this point we observe that the S-parameter
contribution from a genetic vector and axial resonance
contribution reads

S ¼ 4π

�
F2
V

M2
V
−

F2
A

M2
A

�
ð22Þ

with the expressions for the decay constants and masses
given in [10]. The SUð2Þ0L × SUð2Þ0R symmetry implies
that FV ¼ FA and MV ¼ MA, thus the vector contribu-
tion to the S parameter vanishes as discussed further in
[2,3,37]. More generally, the electroweak S parameter, after
integrating out all heavy vector and scalar states, can be
described in the effective Lagrangian by the operator
Tr½WμνΣBμνΣ†�. Any new contribution, before integrating
out heavy vectors, would involve insertion of AL or AR but
that is not allowed by the SUð2Þ0L × SUð2Þ0R symmetry.
Note that the discrete Z0

2L × Z0
2R symmetry acting as

FIG. 2 (color online). Full signal cross section for RþR− pair
production at the LHC with

ffiffiffi
s

p ¼ 8 TeV. The 95% exclusion
limit on long-lived charged particles provided by CMS is given in
the black curve [36].
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AL=R → zL=RAL=R, with zL=R ¼ �1 is sufficient to ensure
the vanishing of the vector contribution to S at tree level.
According to the parametrization of electroweak observ-

ables [38], only the custodial and isospin preserving
parameters W and Y are now nonvanishing [3,39,40]:

W ¼ 4cos4θM4
Z

~g2v2M2
R

; Y ¼ sin2ð2θÞM4
Z

~g2v2M2
R

: ð23Þ

B. Higgs sector

The presence of a light SM-like scalar—now experi-
mentally established—provides important corrections to
electroweak observables for a good agreement with data,
such that effects from new physics need only be small
rather than having to mimic a Higgs boson. While the
contributions from the spin-1 resonances in our model are
under control thanks to the custodial symmetry, we do
allow a small misalignment between the vector-boson-mass
matrix and the scalar-coupling matrix, parametrized by a
[or equivalently δ (20)]. This implies a deviation in the
couplings of the Higgs boson to the electroweak bosons in
the CVM and thus contributions to S and T. These have
previously been determined in full in [41]. We will however
conclude that this additional effect is even less important
than the spin-1 contributions.
Approximate expressions of the contributions to the

electroweak parameters read

Ŝ≈ δ
α

12πsin2θ
ln

Λ
Mh

; T̂ ≈−δ
3α

4πcos2θ
ln

Λ
Mh

; Û ≈ 0;

ð24Þ

where Mh is the Higgs mass, α is the electromagnetic
coupling at the Z pole and θ the Weinberg angle defined as

sin22θ≡ 4παffiffiffi
2

p
GFM2

Z

¼ e2v2

M2
Z
: ð25Þ

To provide simple constraints on δwe approximate here the
renormalization procedure [41] by the presence of a
physical cutoff Λ which is expected to be around the

new resonances mass scale, i.e., 4πv. Ignoring for an
instant the contributions from the vector resonances, we
deduce the following approximate bounds on δ at
95% C.L.—adapting the analysis in [42,43]:

−0.09 < δ < 0.03: ð26Þ

The limits are comparable to the ones from the direct Higgs
couplings measurements [44] that at two-sigmas yield,

−0.31 < δ < 0.01: ð27Þ

C. Limits

The effect on electroweak observables is best
expressed in terms of the ϵ parameters [45], and one has
[with (23)–(24) and V ¼ X ¼ 0] [38]:

δϵ1 ¼ T̂−W− tan2θY; δϵ2¼ Û−W; δϵ3 ¼ Ŝ−W−Y:

ð28Þ

A recent fit from [43] gives

103δϵ1 ¼ 0.7� 1.0

103δϵ2 ¼ − 0.1� 0.9

103δϵ3 ¼ 0.6� 0.9

with correlation matrix ρ ¼

0
B@

1 0.80 0.86

0.80 1 0.51

0.86 0.51 1

1
CA; ð29Þ

and performing a simple χ2 test, we obtain the exclusion
limits on (MR, ~g), shown in Fig. 3, adding the Higgs
contributions above for fixed values of a and δ given by
(20). Even for the extreme values jaj ¼ 25, at the edge of

the parameter space we will be considering, the dominant
effect is the one from the vector resonances.
However, due to the double suppression—in ~g−2 and

M−2
R —of the new physics contributions to W and Y,

500 1000 1500 2000 2500
2

4

6

8

10

12

MR GeV

g

95
excl.

FIG. 3. Exclusion limits at 95% C.L. in the ðMR; ~gÞ plane from
electroweak precision measurements on the CVM vector reso-
nances. Dotted, continuous, and dashed lines for a ¼ 25, 0, and
−25, respectively. The vertical separation line is meant to guide
the eye: plots at the end of the paper only start atMR ¼ 500 GeV.
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electroweak constraints are overall very weak and direct
searches for the vector resonances are much more
important.
In the low ð~g;MRÞ region of parameter space shown in

Fig. 3, direct measurements of the Higgs boson couplings
can be competitive with electroweak precision test for
extreme values of a. The δ parameter measuring the Higgs
coupling deviations from their SM values can reach the
percent level here. In this region the difference between W
and Z boson couplings to the Higgs boson could also be
experimentally accessed. In practice, however, direct
searches for the vector resonances are much more con-
straining and rule out this parameter region, as we are going
to see in the next section.

V. LHC PHENOMENOLOGY

In this section we present the detailed LHC phenom-
enology of the CVM, previously sketched in Sec. III. To
aide numerical computations, the model is implemented
in MADGRAPH 5 [46] using the FEYNRULES package [47].
In our computations we use the following electroweak
parameters:

MZ ¼ 91.2 GeV;

GF ¼ 1.16637 × 10−5 GeV−2;
α−1ðMZÞ ¼ 127.9;

Mt ¼ 172 GeV: ð30Þ

In addition to these, the CVM is parametrized by the three
parameters, characterizing the new spin-one resonances

MR; ~g; a; ð31Þ

where MR is the mass scale of the heavy resonances, ~g is
their self-coupling and a was defined in Eq. (18). Instead of

a we will sometimes use δ defined in Eq. (19). Values of
δ=a range from δ=a ≈ 0.000003–0.003 for (~g,MR) between
(12, 2500 GeV) and (2, 500 GeV). So unless a is large, the
HZZ and HWW couplings are very SM-like in the model.
The LHC production cross sections of the new vector

resonances, at
ffiffiffi
s

p ¼ 8 TeV center-of-mass energy, are
shown in Fig. 4 as a function of ~g for different values of
MR. Due to the factorizable nature of the QCD corrections
for the Drell-Yan production, the inclusive cross section at
NNLO accuracy in QCD is given by

σNNLO ¼ σLO × K; ð32Þ

where σLO is the leading order prediction and the K factor
depends only on the mass of the resonance. We use K ¼
1.16 for the neutral vector resonance production and 1.2 for

FIG. 4 (color online). LHC production cross section of the heavy CVM vector resonances at
ffiffiffi
s

p ¼ 8 TeV as a function of ~g for
MR ¼ 1500 GeV (solid lines) andMR ¼ 2500 GeV (dashed lines). On the left we show L0 (blue) and R0 (green). On the right we show
Lþ (red) and L− (cyan).

FIG. 5 (color online). Masses of the heavy CVM vector
resonances forMR ¼ 2500 GeV. The difference in mass between
the charged and neutral L states is negligible and cannot be seen
on the plot.
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the charged. These choices of K factors mean that our
exclusion limits are slightly conservative.2

As explained in the previous section, the masses of the
heavy resonances are degenerate for large ~g and only
become appreciably different when ~g≲ 1. In fact, the left
triplet L0;� states remain highly degenerate for all param-
eter values. The vector spectrum as a function of ~g can be
seen in Fig. 5. The corresponding widths are shown in
Fig. 6 as a function of ~g for different values of δ (left panel)
and a (right panel) for MR ¼ 2.5 TeV. For fixed a the
widths simply scale as Γ ∼ 1

~g2 as noted in Eq. (16).

For small values of a the partial widths ΓHW=HZ
Ri

are small
compared to the other decay channels. In this case, the
heavy resonances are very narrow and the separation in
masses between the two neutral resonances is always larger
than their widths. Furthermore the branching ratios are
nearly constant as a function of ~g and MR, apart from
corrections due to the mass differences of the final states.
Once a grows, the HW�=HZ channels become impor-

tant and eventually dominate the widths of the heavy
resonances. This phenomenon is shown at the branching
ratios level as a function of a in Fig. 7. For fixed a the
branching ratios are constant to leading order in MR and ~g.

A. Dilepton searches

The current ATLAS [20] and CMS [19] exclusion limits
on neutral vector resonances in the dilepton channels are
based on modeling the signal as a single resonance. In the
CVM, the two resonances are nearly degenerate as shown
in Fig. 5. Two questions then arise: Is it possible to resolve
a two-peak structure? And, is it possible to resolve the line
shape of each peak?

The fractional dimuon mass resolution at CMS is
σðμμÞ=mμμ ≃ 6.5% at masses around 1 TeV. It further
depletes at higher energies due to the difficulty in meas-
uring the curvature of the track in the muon chambers. The
dieletron mass resolution, ΔðmeeÞ=mee,

3 on the other hand,
is approximately constant above 500 GeV [49].4

Summarizing, for heavy resonances whose widths are
lower than 5% of their masses, the search is currently
dominated by the resolution of the detector and therefore
the line shapes of the peaks cannot be measured [20].
For values of a≲ 1 (or δ≲ 10−3) the ratio of the total

width of the vector resonances to their mass satisfies
ΓR=mR ≃ 0.01–0.1% which is well below the current
sensitivity. This is illustrated in Fig. 8, showing the
resonance pattern of the CVM in dilepton invariant mass
distributions with two different bin widths—the largest bin
width of 30 GeV is representative of current experimental
sensitivity and insufficient to reconstruct the line shapes.
We next consider the ability to resolve the two-peak
structure. The relative mass splitting of our resonances is
approximately

ΔM
MR

≃ 0.16
~g2

; ΔM ¼ jML0 −MR0 j: ð33Þ

This shows that the resolution of the detector would allow
probing the presence of two peaks if ~g≲ 2.5 This would
also allow a measurement of ~g directly from the separation
of the two peaks.

FIG. 6 (color online). Widths of the heavy CVM vector resonances as a function of ~g for different values of a (left) and δ (right). We
keep MR ¼ 2.5 TeV fixed.

2These choices correspond to the smallest K factors used by
ATLAS and CMS in the resonance mass range from 1 to 3 TeV—
the variation of K factors in this mass range for the neutral
resonances are K ¼ 1.16–1.22 [20] and for the charged reso-
nances K ¼ 1.2–1.3 [48].

3The different symbols σ and Δ indicate that the muon
uncertainty follows a Gaussian while the electron uncertainty
does not.

4When both electrons are detected in the barrel, this mass
resolution is 1.1%, and when one of the electrons is in the barrel
and the other is in the endcaps it is 2.3% [49].

5It may eventually be possible to probe them in the electron
channel up to ~g ¼ 4.
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For values of a≳ 1 (or δ≳ 10−3) the resonances can
overlap. Values of ΔM=Γ̄, where Γ̄ ¼ ðΓL0 þ ΓR0Þ=2, as
well as the largest Γ=M ratio are shown in Fig. 9. When
ΔM=Γ̄ approaches unity, the resonances will overlap in the
dilepton invariant mass distributions. This is shown in the
right panel of Fig. 10. Furthermore the width over mass
ratio exceeds unity for large a at which point the effective
description breaks down.

Finally the interference between the signal and the SM
background can be relevant. As seen in Fig. 8 the CVM
features a destructive interference between the resonances
and the SM background yielding a dip just before the
peaks. If the dip and the resonance peak are summed into
one bin obviously this can reduce the observed cross
section at the peak. The effect of interference in dilepton
resonant searches has been extensively studied in [50].

FIG. 7 (color online). Branching ratios of the heavy CVM vector resonances R0, L0, and Lþ.

FIG. 8 (color online). Dilepton invariant mass distributions,MðllÞ, in the CVM, with 1 GeV (blue) and 30 GeV (green) binning. On
the (left) MR ¼ 750 GeV and on the (right) MR ¼ 2250 GeV.
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Given the caveats above, a sound strategy to set relevant
constraints is to consider first the case ~g≳ 2 and a not too
large. Here the peaks cannot be resolved and an overall
cross section constraint can be set. Specifically, we com-
pare the predicted cross section corresponding to the total
number of events in the mass rangeMðllÞ > MR–30 GeV
to the experimentally observed cross section limit.
In Fig. 11 we present the CVM dilepton cross section as

a function of MR for different values of ~g and a together
with the ATLAS and CMS 95% exclusion limits with
center-of-mass energy

ffiffiffi
s

p ¼ 8 TeV and L ≈ 20 fb−1 of
integrated luminosity [19,20].

1. Off-diagonal widths

In the parameter range where the resonances overlap,
their off-diagonal widths can also become important—i.e.,
the imaginary and real parts of the vector resonance self-
energies cannot be diagonalized simultaneously—and

contribute to the amplitude. The basic formalism was
recently discussed in [51], and we review it in Appendix D.
The contributions of fermion and vector loops to the

imaginary parts of the vector self-energies are reported in
[51], while the Higgs contribution from the diagrams in
Fig. 12 are given by

ΣR
Hðp2Þ ¼ ðgRiZHÞðgRjZHÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðp2;M2

H;M
2
ZÞ

p
16πp2

×

�
1þ 1

12M2
Zp

2
λðp2;M2

H;M
2
ZÞ
�
; ð34Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx. Notice
that these diagrams contribute only to the transverse part of
the self-energy, ΠT of Eq. (D1). In the CVM the Higgs
contribution dominates the of-diagonal widths.

FIG. 10 (color online). Dilepton invariant mass distributions,MðllÞ, in the CVM, for fixedMR ¼ 1500 GeV with 1 GeV (blue) and
30 GeV (green) binning. On the (left) δ ¼ 0 and on the (right) δ ¼ 10−3.

FIG. 9 (color online). Lines of constant mass splitting relative
to width ΔM

Γ̄ (blue lines) of the CVM resonances relative to their
width as well as lines of constant maximal resonance width
relative to mass max½Γ=M� (black lines), in the plane ðMR; ~gÞ.

FIG. 11 (color online). Full LHC signal cross section for
dilepton lþl− production in the CVM with

ffiffiffi
s

p ¼ 8 TeV at
parton level as a function of MR for different values of ~g and δ as
given in the figure. Also shown in black are the 95% exclusion
limits provided by ATLAS and CMS [19,20].
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In Fig. 13 we illustrate the effect of the of-diagonal
widths. We show the amplitude squared, summed and
averaged over color and spin for the process uū →
L0=R0 → eþe− (i.e., excluding purely SM contributions

from Z and γ) in three different schemes: In the naive
computation the propagators are added with a fixed
width; in the running W computation each propagator
is included with the energy dependent width; and in the
full computation, the complete amplitude including off-
diagonal widths is used. The ratio between each scheme
to the full amplitude is shown on the bottom inserts.
When δ is large, the difference between the naive and the
full computation can be of the order of 50% close to the
resonance peaks.
Nevertheless, the corresponding exclusion limits derived

with the full scheme are only a bit stronger as can be seen
by comparing Figs. 11 and 14.

B. Single charged lepton searches

In the CVM, only the L� resonances contribute to the
single charged lepton final states lν. However, properly
accounting for interference effects with the SM states in
these channels is delicate; see e.g., [52]. Due to the final
state neutrino, one has to rely on the smeared transverse
mass distribution to infer the presence of the new reso-
nance, as opposed to the narrower peaks in the dilepton
invariant mass distribution. The interference in the low
energy part of the transverse mass distribution can be
significant. For this reason the CMS Collaboration also

FIG. 12. One-loop heavy vector self-energy diagrams in the CVM with internal Higgs bosons contributing to the off-diagonal widths.

FIG. 13 (color online). The amplitude squared, summed and averaged over color and spin of the process uū → eþe− with the
contribution of the two heavy particles and interference (background from Z and photon contribution is subtracted) for three different
computational schemes (see text for more details). On the left (right) panel δ ¼ 0 (δ ¼ 10−3). The ratio between each scheme to the full
amplitude is shown on the bottom inserts.

FIG. 14 (color online). Full LHC signal cross section for
dilepton lþl− production in the CVM with

ffiffiffi
s

p ¼ 8 TeV at
parton level, taking into account off-diagonal widths, as a
function of MR for different values of ~g and δ as given in the
figure. Also shown in black are the 95% exclusion limits provided
by ATLAS and CMS [19,20].
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FIG. 16. Feynman diagrams contributing to Higgs production in association with charged vectors in the CVM.

FIG. 17. Feynman diagrams contributing to Higgs production in association with neutral vectors in the CVM.

FIG. 15 (color online). Left: full LHC signal cross section for single charged lepton lνl production in the CVM with
ffiffiffi
s

p ¼ 8 TeV at
parton level for fixedMR ¼ 1 TeV as a function of the transverse mass cutMmin

T . Also shown is the 95% confidence level exclusion limit
observed by CMS [48]. Right: the corresponding exclusion limit on the CVM in the ðMR; ~gÞ plane for two different values of δ.

FIG. 18 (color online). The value of the signal strength μ ¼ σCVM=σSM at the LHC with
ffiffiffi
s

p ¼ 8 TeV for the processes pp → Hlν
(left) and pp → Hνν (right) as a function ofMR for different values of the CVM parameters ~g; a. Also shown are exclusion limits from
CMS on μ in the Wðlν; τνÞHðbb̄Þ channels (black).
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provides exclusion limits as a function of the minimum
transverse mass cut Mmin

T [48].6

The corresponding ATLAS analysis [53] does not show
exclusion limits as a function of the transverse mass cut.
Therefore we only use the CMS limits. The CMS exclusion
limit we present is obtained with the 2012 data set of L ¼
19.7 fb−1 at

ffiffiffi
s

p ¼ 8 TeV. On the left-hand side of Fig. 15
the 95% confidence level exclusion limit as a function of
the minimum transverse mass cut is presented together with
model predictions for different values of ~g and δ with
MR ¼ 1 TeV. On the right-hand side the exclusion is
translated into the (MR, ~g) plane for fixed values of δ—
for each value of MR we choose the value of Mmin

T that
yields the strongest limit.

C. Associated Higgs searches

Current searches for the production of the Higgs state
in association with a SM vector boson also yield

relevant bounds on the CVM parameter space. The
ATLAS and CMS collaborations provide upper bounds
on the signal strength μ ¼ σ=σSM, for the processes
pp → Hðbb̄ÞZðlþl−Þ, pp → Hðbb̄ÞZðννÞ, and pp →
Hðbb̄ÞWðlν; τνÞ [25,26].
In the CVM the final state vector resonance can be any of

the states V ¼ Z;W� or Ri ¼ L0;�; R0 and the relevant
diagrams are shown in Figs. 16 and 17. The largest
contribution to the CMS analysis of the pp →
Hðbb̄ÞWðlν; τνÞ channel typically comes from HL� pro-
duction even though it is phase space suppressed with
respect to HW�. This is due to the large HL�L∓ coupling
[Eq. (B14)]. Moreover, the kinematical cuts employed in
the analysis tend to enhance the high energy region and
consequently the new physics contribution. The CMS best-
fit signal strength with 1-sigma errors is

μðWðlν; τνÞHÞ ¼ 1.1� 0.9: ð35Þ

In the corresponding ATLAS analysis of pp→Hðbb̄Þ
Wðlν;τνÞ the transverse mass system associated with the
W boson (lepton and missing energy) is required to be small,

FIG. 19 (color online). 95% exclusion limits on the CVM from LHC shown in ðMR; ~gÞ planes for fixed δ (upper) and fixed a (lower)
values. Shown are the limits from dilepton searches (blue), limits from single charged lepton searches (purple), and limits for associated
Higgs production (red). The striped and cross striped regions are excluded.

6Notice that the problem is not only how to define the signal
region; the importance of the low energy interference will also
affect the control regions since they need to be signal free.
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mW
T < 120 GeV, which strongly reduces contributions

from the CVM vector resonances. Therefore, we use the
CMS result to set limits on the CVM parameter space.
For the pp → Hðbb̄ÞZðννÞ search the HL0 channel

gives the largest contribution of new physics in both the
CMS and ATLAS analysis. Again we choose to use the
CMS result

μðZðννÞHÞ ¼ 1.0� 0.8; ð36Þ

to impose limits on the CVM.7

In the search for pp → Hðbb̄ÞZðlþl−Þ the mass of the
dilepton system is required to be nearMZ and therefore the
HL0=HR0 channels are highly off-shell and suppressed. It
is thus neglected here. It would be very interesting to
consider a dedicated analysis looking for resonances in the
dilepton mass system in this search channel as proposed in
[9,10,54–56].

To set our limits we use the total CVM cross section in
the associated Higgs channels. We again believe this yields
a conservative limit since the cuts employed in [25] select
high energy events and enhance the new CVM contribution
with respect to the SM.
On the left-hand side of Fig. 18 we show the predicted

signal strength, μ ¼ σ=σSM in the pp → Hlν channel for
different CVM parameters. The exclusion limit on μ
shown in the figure comes from the measurement of
Hðbb̄ÞWðτν;lνÞ at CMS. Analogously, the signal strength
of the pp → Hνν̄ process in CVM is shown on the right-
hand side of Fig. 18 with the corresponding exclusion
limits derived from the Hðbb̄ÞZðνν̄Þ channel.
As expected the limits are stronger than the ones from

dilepton searches for large values of a. Moreover, a
dedicated resonance search in these channels could provide
more stringent limits on the parameter space. Or better, the
chance to discover the interplay of multiple resonances
with the Higgs boson.

D. Parameter space

We end this section by studying the allowed regions
in the MR; ~g and a parameter space given the constraints
from dilepton lþl− (blue curves), single-charged lepton

FIG. 20 (color online). 95% exclusion limits as above, but in ðδ; ~gÞ (left) and ða; ~gÞ (right) planes for fixed MR values.

7The ATLAS result in this search channel gives the unphysical
result μðZðννÞHÞ ¼ −0.3� 0.5 which essentially excludes both
the SM and CVM at the 95% confidence level. However, since a
2-sigma level deficit is also observed in the control sample
μðZðllÞZðbb̄ÞÞ and no deficit is observed in the search channel
μðZðllÞHÞ, we disregard the result.
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l� þ ET (magenta curves), and associated Higgs searches8

(red curves). In some of the plots we show the parameter δ
instead of a.
The allowed and excluded regions at 95% C.L. are

shown as the white and striped regions, respectively, in
ðMR; ~gÞ planes in Fig. 19 for fixed values of a or δ. For
a ¼ 0 only the dilepton and (subdominantly) the single
charged lepton searches significantly constrain the param-
eter space as shown in the upper left panel of Fig. 19.
However, a dedicated study may put further constraints via
the nonzero HL�L� interaction giving rise to diagram 3 in
Fig. 16. As a is dialed up, associated Higgs production
starts to compete with the dilepton searches as shown in the
three remaining panels. In particular for a≳ 20 (jδj≳ 10−3)
the associated Higgs production provide the strongest
constraint over most of the parameter space shown.
The same can be seen from the exclusion limits in the

ðδ; ~gÞ and ða; ~gÞ planes for different values ofMR shown in
Fig. 20. Finally, in Fig. 21 we show the regions in ðMR; aÞ
and ðMR; δÞ planes for different values of ~g.

FIG. 21 (color online). 95% exclusion limits as above but in ðδ;MRÞ (left) and ða;MRÞ (right) planes for fixed ~g values.

FIG. 22 (color online). Projected discovery reach or exclusion
limit of the LHC Run II dilepton resonance search at

ffiffiffi
s

p ¼
13 TeV with L ¼ 20 fb−1 in the ðMR; ~gÞ plane (dashed blue).
The striped and cross striped regions will be excluded in the
absence of discovery. Also shown is the equivalently projected
exclusion limit for the current run at

ffiffiffi
s

p ¼ 8 TeV (solid blue) to
assess the validity of the projection.

8We use a simple χ2 analysis to combine the Hlν and Hνν
channels.
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In summary, the LHC currently excludes roughly
between a third or half of the parameter space satisfying
~g < 4π and MR ≲ ~gv≃ 3 TeV and jaj≲ 25. The con-
straints from electroweak precision measurements are
negligible in comparison, due to the enhanced global
SUð2Þ0L × SUð2Þ0R symmetry over the vector spectrum.

1. Future reach

We show an estimate of the CMS reach in the dilepton
channel at the high energy Run II of LHC at

ffiffiffi
s

p ¼ 13 TeV
in Fig. 22. For comparison with the upper left panel of
Fig. 19 we also show the estimated current LHC exclusion
curve using the method detailed in Appendix E. Although
the computation is simplistic, it compares reasonably
well and we therefore expect the projection to be a good
guide to the future run. For a ¼ 0 most of the parameter
space will be excluded already with L ¼ 20 fb−1 while
L ¼ 100 fb−1 will be enough to exclude the entire param-
eter space shown. To exclude the same values of ðMR; ~gÞ
for jaj≲ 10 the required luminosity is estimated to
be L ¼ 200 fb−1.

VI. SUMMARY AND OUTLOOK

In this paper we have presented the custodial vector
model, featuring two new weak triplets of vector reso-
nances in addition to the SM and three new parameters
determining their interactions. Here we have studied the
CVM in its own right but as mentioned in the Introduction
the model can be interpreted as an effective Lagrangian for
several different theories of dynamical EWSB.
We have further discussed the distinct collider phenom-

enology of the CVM: the presence of two nearly mass
degenerate resonances in dilepton final states and a single
(dominant) resonance in single charged lepton final states
as well as the apparent absence of resonances in the WW
andWZ channels. Finally the interactions between the new
resonances and the Higgs sector can be probed by the
associate Higgs production.
Despite the simple and distinct pattern of resonances, the

identification of the CVM at LHC is challenging because of
suppressed couplings to SM fields for ~g > 1, the narrow
spacing of the resonances and, in a significant part of the

parameter space, their narrow widths. Given the CVM, Run
II of the LHC should be able to discover a signal of new
physics from the vector resonances with about 200 inverse
femtobarns of luminosity in the parameter space region
MR < 3 TeV, ~g < 4π, and at least jaj ≲ 10. However, to
clearly identify the new physics as stemming from the
CVM, more luminosity and better resolution will be
required. A high energy lepton collider would be ideal
to uncover the CVM.
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APPENDIX A: MASS MATRICES

The spin-one mass Lagrangian is

Lmass ¼ ð ~W−
μ A−

Lμ A−
Rμ ÞM2

C

0
B@

~Wþμ

Aþμ
L

Aþμ
R

1
CA

þ 1

2
ðBμ

~W3
μ A0

Lμ A0
Rμ ÞM2

N

0
BBB@

Bμ

~W3μ

A0μ
L

A0μ
R

1
CCCA; ðA1Þ

where

M2
C ¼

0
BB@

g2 f2þð1þsÞv2
4

−g~g f2þsv2

4
0

−g~g f2þsv2

4
~g2 f2þsv2

4
0

0 0 ~g2 f2þsv2

4

1
CCA;

ðA2Þ

M2
N ¼

0
BBBBBB@

g02 f2þð1þsÞv2
4

−gg0 v2
4

0 −g0 ~g f2þsv2

4

−gg0 v2
4

g2 f2þð1þsÞv2
4

−g~g f2þsv2

4
0

0 −g~g f2þsv2

4
~g2 f2þsv2

4
0

−g0 ~g f2þsv2

4
0 0 ~g2 f2þsv2

4

1
CCCCCCA
: ðA3Þ

The charged mass eigenstates are the W boson, L�, and R�, whereas the neutral mass eigenstates are the photon A, the Z
boson, L0 and R0. Let C and N be the charged and neutral rotation matrix, respectively:
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0
B@

~W�
μ

A�
Lμ

A�
Rμ

1
CA¼C

0
B@
W�

μ

L�
μ

R�
μ

1
CA;

0
BBBBB@

~Bμ

~W3
μ

A3
Lμ

A3
Rμ

1
CCCCCA¼N

0
BBB@
Aμ

Zμ

L0
μ

R0
μ

1
CCCA: ðA4Þ

Diagonalization of the charged-boson mass matrix gives

M2
W ¼ g2 þ ~g2

~g2
M2

R

2
þ g2v2

8

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g2 þ ~g2

~g2
M2

R

2
þ g2v2

8

�
2

−
g2v2M2

R

4

s
;

M2
R� ¼ M2

R;

M2
L� ¼ g2 þ ~g2

~g2
M2

R

2
þ g2v2

8

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g2 þ ~g2

~g2
M2

R

2
þ g2v2

8

�
2

−
g2v2M2

R

4

s
; ðA5Þ

where MR is defined in Eq. (17),

C ¼

0
B@

cos α − sin α 0

sin α cos α 0

0 0 1

1
CA;

sin α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

L� −M2
R�

M2
L� −M2

W

s
¼ g

~g
þO

�
g3

~g3

�
: ðA6Þ

Note that the spin-one charged resonance associated with
the SUð2ÞR group does not mix with the W boson, and its
mass is therefore unaffected, at tree level, by the electro-
weak interactions. The SUð2ÞL resonance does mix with
the W boson, and its mass receives a small and positive
contribution.
The 4 × 4 neutral mass matrix can be diagonalized

analytically, because one eigenvalue is the massless photon.
However, it is more instructive to expand eigenvalues and
eigenvectors in powers of 1=~g, assuming that MR scales as
~g without a parametric suppression from f2 þ sv2. This
gives

M2
Z ¼ g2 þ g02

4
v2
�
1 −

g4 þ g04

ðg2 þ g02Þ~g2 þO
�
g4

~g4

��
;

M2
R0 ¼ M2

R

�
1þ g02

~g2
þO

�
g4

~g4

��
;

M2
L0 ¼ M2

R

�
1þ g2

~g2
þO

�
g4

~g4

��
: ðA7Þ

Note that the SUð2ÞL neutral resonance is still heavier than
its SUð2ÞR counterpart, as g > g0. The elements of the
neutral boson rotation matrix are

N 00 ¼
e
g0
; N 10 ¼

e
g
; N 20 ¼

e
~g
; N 30 ¼

e
~g
;

N 01 ¼ −
g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p �

1þ g4 − 2g2g02 − g04

2ðg2 þ g02Þ~g2 þO
�
g4

~g4

��
;

N 11 ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p �

1þ g04 − 2g2g02 − g4

2ðg2 þ g02Þ~g2 þO
�
g4

~g4

��
;

N 21 ¼
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p

~g

�
1þO

�
g2

~g2

��
; N 31 ¼ −

g02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
~g

�
1þO

�
g2

~g2

��
;

N 02 ¼
v2g0g4

4~gM2
Rðg2 − g02Þ

�
1þO

�
g2

~g2

��
; N 12 ¼ −

g
~g

�
1þO

�
g2

~g2

��
;

N 22 ¼ 1 −
g2

2~g2
þO

�
g4

~g4

�
; N 32 ¼ −

g2g02v2

4ðg2 − g02ÞM2
R

�
1þO

�
g2

~g2

��
;

N 03 ¼ −
g0

~g

�
1þO

�
g2

~g2

��
; N 13 ¼ −

v2g04g
4~gM2

Rðg2 − g02Þ
�
1þO

�
g2

~g2

��
;

N 23 ¼
g2g02v2

4ðg2 − g02ÞM2
R

�
1þO

�
g2

~g2

��
; N 33 ¼ 1 −

g02

2~g2
þO

�
g4

~g4

�
: ðA8Þ
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APPENDIX B: COUPLINGS

In order to express the vertices with vectors in a compact
form, we define

0
BB@

W�
1μ

W�
2μ

W�
3μ

1
CCA≡

0
B@

W�
μ

L�
μ

R�
μ

1
CA;

0
BBB@

Z0μ

Z1μ

Z2μ

Z3μ

1
CCCA≡

0
BBB@

Aμ

Zμ

L0
μ

R0
μ

1
CCCA: ðB1Þ

The trilinear spin-one vertices are

LZWW ¼
X
klm

gklmð½½ZkW
þ
l W

−
m�� þ ½½Wþ

l W
−
mZk��Þ ðB2Þ

where

gklm ¼ gN 1kC1lC1m þ ~gðN 2kC2lC2m þN 3kC3lC3mÞ: ðB3Þ

The Higgs vertices with vectors are

LHVV ¼
�
2
H
v
þH2

v2

�X
kl

�
ðCTδM2

CCÞklW−
kμW

þμ
l

þ 1

2
ðN TδM2

NN ÞklZkμZ
μ
l

�
; ðB4Þ

where δM2
C and δM2

N are the v2 part of the charged and
neutral mass matrices, respectively,

δM2
C ¼

0
BBB@

g2 ð1þsÞv2
4

−g~g sv2
4

0

−g~g sv2
4

~g2 sv2
4

0

0 0 ~g2 sv2
4

1
CCCA; ðB5Þ

δM2
N ¼

0
BBBBBB@

g02 ð1þsÞv2
4

−gg0 v2
4

0 −g0 ~g sv2
4

−gg0 v2
4

g2 ð1þsÞv2
4

−g~g sv2
4

0

0 −g~g sv2
4

~g2 sv2
4

0

−g0 ~g sv2
4

0 0 ~g2 sv2
4

1
CCCCCCA
:

ðB6Þ

Finally, the SM fermions couple to the spin-one reso-
nances through mixings with the electroweak bosons. This
leads to the vertices

LVff ¼ gffiffiffi
2

p
X
k

X
i

C1kūiW
þ
k PLdi þ H:c:

þ
X
k

X
f

ðgN 1k − g0N 0kÞf̄Zk

×

�
T3
fPL −

g02

g2 þ g02
Qf

�
f

þ e
X
f

f̄ AQff; ðB7Þ

where i runs over quark and lepton doublets, with ui (di)
up-type (down-type) fermion, and f runs over all quark and
lepton flavors.
Here we list the set of interactions between physical

states relevant for the present study in the form presented in
Sec. II. The expansions in g=~g assume that MR scales as ~g
without parametric suppression from f2 þ sv2, the a
parameter is or order 1, and δ scales as g4=ð~g2M2

RÞ.
The couplings between L;R and SM weak bosons are

gð1ÞLWW ¼ gð2ÞLWW ¼ g211 ¼
g4v2

4~gM2
R
þO

�
g4

~g4

�
;

gð1ÞRWW ¼ gð2ÞRWW ¼ g311 ¼
g2g02v2

4M2
R ~g

þO
�
g4

~g4

�
;

gð1ÞZLW ¼ gð2ÞZLW ¼ g121 ¼
g3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
v2

4~gM2
R

þO
�
g4

~g4

�
;

gð1ÞZRW ¼ gð2ÞZRW ¼ g131 ¼ 0; gARR ¼ e;

gZRR ¼ −
g02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p ;

gLZZ ¼ gLZγ ¼ gRZZ ¼ gRZγ ¼ 0: ðB8Þ

The trilinear couplings of two vector fields with the
Higgs boson, expressed in terms ofMZ; v and the Weinberg
angle θ defined in Eq. (25) as well as a and δ defined in
Eqs. (18) and (19), are given by

gHZZ¼
2

v
M2

Zð1−δÞ

¼2

v
M2

Z

�
1−a

�
M4

Z

~g2v2M2
R

�
3þcosð4θÞ

�
þO

�
g6

~g6

���
;

ðB9Þ

gHWþW− ¼ 2

v
M2

W

�
1 − a

�
M4

Z

~g2v2M2
R

�
4cos4θ

�
þO

�
g6

~g6

���

¼ 2

v
M2

Zcos
2θ

�
1 −

M4
Z

~g2v2M2
R

�
4acos4θ

− sinð2θÞ tanð2θÞ
�
þO

�
g6

~g6

��
; ðB10Þ
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gHL0Z ¼ −a
M3

Z

~gv2
4cos2θ þO

�
g3

~g3

�

¼ −δ
~gM2

R

MZ

4cos2θ
3þ cosð4θÞ þO

�
g3

~g3

�
; ðB11Þ

gHR0Z ¼ a
M3

Z

~gv2
4sin2θ þO

�
g3

~g3

�

¼ δ
~gM2

R

MZ

4sin2θ
3þ cosð4θÞ þO

�
g3

~g3

�
; ðB12Þ

gHLþW− ¼ −a
M3

Z

~gv2
4cos3θ þO

�
g3

~g3

�

¼ −δ
~gM2

R

MZ

4cos3θ
3þ cosð4θÞ þO

�
g3

~g3

�
; ðB13Þ

gHLþL− ¼ 2M2
R

v
ð1 − aÞ

�
1þ 4M2

Zcos
2θ

~g2v2
þO

�
g4

~g4

��

¼ 2M2
R

v

�
1 − δ

~g2M2
Rv

2

M4
Zðcosð4θÞ þ 3Þ

�

×

�
1þ 4M2

Zcos
2θ

~g2v2
þO

�
g4

~g4

��
; ðB14Þ

gHRþR− ¼ 2M2
R

v
ð1 − aÞ: ðB15Þ

The couplings between fermions and the vector fields are

gL=R
R0f

¼ g02

~g

�
T3
fδL −

g02

g2 þ g02
Qf

�
þO

�
g2

~g2

�
; ðB16Þ

gL=R
L0f

¼ −
g2

~g

�
T3
fδL −

g02

g2 þ g02
Qf

�
þO

�
g2

~g2

�
; ðB17Þ

gLL�ud ¼
g2ffiffiffi
2

p
~g
þO

�
g2

~g2

�
; ðB18Þ

gL=RR�ud ¼ gRL�ud ¼ 0; ðB19Þ

where δL ¼ 1; 0 for L and R, the left-handed and right-
handed fermions, respectively.

APPENDIX C: DECAY WIDTHS

Below we give the partial widths of the heavy R
resonances, see e.g., [57],

ΓðR → ff̄Þ ¼ mRNc

12π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

m2
R

s �
ðgVf Þ2 þ ðgAf Þ2

þ m2
f

m2
R
ð2ðgVf Þ2 − 4ðgAf Þ2Þ

�
; ðC1Þ

ΓðR→WþW−Þ¼ 1

192π
mR

�
mR

MW

�
4
�
1−4

M2
W

m2
R

�
1=2

×

�
ðgRWW1Þ2

�
4
M2

W

m2
R
−4

M4
W

m4
R
−48

M6
W

m6
R

�

þðgRWW2Þ2
�
1−16

M4
W

m4
R

�

þgRWW1g
R
WW2

�
12

M2
W

m2
R
−48

M4
W

m4
R

�

þðgRWW3Þ2
�
4
M2

W

m2
R
−32

M4
W

m4
R
þ64

M6
W

m6
R

��
;

ðC2Þ

ΓðR → ZZÞ ¼ ðgRZZÞ2
96π

mR
m2

R

M2
Z

�
1 − 4

M2
Z

m2
R

�
3=2

�
1 − 6

M2
Z

m2
R

�
;

ðC3Þ

ΓðR → ZγÞ ¼ ðgRZγÞ2
96π

mR
m2

R

M2
Z

�
1 −

M2
Z

m2
R

�
3

; ðC4Þ

ΓðR → ZHÞ ¼ ðgRZHÞ2
192πM2

Z
mR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; xZ; xHÞ

p
× ðλð1; xZ; xHÞ þ 12xZÞ; ðC5Þ

where xZ ¼ ðMZ=mRÞ2, xH ¼ ðmH=mRÞ2, and
λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx.

APPENDIX D: OFF-DIAGONAL WIDTHS

The following is basically a summary of the basic effect
from off-diagonal width. Loop corrections to the vector
self-energy can be parametrized as

Πμν ¼ ΠTgμν þ ΠLpμpν: ðD1Þ

The corrected vector-particles propagator can be written as

iΔμν ¼
�
gμν −

pμpν

p2

�
−i

p2 −M2
0 þ ΠT

þ pμpν

p2

−iξ
p2 − ξðM2

0 − ΠT − p2ΠLÞ
: ðD2Þ

ΠT defines the gauge independent pole mass and width
while ΠL contributes to the gauge dependent pole and is
negligible at the physical pole. Therefore we neglect ΠL
and adopt the unitary gauge, ξ → ∞. After diagonalization
and renormalization, we get9

9Notice that the renormalization of fields and mass parameters
allow us to fix the off-diagonal real part one-loop contribution to
zero.
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iΔμν ¼
�
gμν −

pμpν

p2

�
ð−iÞΔ; ðD3Þ

where, in the two-particles case,

iΔ ¼ i
D

�
p2 −m2

2 þ iΣ22 −iΣ12

−iΣ21 p2 −m2
1 þ iΣ11

�
; ðD4Þ

and Σij ¼ ℑΠij for particle indexes i; j ¼ 1; 2 and

D ¼ ðp2 −m2
1 þ iΣ11Þðp2 −m2

2 þ iΣ22Þ þ Σ12Σ21: ðD5Þ

APPENDIX E: FUTURE REACH

Our projected reach estimate is based on the search in the
electron channel by the CMS experiment described in [19].
We assume a constant efficiency of 89% for both

background and signal and apply the kinematic cuts:

jηðl�Þj < 2.5;

pTðl�Þ > 25 GeV: ðE1Þ

Signal.—The signal cross section, σS, is computed at LO
and a mass dependent K factor is applied to account for
QCD NNLO corrections. The K factors for resonance
massesM ¼ 1 TeV, 2 TeV, 3 TeVare 1.22, 1.16, and 1.16,
respectively. We fix a ¼ 0 for the projection and expect
slightly weaker bounds for nonzero a.
Background.—The dominant DY background pp →

Z=γ → eþe− is computed at LO and the NNLO QCD
and NLO EW corrections are incorporated through a mass
dependent K factor. The k factors for mðllÞ ¼ 1 TeV,

2 TeV, 3 TeVare 1.07, 1.1, and 1.14, respectively. The sum
of other background processes, tt̄, tW, WW, WZ, ZZ, ττ
and jets producing “fake” electrons have the same expo-
nential falloff as a function of dilepton invariant mass as the
DY for mðllÞ ≳ 200 GeV. They can therefore be modeled
as a number times the DY cross section. We take this
number to be r ¼ 0.24.
Statistics.—We look for a local excess in the mass

window MR − 30 GeV < mðllÞ < MR þ 150, for each
value of MR. A Poisson distribution is assumed for the
expected number of background events, NB,

PðN; μÞ ¼ μN

N!
e−μ; ðE2Þ

with the predicted cross section times the integrated
luminosity as the mean value,

μ ¼ σBL: ðE3Þ

We denote the maximum number of events at 95% C.L.,
assuming the background only hypothesis, by N95,

10

95% ¼
XN95

N¼0

μN

N!
e−μ: ðE4Þ

Cross sections for which μS ¼ σSL, is larger than N95 are
then considered excluded. The resulting exclusion limit
presented in Fig. 22 is slightly stronger than our exclusion
limit given in the upper left panel of Fig. 19. This is not
surprising given the simplicity of the analysis.
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