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We study the center structure of full dynamical QCD at finite temperatures and nonzero values of the
background magnetic field using continuum extrapolated lattice data. We concentrate on two particular
observables characterizing center clusters: their fractality and the probability for percolation. For
temperatures below and around the transition region, the fractal dimension is found to be significantly
smaller than three, leading to a vanishing mean free path inside the cluster structure. This finding might be
relevant for center symmetry-based models of heavy-ion collisions. In addition, the percolation probability
is employed to define the transition temperature and to map out the QCD phase diagram in the magnetic
field-temperature plane.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the theory describ-
ing strongly interacting matter. QCD predicts the existence
of a finite temperature transition that separates the low-
energy confined regime and the deconfined quark-gluon-
plasma (QGP) phase. The properties of this transition are
relevant for the evolution of the early universe and are also
probed by contemporary heavy-ion collision experiments,
both at RHIC and at the LHC.
Following the conjecture that the deconfinement tran-

sition in the gluonic sector is related to the magnetic
transition of a corresponding spin system [1,2], and the
finding that the latter can be understood in terms of cluster
percolation [3], it was proposed that the gluonic field
configurations of QCD can be characterized by center
clusters and that the deconfinement transition may be
understood as a percolation phenomenon [4]. In this
description, confinement manifests itself in small and
uncorrelated clusters, while the deconfined regime exhibits
a large cluster that percolates and induces long-range
correlations. The center structure of the QGP was also
incorporated in models of heavy-ion collisions [5,6] and
was argued to explain various properties of the plasma
phase including its low shear viscosity and high (color)
opacity [6]. The main ingredient in this kind of models is
the scattering of partons on the cluster walls, characterized
by a mean free path.
Besides the temperature, another parameter relevant for

heavy-ion phenomenology is the background (electro)
magnetic field generated by spectator particles in off-
central collisions. Strong magnetic fields are also thought
to have existed in the early stages of the universe and thus,
their effects on the QGP are of interest for cosmology as

well. For recent reviews on the role of magnetic fields for
strongly interacting matter, see, e.g., Refs. [7,8].
In this paper, we perform numerical lattice simulations to

study center clusters in 2þ 1-flavor QCD and determine
their response to nonzero temperatures and background
magnetic fields. We confirm that the clusters are not three-
dimensional objects but instead have a fractal nature, as has
already been observed in pure gauge theory (see, e.g.,
Ref. [9]). We demonstrate that as a consequence of this
fractality, the mean free path inside the clusters vanishes for
temperatures and magnetic fields relevant for heavy-ion
phenomenology. Furthermore, we propose a new observ-
able for determining the transition temperature in full QCD
and use it to map out the phase diagram in the magnetic
field-temperature plane.

II. CENTER CLUSTERS

The concept of center clusters relies on the center
symmetry of pure gauge theory, formulated in Euclidean
space-time at a nonzero temperature T. Center symmetry
denotes the invariance of the action under topologically
nontrivial transformations g. These—unlike normal gauge
transformations—are only periodic up to a constant twist,
gðx; tþ 1=TÞ ¼ zgðx; tÞ in the Euclidean timelike direction
[10]. Here, z belongs to the center

Z3 ¼ f1; e−2πi=3; e2πi=3g; ð1Þ

of the gauge group SU(3). While the confined phase is
center symmetric for pure gauge theory, in the deconfined
phase, this symmetry is spontaneously broken. The corre-
sponding order parameter is the expectation value of the
Polyakov loop, defined on the lattice as

P ¼ 1

V

X
x

Tr
Y
t

U4ðx; tÞ; ð2Þ
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where the non-Abelian vector potential Aμ is represented by
group elements Uμ ¼ eiaAμ , and V denotes the spatial
volume of the system. For pure gauge theory, the expect-
ation value of P vanishes below the transition temperature
Tc and selects one of the center sectors (1) above the
transition. In pure SU(3) gauge theory, this deconfinement
transition is of first order [11,12].
The presence of dynamical quarks modifies this picture

slightly: the fermion determinant breaks center symmetry
explicitly and always favors the trivial center element 1
(see, e.g., Ref. [13]). However, this explicit breaking is
rather mild and the Polyakov loop can still be used as an
approximate order parameter. The corresponding decon-
finement transition is no real phase transition but merely an
analytic crossover [14,15]. For a pedagogical introduction
to center symmetry and the Polyakov loop, see Ref. [16].
Although the expectation value of P is—due to the

explicit breaking—always real, it turns out that there are
local domains in space, in which the Polyakov loop points
towards one of the three center sectors [17–25]. The
corresponding local Polyakov loops LðxÞ read

LðxÞ ¼ Tr
Y
t

U4ðx; tÞ; P ¼ 1

V

X
x

LðxÞ: ð3Þ

Below Tc, all three sectors are (almost) equally repre-
sented, giving rise to a cancellation and an (almost)
vanishing average Polyakov loop P. This is visualized in
Fig. 1, where the histogram of the local phase θðxÞ ¼
argLðxÞ is shown for a typical low-temperature configu-
ration. For temperatures above Tc, the real sector θ ≈ 0
becomes dominant (also included in Fig. 1) and induces a
large real average Polyakov loop. This picture of center
clusters has been studied in pure gauge theory with two
[17,18], with three [9,19,20], and with four colors [21],
while preliminary results for dynamical quarks have been

obtained in Refs. [22,23]. (For visualizations of the
clusters, see Refs. [24,25].) We mention that while the
change in the distribution of argLðxÞ is essential for
the deconfinement transition, the modulus jLðxÞj was
found to play no relevant role in this respect [17–24].
Besides the distinct population of the three sectors below

and above Tc, there is another pronounced difference
between the confined and deconfined regimes. While the
clusters are small below Tc, they percolate and span across
the total volume above the transition region. In this sense,
the deconfinement transition becomes very similar to the
percolation phenomenon in a three-state spin system. To
give the center clusters a precise definition that conforms to
this picture, we need to impose a filter on the local phases
θðxÞ that discards sites lying far from center elements.
Specifically, to each site x, we assign a sector number
nðxÞ ∈ f−1; 0; 1g in the following manner [19]:

nðxÞ ¼

8>>>>><
>>>>>:

þ1 for θ ∈
h
π
3
þ δ; π − δ

i
;

0 for θ ∈
h
− π

3
þ δ; π

3
− δ

i
;

−1 for θ ∈
h
−π þ δ; − π

3
− δ

i
;

δ ¼ π

3
· f:

ð4Þ

Here, f ∈ ½0; 1Þ is a free parameter, which removes
“undecided” sites, i.e., those that lie close to the minima
of the distribution HðθÞ, see Fig. 1. In the following, we
will refer to f as the cut parameter. The center clusters are
then constructed in the following way: two neighboring
sites x and y belong to the same cluster if their sector
numbers are the same, that is, if nðxÞ ¼ nðyÞ. This divides
space into domains where the local Polyakov loop points
towards one of the three center elements.
We emphasize that a nonzero cut parameter is necessary

to interpret the deconfinement transition as a percolation
phenomenon. Indeed, at f ¼ 0, the center clusters would
percolate already at low temperatures.1 By introducing f ≠
0 and discarding sites lying far from center elements, the
clusters are made thinner and percolation is delayed to set
in only around Tc. This way, the confined phase exhibits
clusters with finite size, while in the deconfined phase there
is one percolating cluster, as was demonstrated in pure
gauge theory [9,19,20]. Note that similar thinning tech-
niques (cf. Ref. [3]) to reduce the cluster size are necessary
in different contexts as well, e.g., for the magnetic
transition in the Potts model [27] or for the droplet
description of the Ising model [18].

FIG. 1 (color online). Histogram of the local Polyakov loop
phase below and above the transition temperature and the
definition of sector numbers according to Eq. (4).

1To see this, note that in random percolation theory, the critical
probability for a three-dimensional cubic lattice is pc ≈ 0.31 <
1=3 [26]. Thus, even if the local Polyakov loops are completely
random (i.e., the center sectors are equally populated) such that
p ¼ 1=3, each of the three sectors will percolate on average. For
an explicit demonstration of this effect, see Refs. [9,19].
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III. RESULTS

The results presented below are based on the gauge
configurations generated in Refs. [28–31] at various values
of the temperature, of the magnetic field B, and of the
lattice spacing a. These ensembles have been produced
using the Symanzik tree-level improved gauge action and
2þ 1 flavors of stout smeared rooted staggered quarks with
physical masses. Details of the simulation setup and of the
algorithm can be found in Refs. [28,32,33]. In the follow-
ing, we consider the stout smeared gauge links for
calculating the local Polyakov loops.
The vacuum configurations (corresponding to T ≈ 0,

B ¼ 0) with several lattice spacings are used to set the cut
parameter fðaÞ in a consistent manner. At finite temper-
atures, we consider N3

s × Nt lattices and employ the fixed-
Nt approach to vary the temperature. That is to say the
temperature T ¼ ðNtaÞ−1 is changed by tuning the lattice
spacing a for a fixed lattice geometry. In this approach, the
continuum limit corresponds to the limitNt → ∞ at a given
temperature. The magnetic field is chosen to point in the z
direction and enters the simulation setup via its quantized
flux,

Φ ¼ eB · ðaNsÞ2 ¼ 6πNb; Nb ∈ Z; ð5Þ
where the magnetic field is measured in units of the
elementary charge e > 0. Due to flux quantization, an
interpolation of the data at fixed Nb is necessary to obtain
results as a function of eB. For further details on the
implementation of the magnetic field, see Ref. [28].

A. Scale setting

To set the cut parameter unambiguously, additional
physical input is necessary. A possible way to set f is to
prescribe the value that the physical radius R of the largest
cluster should take at low temperatures [9,20]. For a cluster
of size s, we define the radius R by the mean squared
deviation of the sites ri in the cluster from its center of mass
RCM:

R2 ¼ 1

s

Xs
i¼1

ðri −RCMÞ2: ð6Þ

To put this implicit prescription into practice, we need to
search for the value of f where the largest cluster has the
desired radius. This procedure is visualized in Fig. 2 for
various zero-temperature lattice ensembles with different
lattice spacings a. Reading off the intersection of the RðfÞ
curves with the prescribed radius of R ¼ 2.51 GeV ¼
0.49 fm determines the scaling relation fðaÞ. Note that
for f → 1, all sites are removed and, thus, the radius shrinks
to zero, while for f ¼ 0, the largest cluster fills the total
volume so that R equals half the linear lattice size.
The value R ¼ 0.49 fm, which we chose for setting f,
corresponds to a typical hadronic size relevant for the

low-temperature confined regime. Note, however, that we
are free to choose different radii as well. The subsequent
analysis is performed using various values 0.35 fm < R <
0.5 fm.
The so obtained dependence fðaÞ is shown in Fig. 3 for

various values of the fixed radius R. The curves all have
positive slopes, as expected: for finer lattices, the cluster
radius in lattice units R=a has to be larger so that the radius
in physical units R ¼ a · R=a remains fixed. Thus, for
smaller a, the clusters must be made larger (in lattice units)
via decreasing f. In the following, the interpolation of the
fðaÞ curve will be used to set the cut parameter (for a few
Nt ¼ 10 simulation points at high temperature, a controlled
extrapolation is also necessary).
Having fixed the precise definition of the clusters—i.e.,

the dependence of the cut parameter on the lattice
spacing—at T ¼ B ¼ 0, we proceed to determine various

FIG. 2 (color online). The radius R of the largest cluster as a
function of the cut parameter f for our zero-temperature
ensembles with various lattice spacings. The dashed line indicates
the prescribed cluster radius R ¼ 0.49 fm.

FIG. 3 (color online). The cut parameter as a function of the
lattice spacing for various fixed cluster radii.
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properties of the clusters at nonzero temperatures and
nonzero background magnetic fields.

B. Fractality and the mean free path

We continue the analysis by demonstrating the fractal
nature of the clusters. To this end, we employ the box-
counting method to define the fractal dimension d□. This
approach is based on the scaling

NðsÞ ∝ s−d□ ; ð7Þ
of the number N of boxes of linear size s necessary to cover
a given cluster. This method was applied and compared to
different definitions for pure gauge theory in Ref. [9].
Figure 4 shows the fractal dimension of the largest

cluster as a function of the temperature for several different
lattice spacings. At T ¼ 113 MeV, where five lattice
spacings are available, the a → 0 extrapolation gives d□ ¼
1.9ð1Þ in the continuum limit. For higher temperatures, we
find that three lattice spacings do not suffice for a controlled
continuum extrapolation of this observable.
In center cluster-based models of heavy-ion collisions, a

relevant parameter is the mean free path of partons inside
the clusters. It is defined as the average distance that the
parton can move without scattering on the cluster walls. To
translate this notion into our setup, we consider the
following procedure. For each site s inside a cluster, we
count the number nis of sites one can move in the direction i
without reaching the boundary of the cluster. The (average)
mean free path is then given by

λf ¼ 1

3

X
i¼x;y;z

λðiÞf ; λðiÞf ¼ 1

S

XS
s¼1

nis · a; ð8Þ

where S is the total number of sites available for the
clusters.

Above we have seen that the clusters are not three-
dimensional objects but fractals. In the pure gauge theory
setting, it was pointed out already in Ref. [9] that as a
consequence of this fractality, the mean free path is not
related to the linear cluster size but is much smaller than
that. Using a continuum extrapolation based on three
different lattice spacings, we show that λf is consistent
with zero for T ≲ 300 MeV in the continuum limit, see
Fig. 5. The systematic error of the continuum extrapolation
is estimated by comparing fits with different forms for the T
and Nt dependence of λf. On a finite lattice, the fractal
pattern is not resolved on distances smaller than the lattice
spacing; thus, the mean free path is bounded from below by
a. Indeed, Fig. 5 reveals how the finite Nt results for λf
approach zero via nonzero values. Note that as the temper-
ature is increased further at fixed lattice spacing a, and the
largest cluster becomes three-dimensional, λf will approach
half the linear lattice size (i.e., it will diverge in the infinite
volume limit).
The background magnetic field breaks rotational sym-

metry and thus might induce an anisotropy in the direc-

tional mean free paths λðiÞf , defined in Eq. (8). The effect of
B on the Polyakov loop (and, thus, on center clusters) is
indirect and occurs through virtual quark loops. In strong
magnetic fields, these virtual quarks occupy Landau levels:
they are free to move parallel to the magnetic field but are
localized perpendicular to it. This anisotropy is expected to
propagate in the gluonic sector and appear in the orientation

of center clusters as well, implying λðzÞf > λðxÞf ¼ λðyÞf .
Another argument supporting this hierarchy is based on
the finding [34] that the magnetic field reduces the string
tension in the parallel but increases it in the perpendicular
direction. Indeed, a reduced string tension implies
enhanced correlations between distant Polyakov loops
and, thus, an increased mean free path in a given direction.

FIG. 4 (color online). The fractal dimension as a function of the
temperature for three lattice spacings. The zero-temperature
cluster radius is fixed to R ¼ 0.49 fm.

FIG. 5 (color online). The mean free path as a function of the
temperature, for three lattice spacings and a continuum extrapo-
lation.
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Interestingly, in the asymptotically strong magnetic field
limit of QCD [35], the parallel string tension even vanishes
and local Polyakov loops are independent of z [31].
Therefore, in this limit, center clusters become tubes in
the z direction but are expected to retain their fractal nature
in the x − y plane. Nevertheless, our largest available
magnetic field eB ¼ 3.25 GeV2 is still well below this
asymptotic limit.
To determine whether the predicted anisotropy is present

in the center structure, we calculated the directional mean
free paths at eB ¼ 3.25 GeV2. In accordance with the
above expectation, we observe λðzÞf to exceed the
perpendicular mean free paths, although only by a few
percent. For lower magnetic fields 0 < eB < 0.7 GeV2, the
effect is found to be smaller than our statistical errors. In
this range, the main effect of the magnetic field turned out
to be described by a shift of the transition region towards
lower temperatures. We discuss this effect in more detail in
the next section.

C. The QCD phase diagram

Due to the crossover nature of the deconfinement
transition in full QCD, the observables sensitive to the
transition exhibit no singular behavior but are instead
smooth functions of the temperature. An implication of
this is that the transition temperature is not uniquely
defined: different definitions may result in different values
for Tc.
The most straightforward definition involves the inflec-

tion point of the average Polyakov loop. However, this
turns out to be numerically difficult to locate due to the
slow and gradual rise of P with the temperature,
cf. Ref. [36]. There have been proposals to circumvent
this issue by considering, e.g., ratios of Polyakov loop
susceptibilities that take well-defined values both well
above and well below Tc, see Ref. [37].
Here we propose a new method to define Tc using center

clusters. In terms of the center structure, the most sub-
stantial difference between the confined (deconfined)
regimes is the absence (presence) of percolating clusters.2

(A cluster is defined to be percolating if it spans across the
lattice in at least one spatial direction. Thus, such clusters
become infinitely large in the infinite volume limit.) The

simplest choice reflecting the abrupt change of gluonic
configurations in this respect is the percolation probability
p∞ [9,19,21–23]. It is defined as the probability of having a
percolating cluster and is thus bounded as 0 ≤ p∞ ≤ 1. In
Fig. 6, we plot p∞ as measured on the 243 × 6 lattices,
showing the expected rapid increase around Tc.
Taking into account the limiting values of p∞ at low and

at high temperatures, respectively, the most convenient
choice for defining Tc is through the implicit equation

p∞ðTcÞ ¼ 0.5: ð9Þ

This definition will be employed below to map out the
phase diagram for nonzero magnetic fields.
To demonstrate the effect of magnetic fields3 on p∞,

Fig. 6 also includes the percolation probability for a few
nonzero values of B. Clearly, the magnetic field increases
p∞ for all temperatures and, as a result, reduces the
transition temperature. This is consistent with previous
determinations of TcðBÞ using chiral quantities [28]. To
quantify this effect, we employed the definition (9) to
determine Tc for a range of magnetic fields using three
lattice ensembles with Nt ¼ 6, 8, and 10. Figure 7 shows
the so obtained TcðBÞ, revealing that the results for all three
lattice spacings fall on top of each other. The transition
temperature is found to decrease by about 10% up
to eB ¼ 0.75 GeV2.
Above, the cut parameter was set by fixing the zero-

temperature cluster radius to R ¼ 0.45 fm. Also, it is of
interest how the results change if R is varied. We have
performed the same analysis for different values of R.

FIG. 6 (color online). The percolation probability as a function
of the temperature for three different values of the magnetic field.
The zero-temperature cluster radius is fixed to R ¼ 0.4 fm.

2Note that this direct realization of the Svetitsky-Yaffe con-
jecture becomes considerably more involved for SUðNÞ theories
with N ≥ 4. Unlike for SU(3)—where the Polyakov loop
effective action is constructed exclusively via LðxÞ of Eq. (3)
—for SU(4), it involves the trace of gauge links in representations
with different dimensions (4 and 6) [21,38,39]. The four-
dimensional representation alone was shown to be insufficient
to describe the deconfinement transition via percolation, since the
clusters were found to become too thin towards the continuum
limit [21]. (This is in line with the expectation based on random
percolation theory, where the equally populated sectors have
probability p ¼ 1=4 < pc, cf. footnote 1.) Here, we constrain the
discussion to N ¼ 3, where such complications are absent.

3We found that there is no anisotropy in the percolation
probabilities, even for our strongest magnetic field. Instead, B
only induces a weak anisotropy over shorter length scales, as
revealed by the hierarchy in the directional mean free paths
discussed in Sec. III B.
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Figure 8 shows the continuum extrapolated transition
temperatures based on our three lattice spacings for three
values of the cluster radius, R ¼ 0.40 fm, R ¼ 0.45 fm,
and R ¼ 0.49 fm. The net effect of decreasing R is to shift
the transition temperature up. This is to be expected: the
smaller the low-temperature clusters are, the stronger
ordering in the local Polyakov loops (i.e., the higher
temperature) is necessary for percolation to set in.
Notice that R affects Tc because of the crossover nature
of the transition, i.e., because the percolation probability
depends smoothly on the temperature (even in the infinite
volume limit). The gradual enhancement of p∞ðTÞ around
Tc becomes a real jump in pure gauge theory [9], where the
transition is of first order. In the latter case, the clusters start
to percolate suddenly, so that finite changes in the low-
temperature cluster radius R are not expected to affect Tc.
Therefore, the change in Tc due to varying R gives a
measure for the width (strength) of the deconfinement
transition.
It has recently been shown that the QCD phase diagram

exhibits a critical end point for extremely strong magnetic
fields [31], where the crossover turns into a first order
transition (see also Ref. [40]). Figure 8 also shows Tc at a
very large4 magnetic field for the three low-temperature
cluster radii. A further decrease in Tc by about 20% can be
observed, again in agreement with previous findings based
on other observables [31]. Moreover, the difference
between the Tc curves for the different radii decreases
by about 50% from eB ¼ 0 to eB ≈ 3.25 GeV2. According
to our reasoning above, this shows that the transition
becomes stronger as the magnetic field grows and the
predicted critical point is approached.

IV. CONCLUSIONS

In this paper, we have presented the first continuum
extrapolated results for various observables related to
the center structure of full dynamical QCD. Center
clusters were identified using a consistent thinning
technique involving one parameter (the cut parameter f)
that is fixed by prescribing the cluster radius R at low
temperatures.
Using this prescription, the fractal dimension of the

center clusters was shown to be significantly smaller than
three. We demonstrated that this leads to a vanishing
mean free path in the cluster structure over the range of
temperatures 110 MeV < T < 300 MeV. We found that
the presence of magnetic fields eB≲ 3.25 GeV2 does not
change this result qualitatively—even at our strongest
magnetic field, the anisotropy in the cluster orientation
remains below a few percent. Thus, for a broad range
of temperatures and magnetic fields that are relevant
for heavy-ion collision phenomenology, the continuum
extrapolated mean free path vanishes. This finding
suggests a limited applicability for models that build
on a finite mean free path for scattering processes in
the QGP.
Furthermore, we proposed a method to define Tc in full

QCD using the percolation probability and employed this
definition to determine the phase diagram for nonzero
background magnetic fields. The results unambiguously
show a reduction of Tc with increasing B, in good
agreement with the results obtained using other QCD
observables [28,31]. In addition, the variation of Tc when
changing the zero-temperature cluster radius R was
argued to measure the width of the crossover transition.
This quantity was found to gradually decrease as B grows
and the predicted critical end point at extremely strong

FIG. 7 (color online). The transition temperature, defined
according to Eq. (9), as a function of the magnetic field for
three different lattice spacings. The zero-temperature cluster
radius is fixed to R ¼ 0.45 fm.

FIG. 8 (color online). Continuum extrapolated transition tem-
peratures as a function of the magnetic field for different zero-
temperature cluster radii R. (The last three points on the far right
are not continuum extrapolated but were obtained on ourNt ¼ 16
ensemble.)

4This is still well below the estimated critical magnetic field
eBCEP ¼ 10ð2Þ GeV2 [31].
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magnetic fields is approached. Altogether, our findings
demonstrate that the deconfinement transition in full
three-color QCD can be described as a percolation
phenomenon. The analysis of further observables and
the discussion of finite volume effects will be performed
in a forthcoming study [41]. Finally, we note that
generalizations of the percolation picture to other gauge
groups, e.g., SUðNÞ with N > 3, are nontrivial, and that

more extensive research is required to address their
viability.
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