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In this paper we discuss one-dimensional models reproducing some features of quantum electrody-
namics and quantum chromodynamics at nonzero density and temperature. Since a severe sign problem
makes a numerical treatment of QED and QCD at high density difficult, such models help to explore
various effects peculiar to the full theory. Studying them gives insights into the large density behavior of the
Polyakov loop by taking both bosonic and fermionic degrees of freedom into account, although in one
dimension only the implementation of a global gauge symmetry is possible. For these models we evaluate
the respective partition functions and discuss several observables as well as the Silver Blaze phenomenon.
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I. INTRODUCTION

One of the open challenges of lattice gauge theory is the
ab initio treatment of full quantum chromodynamics
(QCD) at finite density and low temperature. The fermion
determinant is rendered complex and rapidly oscillating
after the introduction of a finite chemical potential μ.
The same holds for a wide spectrum of theories at nonzero
density. The resulting near-cancellations make an evalu-
ation of expectation values extremely challenging. Several
methods for meeting the sign problem have been advanced,
but are either limited in their applicability or are about to be
tested for QCD, see e.g. Refs. [1–11].
In the past, studies of models of QCD have been proved

insightful [12–19], including in the special case of heavy
quarks [20–22]. The interest in the present and many other
models discussed in the literature is that they provide a testing
ground for new simulation algorithms to be applied to the full
theory. Examples can be found in Refs. [18,19,21,23].
In this paper, we construct and study models that exhibit

certain characteristic properties of quantum electrodynamics
(QED) and quantum chromodynamics at nonzero μ and
temperature T. These models are formulated on a one-
dimensional lattice using staggered fermions [24–27]. In
comparison to the full theories these models have several
simplifications. In particular, as it is not possible to define a
plaquette variable in one dimension, there is no Yang-Mills
action and the models can only respect a global gauge
symmetry. Nonetheless, the introduction of a bosonic field
allows us to go beyond models with only fermionic degrees
of freedom. Moreover, by the introduction of a suitable

bosonic action Sg we can mimic some features of Yang-Mills
theory, which cannot be directly translated to one dimension.
We note that our models generalize the one-link models

presented in Ref. [21]. With an explicit incorporation of
bosonic degrees of freedom with a corresponding action, a
particular form of the fermion matrix and an integration
over conjugacy classes we are able to construct a novel
low-dimensional QCD-like model, which extends and
cross-checks previous work.
As a result these models allow us to investigate some

universal phenomena also found in other models from a
different perspective. In particular our findings presented in
Sec. III shine new light on the behavior of the Polyakov
loop at large densities.
The resulting partition function can be fully integrated

for a U(1) gauge group. In the case of SU(3) we are left with
an integral expression, whose sign problem is manageable
and which can be numerically evaluated. We discuss some
observables and investigate the Silver Blaze phenomenon
[28] in these models. A theory exhibits Silver Blaze
behavior, if in the zero-temperature limit T → 0 observ-
ables become independent of the chemical potential for
μ ≤ μcrit, where μcrit is some critical onset value of the
chemical potential. In realistic models μcrit ¼ mphys

q corre-
sponds to the physical fermion mass, or, more generally, the
mass of the lowest excitation with nonvanishing quark
number.
We organize the paper as follows: first we introduce a

QED-like model in Sec. II. We derive a closed expression
for the partition function and discuss the dependence of
some observables on chemical potential and temperature.
In Sec. III we deal with the case of QCD and derive an
integral expression, which can be numerically evaluated.
In Sec. IV we discuss and summarize our findings.
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II. A SOLUBLE, QED-LIKE MODEL
AT NONZERO DENSITY

For the construction of a QED-like model we formulate an
Abelian U(1) lattice gauge theory on a finite one-dimensional
lattice with staggered fermions and couple them to a chemical
potential, following a similar ansatz as employed in pre-
vious works.

A. Partition function

The action we employ mimics the usual compact lattice
QED in one dimension. The lattice is assumed to have a
lattice spacing of a and an extension of N sites, where N is
assumed to be even. We set a ¼ 1, i.e., we measure all
dimensionful quantities in appropriate powers of a. We
consider a single staggered fermion field and couple it to
a chemical potential μ. The temperature is identified with
the inverse of the lattice extension T ¼ N−1. The action
S ¼ Sf þ Sg consists of the fermionic part

Sf ¼
XN
t;τ¼1

χ̄ðtÞKðt; τÞχðτÞ; ð1Þ

and the pure bosonic part

Sg ¼ β
XN
t¼1

�
1 −

1

2
ðUt þU†

t Þ
�
: ð2Þ

Here χ̄ and χ denote the staggered fermion field, Kðt; τÞ the
fermion matrix, β ¼ 1=e2 the inverse coupling constant and
Ut ∈ Uð1Þ the link variables. The fermion matrix reads

Kðt; τÞ ¼ 1

2
ðUteμδtþ1;τ −U†

τe−μδt−1;τÞ þmδtτ; ð3Þ

with m denoting the mass of the fermion. The introduction
of the chemical potential μ follows the prescription by
Hasenfratz and Karsch [29]. Furthermore we impose an
antiperiodic boundary condition for the fermionic field.
After integrating out the fermionic degrees of freedom, the
partition function reads

Z ¼
Z YN

t¼1

dUt detKe−SG : ð4Þ

In this case the fermion determinant can be evaluated
analytically using identity (1) derived in Ref. [30]. We find

2N detK ¼ eNμ
Y
t

Ut þ e−Nμ
Y
τ

U†
τ þ 2ρþ; ð5Þ

where we have introduced

ρ� ¼ λþ � λ−; λ� ¼ 1

2

�
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p �
N
: ð6Þ

Note that Eq. (5), like full QED, satisfies the identity

detKðμÞ ¼ ½detKð−μ⋆Þ�⋆; ð7Þ
which shows that in general the fermion determinant is
complex for μ > 0. We parametrize the link variables as
Ut ¼ exp ðiϕtÞ in terms of algebra-valued fields ϕt ∈
½0; 2πÞ. The corresponding U(1)-Haar measure readsZ

dUt ¼
Z

2π

0

dϕt

2π
: ð8Þ

With this parametrization, the action in Eq. (2) takes the
form

Sg ¼ β
XN
t¼1

ð1 − cosϕtÞ: ð9Þ

This allows us to integrate the partition function given in
Eq. (4) by using the expression we derived for the fermion
determinant in Eq. (5), to find

Z ¼ e−βN

2N−1 ½ρþIN0 ðβÞ þ cosh ðNμÞIN1 ðβÞ�: ð10Þ

Here In denotes the modified Bessel functions of the first
kind. As a cross-check we verified that Z reduces to the
previously derived partition function in Ref. [21] for N ¼ 1
up to a normalization constant, which depends on m and β.

B. Observables

Given the final expression for the partition function in
Eq. (10), we can easily calculate any observable of interest.
The density follows from hni ¼ N−1∂μ logZ, the respec-
tive susceptibility is defined as hχni ¼ ∂μhni and the
fermion condensate is given by hχ̄χi ¼ N−1∂m logZ. For
the density we then find,

hni ¼ sinh ðNμÞIN1 ðβÞ
ρþIN0 ðβÞ þ cosh ðNμÞIN1 ðβÞ

: ð11Þ

Again this expression reduces to the known result in
Ref. [21] for N ¼ 1. The fermion condensate follows as,

hχ̄χi ¼ ð1þm2Þ−1=2ρ−IN0 ðβÞ
ρþIN0 ðβÞ þ cosh ðNμÞIN1 ðβÞ

: ð12Þ

By directly evaluating the respective path integral expres-
sion, we find for the Polyakov loop P ¼ Q

tUt the expect-
ation value

hPi ¼ e−βN

2NZ
½2ρþIN1 ðβÞ þ eNμIN2 ðβÞ þ e−NμIN0 ðβÞ�: ð13Þ

The conjugate Polyakov loop P† ¼ Q
tU

†
t follows from a

simple symmetry argument as hP†iμ ¼hPi−μ, cf. Ref. [18].
In Fig. 1 we show the density given by Eq. (11), the

fermion condensate by Eq. (12) and the Polyakov loop by
Eq. (13) as functions of the chemical potential μ. We see
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that already for T ¼ 1=N ¼ 1=10 the observables only
show a weak dependence on the chemical potential below
some critical value μcrit. This shows how the Silver Blaze
behavior [28] becomes apparent in this model, which holds
strictly in the limit T → 0.
Close to μ ≈ μcrit we also observe a fast increase or

decrease of the observables before reaching the saturation
regime. Note that the limits μ → ∞ and β → 0 do not
commute. Density and condensate behave as one would
expect. The expectation values of P and P† approach

hPi →
�
I2ðβÞ
I1ðβÞ

�
N
; hP†i →

�
I0ðβÞ
I1ðβÞ

�
N
; ð14Þ

for μ → ∞. The Polyakov loop quickly drops to a typically
small value with increasing μ while the conjugate Polyakov
loop grows to a saturation value which diverges when
β → 0.

III. A QCD-LIKE MODEL AT NONZERO DENSITY

Now we extend the previous model to the non-Abelian
gauge group SU(3). By restricting the integration over
the full gauge group to the respective conjugacy classes of
SU(3), we will be able to reduce the partition function to an
integral expression with a manageable sign problem.

A. Partition function

Our starting point is again the path integral expression
for the partition function in Eq. (4), where now the pure
bosonic part of the action reads

Sg ¼ β
XN
t¼1

�
1 −

1

6
TrcðUt þ U†

t Þ
�
: ð15Þ

Here β ¼ 6=g2 denotes the inverse coupling, Ut ∈ SUð3Þ
the link variables and Trc a trace in color space.
Furthermore we replace the fermion matrix by

Kðt; τÞ ¼ 1

2
ðσþUteμδtþ1;τ − σ−U

†
τe−μδt−1;τÞ þmδtτ; ð16Þ

with σ� ¼ 1
2
ð1� σ3Þ and the third Pauli matrix σ3 ¼

diagð1;−1Þ. In the loop expansion this suppresses back
steps, thus simulating a special feature of Wilson fermions.
This choice results in a factorization of the fermion
determinant of the form

detK ¼ dett;cKf · dett;cKb; ð17Þ
where we introduced

dett;cKf ¼ dett;c

�
mδtτ þ

1

2
Uteμδtþ1;τ

�
;

dett;cKb ¼ dett;c

�
mδtτ −

1

2
U†

τe−μδt−1;τ

�
: ð18Þ

Here UNþ1 ¼ −U1 and dett;c refers to a determinant in
position and color space.
In the following we restrict ourselves to observables

which only depend on the conjugacy class of the link
variables. We then replace the integration over the full
gauge group SU(3) with an integration over these conju-
gacy classes. This idea and the factorization given in
Eq. (17) were also previously exploited in a one link
model in Ref. [21]. We thus parametrize the links by

Ut ¼ diagðeiϕt ; eiϑt ; e−iðϕtþϑtÞÞ; ð19Þ
with ϕt; ϑt ∈ ð−π; π�. Ignoring a normalization constant,
the Haar measure is given by dUt ∝ Jðϕt; ϑtÞdϕtdϑt with

Jðϕt; ϑtÞ ¼ sin2
�
ϕt − ϑt

2

�

× sin2
�
ϕt þ 2ϑt

2

�
sin2

�
2ϕt þ ϑt

2

�
; ð20Þ
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FIG. 1 (color online). Observables in the U(1) model. (a) Density, condensate and normalized susceptibility; (b) Polyakov loop and
conjugate Polyakov loop.
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while the bosonic part of the action takes the form

Sg ¼ β
XN
t¼1

�
1 −

1

3
ðcosϕt þ cos ϑt þ cos ðϕt þ ϑtÞÞ

�
:

ð21Þ

The determinant in position space has a simple structure
and can be analytically evaluated, e.g. directly or by
resummation of the loop expansion for Eq. (16). For the
remaining determinant in color space we use the identity

detcð1þ αUtÞ ¼ 1þ αTrcUt þ α2TrcU−1
t þ α3; ð22Þ

valid for all A ∈ SL3ðCÞ, see Ref. [21]. We can express the
result in terms of the (conjugate) Polyakov loop

dett;cKf ¼ m3Ndetc

�
1þ ξf

Y
t

Ut

�

¼ m3Nð1þ ξfP þ ξ2fP
† þ ξ3fÞ; ð23Þ

with ξf ¼ ½κ expðμÞ�N and hopping parameter κ ¼ 1=ð2mÞ.
The Polyakov loop P and conjugate Polyakov loop P† are
defined by

P ¼ Trc
YN
t¼1

Ut; P† ¼ Trc
YN
t¼1

U†
t : ð24Þ

Analogously, we find

dett;cKb ¼ m3Nð1þ ξbP† þ ξ2bP þ ξ3bÞ; ð25Þ

with ξb ¼ ½κ exp ð−μÞ�N . We observe that, as in the QED-
like model, the fermion determinant in Eq. (17) satisfies the
relation in Eq. (7).
Putting all pieces together, we find that the partition

function of the model reads

Z ¼ m6N

Zπ

−π

�Y
t

dϕtdϑtJðϕt; ϑtÞ
�

× ð1þ ξfP þ ξ2fP
† þ ξ3fÞ

× ð1þ ξbP† þ ξ2bP þ ξ3bÞe−Sg ; ð26Þ

where an irrelevant numerical normalization constant has
been dropped. The measure term Jðϕt; ϑtÞ was given in
Eq. (20), Sg was introduced in Eq. (21).

B. Observables

Considering Eq. (26) as a partition function for a model
of QCD, we can derive integral expressions for the density,
the susceptibility and the fermion condensate by taking
corresponding derivatives of logZ. For the Polyakov loop
and the conjugate Polyakov loop we insert a 1

ZP or a 1
ZP

†

term in Eq. (26).
The resulting integral expressions are numerically evalu-

ated. Typical examples of these observables can be found
in Fig. 2. The density and the condensate show similar
qualitative behavior to the corresponding observables in
the U(1) model, where we now find hni → 3 for μ → ∞.
The Polyakov loop and conjugate Polyakov loop show

some nontrivial behavior. Close to the critical onset μcrit, we
find peaks in hPi and hP†i with the peak in the conjugate
Polyakov loop appearing at smaller μ. Similar behavior was
previously observed in a simulation of a gauge theory with
exceptional groupG2 [31], a strong coupling limit in HQCD
[23], a three-dimensional effective theory of nuclear matter
[22] and in recent studies of one-dimensional QCD [18,19].
The drop of the Polyakov loop at high density is easily
understood as an effect of saturation, while the displacement
of the peaks has a dynamical basis, see, e.g. Ref. [23].
Despite making use of a different approach, in general

we find good qualitative agreement with the results
reported in Refs. [18,19] after dropping Sg, i.e. for β ¼ 0.
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FIG. 2 (color online). Observables in the SU(3) model. (a) Density and condensate; (b) Polyakov loop and conjugate Polyakov loop.
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IV. CONCLUSIONS

In this paper we have constructed one-dimensional
lattice models resembling QED and QCD to investigate
the finite density and finite temperature regime. Despite the
drastic simplifications in these models, they capture some
essential physical properties expected from the full theory
and show an interesting behavior of the Polyakov loop. We
found that they—like their four-dimensional continuous
counterparts—exhibit the Silver Blaze property in the
zero temperature limit N → ∞. The μ-dependence of the
SU(3) (conjugate) Polyakov loopPðP†Þ shows the peculiar
μ-dependence also found in other approximations of QCD.

The models presented here can also serve as a starting point
for the construction of more elaborated models.
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