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We combine lattice QCD results for the potential of two static antiquarks in the presence of two
quarks qq of finite mass and quark model techniques to study possible existing qqb̄b̄ tetraquarks within the
Born-Oppenheimer approximation. While there is strong indication for a bound four-quark state for

qq ¼ ðud − duÞ= ffiffiffi
2

p
, i.e., isospin I ¼ 0, which is stable with respect to QCD, i.e., can only decay weakly,

we find clear evidence against the existence of corresponding tetraquarks with qq ∈ fuu; ðudþ duÞ= ffiffiffi
2

p
;

ddg, i.e., isospin I ¼ 1, qq ¼ ss, and qq ¼ cc.
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I. INTRODUCTION

Exotic hadrons have been proposed many years ago. As
soon as quarks were found in the sixties, it became clear
that systems more complex than standard mesons (qq̄
states) and baryons (qqq states) could possibly exist.
However, exotic hadrons are very elusive systems.
Confirming their existence or nonexistence still remains
one of the main challenges of particle physics.
Frequently discussed exotic hadrons are tetraquarks

[1,2], which are four-quark bound states composed of
two quarks and two antiquarks. There are several hadronic
resonances which are tetraquark candidates. Among them
are the light scalar mesons σ, κ, f0ð980Þ, and a0ð980Þ as
well as the heavier mesons D�

s0 and Ds1. However, these
systems have quantum numbers also consistent with a
standard qq̄ structure and their masses are not too different
from what is expected in a qq̄ picture. Thus, it is hard to
rigorously argue that they are indeed predominantly tetra-
quarks. On the other hand, there are also candidates which
have quantum numbers or masses typical for tetraquarks,
but not for standard qq̄ mesons. For example π−þ1 has
exotic quantum numbers JPC ¼ 1−þ or Z�

c and Z�
b masses

and decay products strongly suggest hidden cc̄ or bb̄ pairs,
while their electrical charge �1 indicates isospin I ¼ 1.
While the evidence for π−þ1 is not conclusive and the Z�

b
claimed by the Belle collaboration [3] remains to be
confirmed by different experimental collaborations, the
Z�
c has received a series of experimental observations by

the Belle collaboration [4,5], the Cleo-C collaboration [6],
the BESIII collaboration [7–11], and the LHCb collabo-
ration [12]. Nevertheless, the Z�

c would profit by more
comprehensive measurements of its decay channels. We
expect the existing and future experimental collaborations

to continue the study of present tetraquark candidates and
to possibly also discover further ones.
The theoretical study of tetraquarks is crucial to confirm

and correctly interpret corresponding experimental obser-
vations and could as well provide information in which
channels tetraquarks may be found. However, tetraquark
studies face a number of difficulties, e.g., (i) tetraquarks are
usually open to meson-meson decay, (ii) tetraquarks are
complex relativistic four-body systems, (iii) quark models
still fail to reproduce sectors of standard hadronic spectra
and, thus, are not yet sufficiently well calibrated to reliably
predict tetraquarks.
In this work, we study the existence/nonexistence of

tetraquarks with two heavy bottom antiquarks b̄b̄. To this
end,we use potentials of two static antiquarks in the presence
of two quarks qq of finite mass, which we compute using
lattice QCD. We extend recent studies of qqb̄b̄ tetraquarks
[13,14], whereqq∈fðud−duÞ= ffiffiffi

2
p

;uu;ðudþduÞ= ffiffiffi
2

p
;ddg,

to similar systems with heavier quarks, qq ¼ ss and
qq ¼ cc. In the future, we also plan to extend our inves-
tigations to the bb̄ tetraquarks claimed by the Belle
Collaboration [3]. Such tetraquarks with a bb̄ pair are,
however, rather difficult to study with lattice QCD, since
they couple to several decay channels.
We avoid some of the technical difficulties of studying

tetraquarks following a strategy already identified in the
eighties [15]. We search for bound states rather than for
resonances, to avoid open decay channels. Moreover, by
using b̄b̄ potentials obtained by lattice QCD computations,
we largely avoid the calibration problem of quark models.
Very heavy antiquarks such as b̄ allow for the Born-
Oppenheimer approximation [16]. For the two lighter
quarks qq, the heavy antiquarks b̄b̄ can be approximated
as static color charges, which allows us to determine the
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light quark energy using lattice QCD. On the other hand,
once the energy of the light quarks qq is determined, it
can be utilized as an effective potential for the heavy
antiquarks b̄b̄.
Our lattice QCD computation goes beyond computations

with four static quarks, which show a clear evidence for
four-body tetraquark potentials [17,18] and tetraquark flux
tubes [19,20]. On the other hand, lattice QCD computations
with four quarks of finite mass are extremely difficult and
have found neither evidence for charmed tetraquark bound
states with ū d̄ cc flavor [21] nor for resonances in the Zc
family [22].
This paper is organized as follows. In Sec. II, we briefly

review the quark model and discuss qualitative expectations
regarding qqb̄ b̄ four-quark systems. In Sec. III, we discuss
the latticeQCDcomputation of b̄ b̄ potentials in the presence
of two lighter quarks qq and provide parametrizations of
these results by continuous functions. InSec. IV,weuse these
parametrizations in model calculations and check for the
existence of bound states,whichwould indicate the existence
of tetraquarks. We conclude in Sec. V.

II. MODELING THE b̄b̄ INTERACTION IN THE
PRESENCE OF TWO LIGHT QUARKS qq

In the following, we discuss quark model expectations
regarding the qualitative behavior of a qqb̄b̄ four-quark
systems, where q denotes either a light u, d, s, or c quark
[23]. In particular, we are interested in the b̄b̄ interaction in
the presence of two light quarks qq. The qualitative
expectations are confirmed by corresponding lattice
QCD results, which are discussed in Sec. III. The main
purpose of these model considerations is to motivate a
suitable fit function for the lattice QCD b̄b̄ potential results,
which is used in Sec. IV in the Schrödinger equation to
check whether and in which channels bound four-quark
states, i.e., tetraquarks, exist.

A. The quark-antiquark/quark-quark potential
at small separations

In the original quark model [24], the quark-antiquark
and the quark-quark (or equivalently antiquark-antiquark)
potentials at small separations r ¼ jri − rjj are dominated by
one-gluon exchange similar to the Fermi-Breit interaction,

Vijðri;si;rj;sjÞ

¼−
Cαs
4

�
1

r
−
π

2
δ3ðrÞ

�
1

mi
2
þ 1

mj
2
þ16si ·sj
3mimj

�
þ���

�
ð1Þ

[i; j are the (anti)quark indices, ri, si and mi denote their
positions, spins, and masses, respectively]. Since we are
exclusively interested in ground states, we have specialized
Eq. (1) to angular momentum l ¼ 0. The quark model has
been improved (cf., e.g., [25,26]), but maintains its main
ingredients. C depends on the color orientation of the (anti)
quarks, which can be specified by a 3 × 3 matrix Λ. For a
quark-antiquark pair q̄iΛqj

C ¼ þ
X
a

TrðλaΛλaΛ†Þ; ð2Þ

while for a quark-quark pair qiTΛqj

C ¼ −
X
a

TrðλaΛλaTΛ†Þ ð3Þ

with the Gell-Mann matrices λa, a ¼ 1;…; 8. For example,
ΛAB ¼ δAB=

ffiffiffi
3

p
describes the qq̄ color singlet, while ΛAB ¼

ϵAB3=
ffiffiffi
2

p
is one of three independent possibilities to realize a

qq color triplet. In Table I, the resulting values for C for the
qq̄ singlet and octet and the qq triplet and sextet color
orientations are listed.
Lattice QCD confirms that the static color singlet

potential at small separations r can be described reasonably
well by one-gluon-exchange (cf., e.g., [27,28], where a
matching of lattice QCD and perturbative results is done).
At larger separations, it becomes linear with certain 1=r-
corrections due to string vibrations [29]. One can crudely
estimate αs appearing in (1) by considering the color singlet
qq̄. In that case C ¼ þ16=3, while string vibrations lead to
Vij ≈ −π=12r at intermediate separations, resulting in
αs ≈ π=16. While this estimate is most appropriate for
static quarks, αs is expected to be somewhat larger for
quarks of finite mass [25,26].
The only spin dependent term in (1) is the hyperfine

interaction proportional to si · sj, which is pathological in
the original quark model due to the Dirac delta [cf. Eq. (1)].
In the relativistic quark model, however, this interaction is
smoother and, hence, well behaved [25,26]. Clearly, the
interaction is weaker for a spin triplet than for a spin
singlet.
To summarize, whether the potential between a quark

and another quark or antiquark is attractive or repulsive
depends on their color orientation. For small separations it
is approximately Coulomb-like with the color factors C
collected in Table I. The hyperfine term enhances the
interaction for a spin singlet and decreases it for a spin
triplet.

TABLE I. The color factors C for the qq̄ singlet and octet and the qq triplet and sextet color orientations.

Color orientation qq̄ singlet 1 qq̄ octet 8 qq triplet 3̄ (and 3) qq sextet 6̄ (and 6)

C þ16=3 (attractive) −2=3 (repulsive) þ8=3 (attractive) −4=3 (repulsive)
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B. Qualitative discussion of the qqb̄b̄ system

For the particular case of the qqb̄ b̄ system, where the b̄ b̄
pair is significantly heavier than the light qq pair, we utilize
the Born-Oppenheimer approximation [16]: for the light
quarks, the heavy antiquarks can be regarded as static color
charges; once the energy of the light quarks is determined,
it can be used as an effective potential for the heavy
antiquarks. We assume that at small b̄ b̄ separations r, the b̄
quarks interact according to the quark model discussed in
Sec. II A, while at larger separations their interaction is
screened by the light quarks, i.e., the four quarks form two

rather weakly interacting Bð�Þ
ðs;cÞ mesons (Bð�Þ

ðs;cÞ denotes

either a B, B�, Bs, B�
s , Bc, or B�

c meson).

1. Expectations for the b̄b̄ interaction
at small separations r

(i) The spin interaction of the b̄ quarks is quite small
and can possibly be neglected, since it is propor-
tional to 1=mb

2 [cf. Eq. (1)].
(ii) In case of a bound qqb̄ b̄ state, i.e., a tetraquark, the

antiquarks b̄ b̄ are expected to be in a color triplet 3,
which is attractive, and not in a color sextet 6, which
is repulsive (cf. also Table I). In other words, at small
separations r, the antiquarks b̄b̄ form an antidiquark
as depicted in Fig. 1.

(iii) Because the complete four quark system qqb̄b̄
necessarily forms a color singlet, the light quarks
qq must be in a color antitriplet 3̄.

(iv) Since this color antitriplet is antisymmetric, and
since the light quarks qq are assumed to be in a
spatially symmetric s-wave, the Pauli principle
implies a symmetric spin-flavor structure. This
can either be a spin singlet with an antisymmetric
flavor combination or a spin triplet with a symmetric

flavor combination. Indeed, when studying light u
and d quarks in the presence of two static antiquarks
using lattice QCD, two attractive channels have been
found [13,30,31]. As expected, these are a (spin)
scalar isosinglet (j ¼ 0, I ¼ 0, where j denotes the
spin of the light quarks qq) and a (spin) vector
isotriplet (j ¼ 1, I ¼ 1). The scalar isosinglet is
more attractive, as expected from the hyperfine
interaction in Eq. (1), i.e., the lattice QCD results
confirm the qualitative quark model expectations.

(v) When studying two identical light quarks qq ¼ ss or
qq ¼ cc, which are symmetric in flavor, the only
attractive channel is a spin triplet. However, it is
conceptually interesting to consider two hypotheti-
cal degenerate flavors with the mass of strange or
charm quarks and then also investigate spin singlets
with flavor structure qq ¼ ðsð1Þsð2Þ − sð2Þsð1ÞÞ= ffiffiffi

2
p

and qq ¼ ðcð1Þcð2Þ − cð2Þcð1ÞÞ= ffiffiffi
2

p
.

2. Expectations for the b̄b̄ interaction
at large separations r

(i) At large separations r, screening of the b̄b̄ inter-
action is expected due to the light quarks qq, as
illustrated in Fig. 2. When the b̄ b̄ separation is larger

than around two times the radius of a Bð�Þ
ðs;cÞ meson,

there is essentially no overlap between the wave
functions of the light quarks and, consequently, the
b̄b̄ interaction practically vanishes.

(ii) The more massive the light quarks are, the more
compact their wave functions in the Bð�Þ

ðs;cÞ mesons, as
shown in Fig. 2(a), 2(b), and 2(c) and, thus, the
stronger the screening. In other words, the corre-
sponding b̄b̄ potential becomes more and more
narrow and will at some point not anymore be able
to host a bound state. Consequently, for a suffi-
ciently heavy pair of light quarks qq the screening
should prevent the formation of qqb̄b̄ tetraquarks.

3. Quantum numbers of possibly existing
qqb̄ b̄ tetraquarks

We study exclusively states which correspond for large

b̄b̄ separations to pairs of Bð�Þ
ðs;cÞ mesons in a spatially

symmetric s-wave. Therefore, the parity of these states is
positive, i.e., P ¼ þ (the product of the parity quantum
numbers of the two mesons, which are both negative).
As argued above, the two antiquarks b̄ b̄ are expected to

be in an antisymmetric color triplet. Since their flavor is
symmetric, their spin jb must also be symmetric due to the
Pauli principle, i.e., jb ¼ 1. Similarly, for an antisymmetric
qq flavor combination, i.e., qq ¼ ðud − duÞ= ffiffiffi

2
p

, j ¼ 0,
while for symmetric flavor combinations, i.e., qq ∈
fuu; ðudþ duÞ= ffiffiffi

2
p

; dd; ss; ccg, j ¼ 1. The total spin J
of the qqb̄ b̄ system is the combination of j and jb.

FIG. 1 (color online). At small b̄ b̄ separations r, the heavy
antiquarks b̄ b̄ form an antidiquark, which corresponds to a color
triplet. There is essentially no screening of the b̄ b̄ interaction due
to the much farther separated light quarks qq.
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Altogether, the possibly existing qqb̄ b̄ tetraquarks we
are going to investigate have the following quantum
numbers:

(i) qq ¼ ðud − duÞ= ffiffiffi
2

p
:

IðJPÞ ¼ 0ð1þÞ.
(ii) qq ∈ fuu; ðudþ duÞ= ffiffiffi

2
p

; ddg:
IðJPÞ ∈ f1ð0þÞ; 1ð1þÞ; 1ð2þÞg.

(iii) qq ∈ fss; ccg:
IðJPÞ ∈ f0ð0þÞ; 0ð1þÞ; 0ð2þÞg.

C. Fit function for lattice QCD b̄ b̄ potential results

Using lattice QCD, one can compute b̄ b̄ potentials in the
static limit (i.e., for mb → ∞) from first principles, i.e.,

from the QCD Lagrangian (cf. [30,31] and Sec. III). Of
course, these potentials can be obtained only for a limited
number of discrete separations r. Therefore, a suitable fit
function is required to interpolate between the lattice QCD
results and also to extrapolate beyond them. This fit
function is based on the qualitative expectations discussed
above and will be used in the Schrödinger equation in
Sec. IV, where we determine whether and in which
channels bound four-quark states exist.
For two heavy antiquarks b̄b̄ inside a cloud of two light

quarks qq, i.e., at small b̄b̄ separations, we expect a
Coulomb-like potential of order −2αs=3r ≈ −π=24r cor-
responding to a color triplet. At larger separations r, the
potential will be screened by the light quarks qq. This is
due to the decrease of the wave function ψ of each of the
light quarks with respect to their separations from the heavy
antiquarks. One expects this decrease to follow an expo-
nential of a power of r, i.e., ψ ∝ expð−ðr=dÞpÞ, where d
roughly describes the size of each of the b̄q systems, i.e.,

the size of a Bð�Þ
ðs;cÞ meson ≲0.5 fm. The parameter p

characterizes the radial profile of the light quark wave

function inside the Bð�Þ
ðs;cÞ meson. Assuming the qb̄ inter-

action inside the Bð�Þ
ðs;cÞ meson is dominated by a linear

confining potential, one can estimate the parameter p. In
the case, where the quark q is rather heavy, e.g., q ¼ c, the
corresponding nonrelativistic Schrödinger equation is
solved by Airy functions, resulting in p ¼ 3=2. A similar
but relativistic treatment for a lighter quark yields p ¼ 2
instead.
These considerations suggest the following fit function

for lattice QCD b̄ b̄ potential results:

VðrÞ ¼ −
α

r
exp

�
−
�
r
d

�
p
�
þ V0; ð4Þ

where it is expected that α ≈ 2αs=3 ≈ π=24 ≈ 0.13, d ≲
0.5 fm and p ≈ 1.5…2.0. The constant V0 is necessary to
account for twice the mass of the static-light meson. As will
be demonstrated in the following section, this fit function is
consistent with lattice QCD results and the crude quanti-
tative expectations for α, d, and p are fulfilled.

III. LATTICE QCD COMPUTATION OF THE b̄b̄
INTERACTION IN THE PRESENCE OF TWO

LIGHT QUARKS qq

To determine the effective b̄ b̄ potential quantitatively,
we use lattice QCD and consider the limit of infinitely
heavy b̄ quarks, i.e., the static limit. The first lattice
computations of such potentials have been performed in
the quenched approximation (cf., e.g., [32–36]). Recently,
also computations with dynamical sea quarks have been
performed [13,14,30,31,37,38]. In this work, we extend
our previous computations for light quark combinations

FIG. 2 (color online). At large b̄ b̄ separations r, the qqb̄ b̄

system is essentially a system of two Bð�Þ
ðs;cÞ mesons. The color

charge of each of the antiquarks b̄ is almost completely screened
by one of the light quarks q. (a) q ∈ fu; dg. (b) q ¼ s. (c) q ¼ c.
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qq ∈ fðud − duÞ= ffiffiffi
2

p
; uu; ðudþ duÞ= ffiffiffi

2
p

; ddg [30,31] by
similar computations with strange and charm quarks, i.e.,
qq∈fðsð1Þsð2Þ−sð2Þsð1ÞÞ= ffiffiffi

2
p

;ss;ðcð1Þcð2Þ−cð2Þcð1ÞÞ= ffiffiffi
2

p
;ccg.

A. Lattice QCD setup

We have performed computations using two ensembles of
gauge link configurations generated by the European
Twisted Mass Collaboration (ETMC) with 2 dynamical
quark flavors. The quark action is Wilson twisted mass
tuned to maximal twist, while the gluon action is tree-level
Symanzik improved. Most importantly, this guarantees
automatic OðaÞ improvement of spectral quantities, i.e.,
discretization errors in the resulting b̄b̄ potentials appear only
quadratically in the lattice spacinga. Information about these
ensembles is collected in Table II. Further details, in
particular regarding their generation, can be found in [39,40].
For b̄b̄ potentials in the presence of two light quarks qq

with q ∈ fu; dg, we reuse our lattice QCD results from
[30,31], which were obtained using the ensemble with the
coarser lattice spacing a ≈ 0.079 fm. For q ∈ fs; cg, the b̄b̄
interaction is screened at significantly smaller b̄ b̄ separations
(cf. the discussion inSec. II BandFig. 2). Tobeable to resolve
the corresponding potentials properly, we decided to use
for flavor combinations qq∈fðsð1Þsð2Þ−sð2Þsð1ÞÞ= ffiffiffi

2
p

;ss;
ðcð1Þcð2Þ−cð2Þcð1ÞÞ= ffiffiffi

2
p

;ccg another ensemble with a finer
lattice spacing a ≈ 0.042 fm. Although the physical extent of
the lattice for this ensemble is much smaller than for the other
one, this should not introduce significant finite volume effects
at the rather small separations we are interested in.
Note that for both ensembles, the u=d quarks are unphysi-

cally heavy, corresponding to a pion mass mπ ≈ 340 MeV.
Moreover, there are no s and c sea quarks, i.e., our lattice
QCD results are obtained in a partially quenched approxi-
mation. For the computation of b̄ b̄ potentials in the presence
of light s and c quarks, we also use amuch smaller number of
gauge link configurations. The reason is that the propagators
of the heavier s and c quarks introduce less statistical noise
than those for lighter u=d quarks.

B. Lattice QCD computation of b̄b̄ potentials

We determine b̄b̄ potentials in the presence of two light
quarksqq from the exponential decay of temporal correlation
functions,

Cðt; jr1 − r2jÞ ¼ hΩjO†ðtÞOð0ÞjΩi ð5Þ

of four-quark creation operators

OðtÞ ¼ ðCΓÞABðC ~ΓÞCDðQ̄Cðr1Þqð1ÞA ðr1ÞÞðQ̄Dðr2Þqð2ÞB ðr2ÞÞ
ð6Þ

at sufficiently large tmin ≤ t ≤ tmax. Here Q̄ denotes a static
antiquark operator approximating a b̄ quark,q is a light quark
operator, A; B;C;D are spin indices, (1), (2) are flavor
indices and C ¼ γ0γ2 is the charge conjugation matrix. For
the static antiquarks, the only relevant variable is their
separation. Their spin components can be combined with
~Γ ∈ fð1 − γ0Þγ5; ð1 − γ0Þγjg, j ¼ 1; 2; 3, where the result-
ing b̄ b̄ potential does not depend on which ~Γ matrix is
chosen. The spin components of the two light quarks can be
coupled in 16 independent ways via Γ, which should be an
appropriately chosen combination of γ matrices to realize
definite quantum numbers jjzj (angular momentum with
respect to the axis of separation),P (parity) andPx (behavior
under reflections across an axis perpendicular to the axis of
separation). For a more detailed discussion of symmetries
and quantum numbers, cf. [30].
Note that the creation operators (6), when applied to the

vacuum jΩi, do not only generate definite quantum
numbers ðjjzj; P; PxÞ, but also a structure resembling

two Bð�Þ
ðs;cÞ mesons separated by r ¼ jr1 − r2j. Such oper-

ators should be well suited to excite the ground state of the
corresponding ðjjzj; P; PxÞ sector, in particular for large
Q̄Q̄ separations r, where one expects two weakly interact-

ing Bð�Þ
ðs;cÞ mesons (cf. the discussion in Sec. II B). Note,

however, that the arrangement of the four quarks qqQ̄Q̄ in
the ground state is decided by QCD dynamics, i.e.,
automatically realized in the lattice result according to
QCD and not by the structure of the employed creation
operators. For example, in recent lattice QCD work on
tetraquark candidates, it has been demonstrated that oper-
ators similar to (6) generate significant overlap to a variety
of different four-quark structures, including mesonic mol-
ecules, diquark-antidiquark pairs and two essentially non-
interacting mesons [41,42].
In previous computations [13,30,31], we have consid-

ered light quarks q ∈ fu; dg (due to technical reasons, the
quark mass mu;d was chosen unphysically heavy corre-
sponding to a pion mass mπ ≈ 340 MeV; cf. also the first
line in Table II). We studied the scalar isosinglet with
antisymmetric spin j ¼ 0 and flavor qq ¼ ðud − duÞ= ffiffiffi

2
p

(in the following denoted as the scalar u=d channel), as well
as the vector isotriplet with symmetric spin j ¼ 1 and flavor
qq ∈ fuu; ðudþ duÞ= ffiffiffi

2
p

; ddg (in the following denoted
as the vector u=d channel), which are the two attractive
channels between ground state mesons (B and B�). Note
that the scalar u=d channel was found to be more attractive

TABLE II. Ensembles of gauge link configurations used for the
computation of b̄ b̄ potentials (β: inverse gauge coupling; size:
number of lattice sites; μl: bare u=d quark mass in lattice units; a:
lattice spacing; mπ: pion mass; configurations: number of gauge
link configurations used).

β Size μl a in fm mπ in MeV Configurations

3.90 243 × 48 0.0040 0.079 340 480
4.35 323 × 64 0.00175 0.042 352 100
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than the vector u=d channel, as expected from quark model
considerations [cf. Eq. (1) and the discussion in Sec. II B].
In this work, we extend these computations to heavier

pairs of light quarks qq ¼ ss and qq ¼ cc. For these
symmetric flavor combinations, the only attractive channel

for two ground state mesons (Bð�Þ
s;c ) is the vector channel,

i.e., with light quark spin j ¼ 1. It corresponds to
Γ ¼ ð1þ γ0Þγj, j ¼ 1; 2; 3, in the creation operator (6).
To be able to study also the scalar channel, i.e., j ¼ 0,

with strange and charm quarks, we consider two
hypothetical degenerate flavors with the mass of the strange
or the charm quark, which allow us to form antisymmetric
flavor combinations qq¼ðsð1Þsð2Þ−sð2Þsð1ÞÞ= ffiffiffi

2
p

and qq¼
ðcð1Þcð2Þ−cð2Þcð1ÞÞ= ffiffiffi

2
p

. It corresponds to Γ ¼ ð1þ γ0Þγ5
in the creation operator (6).
For further details regarding the lattice QCD computa-

tion of b̄ b̄ potentials, we refer to [30,31]. Examples for
qq ¼ ðud − duÞ= ffiffiffi

2
p

(scalar u=d channel) and for qq ∈
fuu; ðudþ duÞ= ffiffiffi

2
p

; ddg (vector u=d channel) are shown
in [13], Fig. 1.

C. Fitting Eq. (4) to lattice QCD b̄b̄ potential results

To describe the lattice QCD b̄b̄ potential results V latðrÞ
by continuous functions, we perform uncorrelated χ2

minimizing fits of Eq. (4), i.e., we minimize

χ2 ¼
X

r¼rmin;…;rmax

�
VðrÞ − V latðrÞ

ΔV latðrÞ
�

2

ð7Þ

with respect to the parameters α, d, and V0, while keeping
p ¼ 2 fixed (cf. the discussion in Sec. II C) [43]. ΔV lat

denote the corresponding statistical errors.
We perform these fits for the scalar u=d, the vector u=d,

the scalar s, the vector s, and the scalar c channel. The
lattice QCD b̄b̄ potential of the remaining vector c channel
is, however, strongly screened and consistent with
V latðrÞ ¼ 0 for r > 2a. Such results are not sufficient to
perform a stable fit.
To investigate and quantify systematic errors, we do not

only perform a single fit for each of the mentioned five
channels, but a large number of fits, where we vary the
following parameters:

(i) The range of temporal separations tmin ≤ t ≤ tmax of
the correlation function Cðt; rÞ [Eq. (5)] at which
V latðrÞ is read off, according to:
(a) tmax − tmin ≥ a;
(b) for u=d channels:

4a ≤ tmin, tmax ≤ 9a;
(c) for s and c channels:

10a ≤ tmin ≤ 14a, tmax ≤ 19a
(small tmin might lead to a contamination by excited states;
large tmin and tmax drastically increase statistical errors).

(ii) The range of spatial b̄ b̄ separations rmin ≤ r ≤ rmax

considered in the χ2 minimizing fit (7), according to:
(a) for the vector u=d channel:

rmin ¼ 2a [44];
(b) for all other channels:

rmin ∈ f2a; 3ag;
(c) for u=d channels:

rmax ∈ f8a; 9a; 10ag;
(d) for s and c channels:

rmax ∈ f7a; 8ag
[V latðrÞ at small r < 2a are expected to suffer from sizable
lattice discretization errors, while V latðrÞ at large r is
essentially a constant, i.e., has little effect on the relevant
fit parameters α and d].
For each of the fitting parameters α, d, and V0, we construct
a distribution by considering the results of all the above
listed fits weighted by expð−χ2=dofÞ with χ2 from Eq. (7).
The central values of α, d, and V0 are then defined as the
medians of the corresponding distributions and the lower/
upper systematic uncertainties are given by the difference
of the 16th/84th percentiles to the medians (in the case of a
Gaussian distribution, an uncertainty defined in this way
would correspond to its width, i.e., 1σ). Since in general the
distributions are asymmetric, the systematic uncertainties
are asymmetric as well. For more details regarding this
method of estimating systematic errors we refer to [45].

FIG. 3 (color online). Histograms used to estimate systematic
errors forα andd for the scalaru=d channel (green, red, andbluebars
represent systematic, statistical, and combined errors, respectively).
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Finally, to include statistical errors, we compute the
jackknife errors of the medians of α, d, and V0 and add
them in quadrature to the corresponding systematic
uncertainties.
To illustrate this error estimation procedure, we show

in Fig. 3 example histograms representing the distribution
of α and d for the scalar u=d channel. The green, red, and
blue bars correspond to the systematic, statistical, and
combined errors, respectively. In the following, we will
always use and quote the combined errors represented by
the blue bars.

The final results for α and d are collected in Table III.
Note that within errors they agree with the model consid-
erations and crude quantitative expectations discussed in
Sec. II. We do not list results for V0, since it is an irrelevant
constant corresponding to twice the mass of a static-light
meson. The fit function (4) with the parameter sets from
Table III and the corresponding error bands are shown in
Fig. 4. Clearly, these results confirm the qualitative expect-
ations discussed in Sec. II B:

(i) The screening of the b̄ b̄ interaction is stronger for
heavier light quarks qq.

(ii) The scalar channels are more attractive than the
corresponding vector channels.

IV. DEPENDENCE OF THE EXISTENCE
OF qqb̄b̄ TETRAQUARK STATES ON THE

LIGHT QUARK MASS

In [13], we have found evidence for a bound state in the
scalar u=d channel, i.e., the existence of a qqb̄b̄ ¼ udb̄b̄
tetraquark. For heavier quarks qq, the effective b̄b̄ poten-
tials are less attractive. This has qualitatively been antici-
pated in Sec. II and quantified in Sec. III (in particular cf.

TABLE III. Parameters α and d obtained from χ2 minimizing
fits of (4) to lattice QCD b̄b̄ potential results.

qq Spin α d in fm

ðud − duÞ= ffiffiffi
2

p
scalar 0.35þ0.04

−0.04 0.42þ0.08
−0.08

uu, ðudþ duÞ= ffiffiffi
2

p
, dd vector 0.29þ0.04

−0.06 0.16þ0.02
−0.01

ðsð1Þsð2Þ − sð2Þsð1ÞÞ= ffiffiffi
2

p
scalar 0.27þ0.08

−0.05 0.20þ0.10
−0.10

ss vector 0.18þ0.09
−0.02 0.18þ0.11

−0.05

ðcð1Þcð2Þ − cð2Þcð1ÞÞ= ffiffiffi
2

p
scalar 0.19þ0.12

−0.07 0.12þ0.03
−0.02

FIG. 4 (color online). b̄ b̄ potentials in the presence of two lighter quarks qq (qq flavor: up/down in green, strange in blue, charm in
red; qq spin: j ¼ 0, i.e., scalar, in the upper line, j ¼ 1, i.e., vector, in the lower line). The plotted curves with the error bands correspond
to Eq. (4) with the parameter sets from Table III. Vertical lines indicate lattice separations r ¼ 2a; 3a;… of lattice QCD potential results
V latðrÞ used to generate the parameter sets from Table III via χ2 minimizing fits.
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the resulting values for α and d in Table III and the plots in
Fig. 4). Thus, for a sufficiently heavy pair of light quarks
qq we expect that the qqb̄ b̄ system will not anymore be
able to form a bound state. In the following, we investigate
whether this is already the case for strange and/or charm
quark masses. We also study the vector channels.

A. The b̄b̄ Hamiltonian

We define UðrÞ ¼ VðrÞjV0¼0;p¼2 with VðrÞ from of
Eq. (4). UðrÞ with a set of fit parameters α and d from
Table III corresponds to the ground state energy of a qqb̄b̄
4-quark system in a specific channel minus the energy of a

pair of far separated Bð�Þ
ðs;cÞ mesons. Thus, the corresponding

Hamiltonian for the relative coordinate of the b̄b̄ quarks is

H ¼ p2

2μ
þ 2mH þUðrÞ; ð8Þ

where μ ¼ mH=2 is the reduced mass. At large separations,

each b̄ quark carries the mass of a Bð�Þ
ðs;cÞ meson because of

screening, and thus mH ¼ m
Bð�Þ
ðs;cÞ

. At small separations,

mH ¼ mb could be more appropriate. Throughout this
section, we always consider two choices, mH ¼ mBðs;cÞ
and mH ¼ mb, which yield qualitatively identical results.
Note that any dependence on the heavy b̄ spins is neglected,
because VðrÞ has been computed in the static limit
mb → ∞. Since the b̄ quarks are quite heavy, we expect
the static limit to be a reasonable approximation.
In classical mechanics, the b̄ b̄ separation r would vanish

for the ground state, but after quantizing the system, a
bound 4-quark state (E < 2mH) may not exist anymore.

B. An analytical estimate for qqb̄ b̄ binding

In [13], we have derived an approximate analytical rule
for the existence/nonexistence of a bound qqb̄ b̄ state using
the Bohr-Sommerfeld quantization condition. If

μαd ≥
9π2

128 × 21=pðΓð1þ 1=2pÞÞ2 ð9Þ

is fulfilled, there should be at least one bound state. The
right-hand side of this rule has a rather moderate depend-
ence on the exponent p. For example, when p increases
from the expected values of 1.5 to 2.0 (cf. Sec. II C), the
right-hand side only changes from 0.55 to 0.60. Thus, the
existence of a bound state mainly depends on the product of
parameters μαd.
With the medians for the parameters α and d

(cf. Table III), we determine the left-hand side of
Eq. (9). For the reduced mass, we use both mH ¼ mBðs;cÞ
(mB ¼ 5279 MeV, mBs

¼ 5367 MeV, mBc
¼ 6276 MeV

[46]), which is certainly a good choice for large b̄ b̄

separations, and μ ¼ mb=2 (mb ¼ 4977 MeV, from quark
models [25]), which might be more appropriate for small
b̄ b̄ separations (cf. the discussion in Sec. IVA). The results
for μαd for the u=d, s and scalar c and vector channels are
collected in Table IV. For the scalar u=d channel, there is
strong indication for the existence of a tetraquark (i.e.,
μαd ≫ 0.60), which confirms our findings from [13]. For
the vector s channel and for charm quarks, bound qqb̄ b̄
states are not expected (i.e., μαd ≪ 0.60). For the vector
u=d and the scalar s channel the situation is less clear. A
more rigorous and quantitative analysis is needed, which is
part of the following section.

C. Numerical solution of the Schrödinger equation

To investigate the existence of a bound state more
rigorously, we solve the Schrödinger equation with the
Hamiltonian (8) numerically. The strongest binding is
expected in a s-wave, for which the radial equation is

�
−

1

2μ

d2

dr2
þUðrÞ

�
RðrÞ ¼ ðE − 2mHÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼EB

RðrÞ ð10Þ

with the wave function ψ ¼ ψðrÞ ¼ RðrÞ=r. If EB ¼
E − 2mH < 0, −EB can be interpreted as the binding
energy. We proceed as explained in [13] and solve this
equation by imposing Dirichlet boundary conditions
Rðr ¼ ∞Þ ¼ 0 and using 4th order Runge-Kutta shooting.
For the scalar u=d channel, the lowest eigenvalue

EB < 0, which implies the existence of a bound four-quark
state. For all other channels, i.e., the vector u=d and the s
and c channels, EB > 0, i.e., the corresponding qqb̄ b̄
tetraquarks will most likely not exist in these channels [47].
These findings confirm the analytical estimates obtained in
the previous subsection [Eq. (9) and Table IV].
The central value and the combined systematic and

statistical error for the binding energy EB of the tetraquark
state in the scalar u=d channel is obtained by the method
discussed in Sec. III C (generating a distribution for EB
from the fits listed in Sec. III C):

TABLE IV. Values for μαd, which represent the left-hand side
of Eq. (9). Values > 0.60 [right-hand side of Eq. (9) for p ¼ 2]
point toward the existence of a bound qqb̄ b̄ state, while values
< 0.60 are an indication against the existence of such a state.

μαd

qq Spin mH ¼ mBðs;cÞ mH ¼ mb

ðud − duÞ= ffiffiffi
2

p
scalar 1.97 1.86

uu, ðudþ duÞ= ffiffiffi
2

p
, dd vector 0.60 0.57

ðsð1Þsð2Þ − sð2Þsð1ÞÞ= ffiffiffi
2

p
scalar 0.74 0.69

ss vector 0.44 0.41
ðcð1Þcð2Þ − cð2Þcð1ÞÞ= ffiffiffi

2
p

scalar 0.34 0.27
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EB ¼ −90þ46
−42 MeV ðfor mH ¼ mBÞ; ð11Þ

EB ¼ −93þ47
−43 MeV ðfor mH ¼ mbÞ: ð12Þ

These binding energies are roughly twice as large as their
combined systematic and statistical errors. In other words,
the confidence level for this udb̄ b̄ tetraquark state is around
2σ. The corresponding histogram for mH ¼ mB is shown
in Fig. 5.
To crudely quantify also the nonexistence of bound four-

quark states in the remaining channels, we determine
numerically by which factors the heavy masses mH in
the Schrödinger equation (10) have to be increased to
obtain bound states, i.e., tiny but negative energies EB [the
potentials UðrÞ are kept unchanged, i.e., we stick to the
medians for α and d from Table III]. The resulting factors
are collected in Table V. While the scalar s channel is quite
close to be able to host a bound state, the scalar c channel
and the vector channels are rather far away, since they
would require b̄ quarks approximately 1.6…3.3 times as
heavy as they are in nature. Note that the factors listed in
Table V could also be relevant for quark models aiming at
studying the binding of tetraquarks quantitatively.
In Fig. 6, we present our results in an alternative

graphical way. Binding energy isolines EBðα; dÞ ¼
constant are plotted in the α − d-plane starting at a tiny
energy EB ¼ −0.1 MeV up to rather strong binding, EB ¼ −100 MeV (gray dashed lines have been computed

with mH ¼ mBðs;cÞ , gray solid lines with mH ¼ mb). The
three plots correspond to u=d, s and c light quarks qq,
respectively. Each fit of Eq. (4) to lattice QCD b̄ b̄ potential
results (cf. the detailed discussion about systematic error
estimation for α and d in Sec. III C) is represented by a dot
(red: scalar channels; green: vector channels; crosses:
rmin ¼ 2a; boxes: rmin ¼ 3a). The extensions of these
point clouds represent the systematic uncertainties with
respect to α and d. If a point cloud is localized above or left
of the isoline with EB ¼ −0.1 MeV (approximately the
binding threshold), the corresponding four quarks qqb̄ b̄
will not form a bound state. A localization below or right of

FIG. 5 (color online). Histogram used to estimate the system-
atic error for the binding energy EB for the scalar u=d channel and
mH ¼ mB (green, red, and blue bars represent systematic,
statistical, and combined errors, respectively).

FIG. 6 (color online). Binding energy isolines EBðα; dÞ ¼
constant in the α-d-plane for u=d, s, and c light quarks qq,
respectively (gray dashed lines: mH ¼ mBðs;cÞ ; gray solid lines:
mH ¼ mb). The red and green dots represent the fits of Eq. (4) to
lattice QCD b̄ b̄ potential results, while the red and green bars are
the corresponding combined systematic and statistical errors.

TABLE V. Factors by which the mass mH has to be multiplied
to obtain a tiny but negative energy EB. Factors ≪ 1 indicate
strongly bound states, while for values ≫ 1 bound states are
essentially excluded.

qq Spin mH ¼ mBðs;cÞ mH ¼ mb

ðud − duÞ= ffiffiffi
2

p
scalar 0.46 0.49

uu, ðudþ duÞ= ffiffiffi
2

p
, dd vector 1.49 1.57

ðsð1Þsð2Þ − sð2Þsð1ÞÞ= ffiffiffi
2

p
scalar 1.20 1.29

ss vector 2.01 2.18
ðcð1Þcð2Þ − cð2Þcð1ÞÞ= ffiffiffi

2
p

scalar 2.57 3.24
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that isoline is a strong indication for the existence of a
tetraquark. In case the point cloud is intersected by that
isoline, the estimated systematic error is too large to make a
definite statement regarding the existence or nonexistence of
a bound four-quark state. The big red and green bars in
horizontal and vertical direction represent the combined
systematic and statistical errors of α and d, as quoted in
Table III. One can observe and conclude the following
from Fig. 6:

(i) There is clear evidence for a tetraquark state in the
scalar u=d channel.

(ii) The scalar s channel is close to binding/unbinding.
A definite statement with our currently available
lattice QCD data is not possible.

(iii) The scalar c and all vector channels do not host a
bound four-quark state.

These findings are consistent with the results presented
above in Table IV and Table V.

V. CONCLUSIONS AND OUTLOOK

In a previous publication [13], we have found indication
for the existence of a qqb̄ b̄ tetraquark with qq ¼ ðud −
duÞ= ffiffiffi

2
p

(i.e., in the scalar u=d channel). In this work, we
extend these studies by considering for qq not only u=d, but
also heavier s and c quarks. To compute the b̄ b̄ potential, the
b̄ quarks are treated in the static limit, while the u=d=s=c
quarks are treated as quarks of finitemass (theu=d quarks are
unphysically heavy corresponding to a pion mass of approx-
imately 340 MeV). We use the Born-Oppenheimer approxi-
mation, which means that we consider the b̄ quarks in the
potential of the light u=d=s=c quarks. In order to determine
whether a bound state exists, we insert the resulting potential
to the radial Schrdinger equation of two b̄ quarks, or B
mesons, in an s-wave. In contrast to [13], we investigate and
quantify systematic uncertainties in detail, associated with
the extraction of b̄ b̄ potentials from lattice QCD correlation
functions.
Our main results are the following:
(i) We confirm the udb̄ b̄ tetraquark state in the scalar

u=d channel predicted in our previous paper [13]
with confidence level ≈2σ. The overall quantum
numbers of this state are IðJPÞ ¼ 0ð1þÞ. Note that
this state is stable with respect to the strong
interactions, but can, of course, decay weakly.

(ii) There is no bound four-quark state in the vector u=d
channel (IðJPÞ ¼∈ f1ð0þÞ; 1ð1þÞ; 1ð2þÞg). Note,
however, that we have been using unphysically
heavy u=d quarks (mπ ≈ 340 MeV). Since decreas-
ing the light quark mass should enhance binding, it
will be interesting to explore in the future whether a
bound four-quark state exists at physically light u=d
quark mass.

(iii) ssb̄ b̄ and ccb̄ b̄ tetraquarks, which correspond
to the vector s and c channels (JP∈f0þ;1þ;2þg),
do not exist.

(iv) It is of conceptual interest to introduce a hypothetical
second s or c quark flavor. Then it is possible to also
study the scalar s and c channels, i.e., ððsð1Þsð2Þ −
sð2Þsð1ÞÞ= ffiffiffi

2
p Þb̄b̄ and ððcð1Þcð2Þ − cð2Þcð1ÞÞ= ffiffiffi

2
p Þb̄b̄

systems (JP ¼ 1þ). While in the scalar c channel
there is no bound four-quark state, the situation is less
clear for s quarks. Improved lattice QCD results (less
statistical errors, finer resolution of b̄ b̄ separations)
are needed before a definite statement can be made.
Binding in the hypothetical scalar s channel would
indicate a fortiori binding for four-quark systems
ððus − suÞ= ffiffiffi

2
p Þb̄ b̄ and ððds − sdÞ= ffiffiffi

2
p Þb̄ b̄. Such

light-strange channels would then be highly relevant
for experimental tetraquark searches.

We consider these results to be important because they
indicate both to experimental collaborations and to quark
model phenomenologists which qqb̄ b̄ tetraquarks are
expected to exist and which are not.
To supply data for future quark model studies of tetra-

quarks, we also provide parametrizations of the potential
of two static antiquarks b̄ b̄ in the presence of two lighter
quarks qq, where qq∈ fðud−duÞ= ffiffiffi

2
p

;uu;ðudþduÞ= ffiffiffi
2

p
;

dd; ðsð1Þsð2Þ − sð2Þsð1ÞÞ= ffiffiffi
2

p
; ss; ðcð1Þcð2Þ − cð2Þcð1ÞÞ= ffiffiffi

2
p g.

Moreover, we have determined quantitatively for these
channels by which factor the heavy quark or meson mass
mH has to be increased to obtain a tetraquark state.
It is also interesting to compare our findings to other

groups studying the same or similar systems using, how-
ever, different theoretical approaches. For instance in [48],
in the framework of QCD sum rules, binding for flavors
equivalent to udb̄ b̄, usb̄ b̄, and ssb̄ b̄ has been found, and
no binding for doubly charmed tetraquarks. However, these
bound systems have JP ¼ 0− and JP ¼ 1− different from
our results. Another example using the Dyson-Schwinger
framework is [49], where a tetraquark composed of four
charm quarks, i.e., ccc̄ c̄, has recently been predicted with a
mass significantly lighter than 2mηc . In principle our static
antiquarks can also be considered as a crude approximation
of c̄ c̄. Since we do not find a bound state for qq ¼ cc, there
seems to be a qualitative discrepancy to our results, which
would be interesting to understand and to resolve.
As an outlook, it would be interesting to decrease the light

u=d quark mass to their physical value, since this should
increase the radius of a B meson, reduce screening and,
therefore, lead to a larger binding energy. As mentioned
above, a tetraquark could then also exist in the vector u=d
channel. Additionally, lighter u=d quark masses may also
allow the studyof lightmesonexchange interactions between
the two Bmesons. Because simulations and computations at
lighter u=d quark masses are computationally very expen-
sive, we leave them for a future publication.
Since there is a bound state for qq ¼ ðud − duÞ= ffiffiffi

2
p

, and
possibly even for qq ¼ ðsð1Þsð2Þ − sð2Þsð1ÞÞ= ffiffiffi

2
p

, it will be
very interesting to investigate usb̄ b̄ (or equivalently dsb̄ b̄)
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systems. This will, however, require additional computa-
tions and also the implementation of certain modifications
in our analysis procedure. We plan to study such flavor
combinations in the near future.
Another interesting, but very challenging task, is to

include corrections due to the heavy b̄ b̄ spins. While in
principle it is possible to compute such corrections using
lattice QCD (cf. [50,51], where this has been pioneered for
the standard static quark-antiquark potential), in practice we
expect this to be extremely hard for qqb̄ b̄ systems.
Therefore, a more promising and realistic approach seems
to include such spin-dependent interactions in the
Schrödinger equation, which will result in a coupled channel
differential equation. We are currently in the process of
exploring this approach, where first promising qualitative
results have recently been presented at a conference [52].
Once these techniques are fully developed for qqb̄b̄

systems, it will be most interesting to extend them to qq̄bb̄

systems and to study the crypto-exotic bb̄ tetraquark
candidates observed by the Belle collaboration [3].
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