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We present the results of a lattice study of the second moment of the light-cone pion distribution
amplitude using two flavors of dynamical (clover) fermions on lattices of different volumes and pion
masses down to mπ ∼ 150 MeV. At lattice spacings between 0.06 and 0.08 fm we find for the second
Gegenbauer moment the value a2 ¼ 0.1364ð154Þð145Þ at the scale μ ¼ 2 GeV in the MS scheme, where
the first error is statistical including the uncertainty of the chiral extrapolation, and the second error is the
estimated uncertainty coming from the nonperturbatively determined renormalization factors. The error
due to the continuum extrapolation cannot be quantified yet and is the only remaining significant source of
uncertainty.
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I. INTRODUCTION

Hard exclusive processes involving energetic pions in
the final state are sensitive to the momentum fraction
distribution of the valence quarks at small transverse
separations, usually called the pion distribution amplitude
(DA). Classical applications [1–3] have been to exclusive
two-photon processes, e.g., the pion electromagnetic form
factor at large momentum transfer and the transition form
factor γ� → πγ. The latter process plays a very special role
as the simplest hard exclusive reaction where QCD
factorization can be tested at a quantitative level. It received
a lot of interest recently, triggered by the partially con-
flicting measurements by BABAR [4] and BELLE [5] up
to photon virtualities of the order of 40 GeV2, see, e.g.,
[6–10]. Arguably, the most important application of the
pion DA is currently the study of semileptonic weak decays
B → πlν̄l at large recoil [11–13] using light-cone sum
rules (LCSR) [14,15] and weak hadronic decays B → ππ
etc. in the framework of QCD factorization [16,17].
Both reactions contribute prominently to the determina-
tion of parameters of the quark mixing matrix in the
Standard Model.
The precise definition of the pion DA ϕπðx; μ2Þ is based

on the representation [1–3] as the matrix element of a
nonlocal light-ray quark-antiquark operator. For example,
for a positively charged pion

h0jd̄ðz2nÞnγ5½z2n; z1n�uðz1nÞjπðpÞi

¼ ifπðp · nÞ
Z

1

0

dxe−iðz1xþz2ð1−xÞÞp·nϕπðx; μ2Þ; ð1Þ

where pμ is the pion momentum, nμ is a lightlike vector,
n2 ¼ 0, z1;2 are real numbers, ½z2n; z1n� is the Wilson line

connecting the quark and the antiquark fields and fπ ¼
132 MeV is the usual pion decay constant. The DA
ϕπðx; μ2Þ is scale dependent, which is indicated by the
argument μ2.
The physical interpretation of the variable x is that the

u-quark carries the fraction x of the pion momentum,
so that 1 − x is the momentum fraction carried by the
d̄-antiquark. Neglecting isospin breaking effects and
electromagnetic corrections the pion DA is symmetric
under the interchange x↔1 − x:

ϕπðx; μ2Þ ¼ ϕπð1 − x; μ2Þ: ð2Þ
Due to this symmetry, only the even moments involving the
momentum fraction difference

ξ ¼ x − ð1 − xÞ ¼ 2x − 1 ð3Þ

carry nontrivial physical information:

hξni ¼
Z

1

0

dxð2x − 1Þnϕπðx; μ2Þ; n ¼ 0; 2;…: ð4Þ

The definition in (1) implies the normalization condition

Z
1

0

dxϕπðx; μ2Þ ¼ 1: ð5Þ

A convenient parametrization of DAs is provided by
the conformal expansion [18–20]. The underlying idea is
to use the conformal symmetry of the QCD Lagrangian
to separate transverse and longitudinal variables in the
light-front pion wave function, similar in spirit to the
partial-wave decomposition in quantum mechanics.
The dependence on transverse coordinates is formulated
as a scale dependence of the relevant operators and is*Paula.Perez‑Rubio@ur.de
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governed by renormalization-group equations. The depend-
ence on the longitudinal momentum fractions is described
in terms of Gegenbauer polynomials C3=2

n ð2x − 1Þ which
correspond to irreducible representations of the collinear
conformal group SLð2;RÞ. In this way one obtains

ϕπðx; μ2Þ ¼ 6xð1 − xÞ
�
1þ

X∞
n¼2;4;…

anðμ2ÞC3=2
n ð2x − 1Þ

�
;

ð6Þ

where all nonperturbative information is contained in the
set of coefficients (Gegenbauer moments) anðμ20Þ at a
certain reference scale μ0. To leading-logarithmic accuracy
(LO), the Gegenbauer moments renormalize multiplica-
tively with the anomalous dimensions rising slowly with n.
Thus the higher-order contributions in the Gegenbauer
expansion are suppressed at large scales and asymptotically
only the leading term survives,

ϕas
π ðxÞ ¼ 6xð1 − xÞ; ð7Þ

which is usually referred to as the asymptotic pion DA. It is
widely accepted, however, that the pion DA deviates
significantly from its asymptotic form at scales that can
be achieved in experiments.
A particular model of the pion DA proposed by

Chernyak and Zhitnitsky in 1982 [21] has played an
important role in historic perspective. It was based on a
calculation of a2 using QCD sum rules [22], which resulted
in a large value a2 ∼ 0.5–0.6 (at the scale 1 GeV), and the
assumption that all higher-order coefficients can be
neglected.
Since then, different approaches have been used: QCD

sum rules with various improvements (e.g. [23–25]),
LCSR-based analysis of experimental data on the pion
electromagnetic and transition form factors (e.g. [7–9]) and
weak B-meson decay form factors (e.g. [13]), lattice
calculations [26,27] and recently also in the framework
of Dyson-Schwinger equations [28]. A recent compilation
of the existing results for a2 can be found in Table I of
Ref. [7].
Estimates of yet higher-order Gegenbauer coefficients

are rather uncertain. A direct calculation of a4 proves to be
difficult and its extraction from the experimental data on,
e.g., the pion transition form factor is complicated by the
fact the LO contribution is proportional to the sum of
Gegenbauer moments

Z
1

0

dx
x
ϕπðx; μ2Þ ¼ 3½1þ a2ðμ2Þ þ a4ðμ2Þ þ � � ��: ð8Þ

Thus, the values of a2ðμ2Þ and a4ðμ2Þ obtained in these
extractions appear to be strongly correlated. The strong
scaling violation in the pion transition form factor observed
by BABAR [4] (but not confirmed by BELLE [5]) would

imply a considerable enhancement of the pion DA close to
the end points, meaning that the expansion in Gegenbauer
polynomials is converging very slowly if at all, see the
detailed discussion in [6,7,9]. The forthcoming upgrade of
the Belle experiment and the KEKB accelerator [29], which
aims to increase the experimental data set by a factor of 50,
will allow one to measure transition form factors and
related observables with unprecedented precision and
resolve this issue. The question at stake is whether hard
exclusive hadronic reactions are under theoretical control,
which is highly relevant for all future high-intensity,
medium energy experiments like, e.g., PANDA. On the
theory side, several proposals exist how it might be possible
to access DA moments beyond the second one (or the DA
pointwise in x) on the lattice, e.g., [30,31], but the
corresponding techniques are only in the exploratory stage.
In this paper we extend the lattice study [26] of the

second moment of the pion DA by making use of a larger
set of lattices with different volumes, lattice spacings and
pion masses down to mπ ∼ 150 MeV and implementing
several technical improvements. We employ the variational
approach with two and three interpolators to improve the
signal from the pion state. The renormalization of the lattice
data is performed nonperturbatively utilizing a version of
the RI’-SMOM scheme. For the first time we include a
nonperturbative calculation of the renormalization factor
corresponding to the mixing with total derivatives, which
proves to have a significant effect. Our main result is

a2 ¼ 0.1364ð154Þð145Þð?Þ ð9Þ

for the second Gegenbauer moment of the pion DA, and

hξ2i ¼ 0.2361ð41Þð39Þð?Þ: ð10Þ

Both numbers refer to the scale μ ¼ 2 GeV in the MS
scheme. The first error combines the statistical uncertainty
and the uncertainty of the chiral extrapolation. The second
error is the estimated uncertainty contributed by the non-
perturbative determination of the renormalization and
mixing factors. Our lattice data are collected for the lattice
spacing a ¼ 0.06–0.08 fm, and this range is not large
enough to ensure a reliable continuum extrapolation for a2
and hξ2i. The corresponding remaining uncertainty is
indicated as (?). It has to be addressed in a future study.
The paper is organized as follows. In the next section we

discuss the aspects of the continuum description of the
pion DA that are relevant for our work. The basics of the
lattice formulation are given in Sec. III. An important
ingredient in our calculation is the nonperturbative evalu-
ation of the renormalization and mixing coefficients, which
is described in Sec. IV. The methods applied in the analysis
of the bare data are detailed in Sec. V. Our results are
presented in Sec. VI, followed by our conclusions and an
outlook. In an Appendix we collect Tables V, VI, VII, VIII,
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IX, and X of intermediate results for each gauge field
ensemble used in our work.

II. MOMENTS OF THE PION DISTRIBUTION
AMPLITUDE

The nonlocal operator in the expression for the pion DA
(1) is defined as a generating function for renormalized
leading-twist (i.e., twist two) local operators,

d̄ðz2nÞnγ5½z2n; z1n�uðz1nÞ

¼
X∞
k;l¼0

zk2z
l
1

k!l!
nρnμ1…nμkþlMðk;lÞ

ρμ1…μkþl ; ð11Þ

where

Mðk;lÞ
ρμ1…μkþl ¼ d̄ð0ÞD⃖ðμ1…D⃖μk

~Dμkþ1
… ~Dμkþl

γρÞγ5uð0Þ:
ð12Þ

Here Dμ is the covariant derivative and ð� � �Þ denotes the
symmetrization of all enclosed Lorentz indices and the

subtraction of traces. The local operators Mðk;lÞ
ρμ1…μkþl are

assumed to be renormalized, e.g., in the MS scheme.
As a consequence, moments of the pion DA are given by

matrix elements of local operators:

ikþlh0jMðk;lÞ
ρμ1…μkþl jπðpÞi ¼ ifπpðρpμ1…pμkþlÞhxlð1 − xÞki:

ð13Þ

Neglecting isospin breaking effects and electromagnetic
corrections one obtains the symmetry relation

h0jMðk;lÞ
ρμ1…μkþl jπðpÞi ¼ h0jMðl;kÞ

ρμ1…μkþl jπðpÞi ð14Þ

and thus

hxlð1 − xÞki ¼ hxkð1 − xÞli: ð15Þ

In addition, the product (Leibniz) rule for derivatives

Mðkþ1;lÞ
ρμ1…μkþlþ1

þMðk;lþ1Þ
ρμ1…μkþlþ1

¼ ∂ðμkþlþ1
Mðk;lÞ

ρμ1…μkþlÞ ð16Þ

gives rise to the momentum-conservation constraint

hxlþ1ð1 − xÞki þ hxlð1 − xÞkþ1i ¼ hxlð1 − xÞki: ð17Þ

Specializing to the second moment, lþ k ¼ 2, it is easy to
see that only one independent matrix element remains, e.g.,

hξ2i ¼ 1 − 4hxð1 − xÞi ð18Þ

or

a2 ¼
7

18
hC3=2

2 ð2x − 1Þi ¼ 7

12
½5hξ2i − 1�

¼ 7

3
½1 − 5hxð1 − xÞi�; ð19Þ

so that any moment hξ2i, a2, hxð1 − xÞi etc. can be used as
a nonperturbative parameter to characterize the shape of the
pion DA. Lacking any a priori information on the relative
size of the different contributions, all such choices are
equivalent. It is widely expected, however, that the numeri-
cal value of hξ2i is not far from 1=5 corresponding to the
asymptotic pion DA (7). Hence, if

hξ2i ¼ 1

5
þ 12

35
a2 ð20Þ

is determined with a given accuracy at some reference scale
μ0 by a certain nonperturbative method, and a2 is then
obtained from the relation (20), the error on a2 is strongly
amplified by the subtraction of the asymptotic contribution.
This effect is well known and has been observed in all
calculations up to date. The error on a2 is relevant as it
propagates through the renormalization group equations. In
other words, although using a2 as a nonperturbative
parameter instead of hξ2i for the pion DA at a low reference
scale ϕπðx; μ20Þ is just a rewriting, this choice is much more
adequate in order to describe the pion DA at high scales,
ϕπðx;Q2Þ, Q ≫ μ0, which enters QCD factorization the-
orems. Another issue to consider is that the relation in
Eq. (16) and therefore (18), (19), (20) can be broken by
lattice artifacts. Thus the choice of suitable operators
requires some care. We will discuss our choice in more
detail in the next section.

III. LATTICE FORMULATION

While the above relations refer to renormalized operators
in Minkowski space, we now move to Euclidean space and
define the bare operators

O−
ρμνðxÞ ¼ d̄ðxÞ½D⃖ðμD⃖ν − 2D⃖ðμ ~Dν

þ ~Dðμ ~Dν�γρÞγ5uðxÞ;
Oþ

ρμνðxÞ ¼ d̄ðxÞ½D⃖ðμD⃖ν þ 2D⃖ðμ ~Dν

þ ~Dðμ ~Dν�γρÞγ5uðxÞ ð21Þ

as our operator basis. On the lattice the covariant deriva-
tives will be replaced by their discretized versions.
The operator O−

ρμν can be written in a conventional
shorthand notation as

O−
ρμνðxÞ ¼ d̄ðxÞD↔ðμD

↔

νγρÞγ5uðxÞ ð22Þ
and its matrix element between the vacuum and the
pion state is proportional to the bare lattice value of
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hðx − ð1 − xÞÞ2i ¼ hξ2i. In the continuum, the operator
Oþ

ρμν is the second derivative of the axial-vector current:

Oþ
ρμνðxÞ ¼ ∂ðμ∂νOρÞðxÞ with

OρðxÞ ¼ d̄ðxÞγργ5uðxÞ: ð23Þ

However, this relation is violated on the lattice because of
discretization errors in the derivatives. The distinction
between Oþ

ρμν and ∂ðμ∂νOρÞ for finite lattice spacing
appears to be numerically important and will be discussed
in detail in what follows. Note that Oþ is the Euclidean
analogue of the Minkowski-space operator Mð0;2Þ þ
2Mð1;1Þ þMð2;0Þ such that its matrix element between
the vacuum and the pion state corresponds to the bare value
of hðxþ 1 − xÞ2i ¼ h12i.
The corresponding renormalized (e.g., in the MS

scheme) axial-vector current is then given by

OMS
ρ ðxÞ ¼ ZAOρðxÞ ð24Þ

with ZA ≠ 1 on the lattice.
In order to express its matrix elements in terms of the

physical quantities introduced in Minkowski space we
apply the rules

γ0M ¼ γ4; γjM ¼ iγj ð25Þ

for j ¼ 1; 2; 3, where the subscript M distinguishes the
Minkowski objects. Consequently,

γM5 ¼ iγ0Mγ
1
Mγ

2
Mγ

3
M ¼ −γ1γ2γ3γ4 ¼ −γ5: ð26Þ

The components of the three-vector p of the spatial
momentum of the pion will be denoted by pj, although
they are equal to the contravariant space components of the
Minkowski momentum p. The time component of the
Minkowski momentum is identified with the corresponding
energy: p0 ¼ EπðpÞ. In this way one gets in Euclidean
notation

h0jOMS
4 ð0ÞjπðpÞi ¼ −iEπðpÞfπ; ð27Þ

h0jOMS
j ð0ÞjπðpÞi ¼ −pjfπ: ð28Þ

Similarly, the Euclidean space components of the coor-
dinate vector x are identified with the contravariant com-
ponents of the Minkowski space-time four-vector, while for
the time components we have x0 ¼ −ix4. This entails the
following rule for the covariant derivatives:

−iDM
0 ¼ D4; DM

j ¼ Dj: ð29Þ

Therefore we find, e.g., for j ≠ k

h0jOMS−
4jk ð0ÞjπðpÞi ¼ ifπhξ2iEπðpÞpjpk: ð30Þ

The operators O−
ρμν and Oþ

ρμν mix under renormalization
even in the continuum. On the lattice the continuous
rotational Oð4Þ symmetry of Euclidean space is broken
and reduced to the discrete Hð4Þ symmetry of the hyper-
cubic lattice. This symmetry breaking can introduce addi-
tional mixing operators. It can even lead to mixing of the
operators of interest with operators of lower dimension
such that the mixing coefficients are proportional to powers
of 1=a. This complicates the renormalization procedure
significantly. However, it may be possible to choose the
lattice operators such that they belong to an irreducible
representation of Hð4Þ which forbids mixing with further
operators, in particular with lower-dimensional operators.
In the present case there is one such choice, given by the
operators O�

ρμν with all three indices different. For the
computation of the required matrix elements we can restrict
ourselves to the operators (see, e.g., [26,27])

O�
4jk; j ≠ k ∈ f1; 2; 3g: ð31Þ

The renormalized operators are then given by

OMS−
4jk ðxÞ ¼ Z11O−

4jkðxÞ þ Z12O
þ
4jkðxÞ;

OMSþ
4jk ðxÞ ¼ Z22O

þ
4jkðxÞ: ð32Þ

Note that due to the discretization artifacts in the derivatives
one cannot expect Z22 to be equal to ZA.

For the calculation of hξ2iMS and aMS
2 we are now left

with two tasks: computation of the bare matrix elements
and evaluation of the renormalization factors. We extract
the bare matrix elements from two-point correlation func-
tions of the operators O�

ρμν and Oρ with suitable interpolat-
ing fields JðxÞ for the π-mesons. For the latter we consider
the two possibilities

J5ðxÞ ¼ ūðxÞγ5dðxÞ;
J45ðxÞ ¼ ūðxÞγ4γ5dðxÞ ð33Þ

with smeared quark fields. The details of our smearing
algorithm will be given below. Let

CA
ρ ðt;pÞ ¼ a3

X
x

e−ip·xhOρðx; tÞJAð0Þi;

C�;A
ρμν ðt;pÞ ¼ a3

X
x

e−ip·xhO�
ρμνðx; tÞJAð0Þi; ð34Þ

where A ¼ 5 or A ¼ 45, p is the three-vector of the spatial
momentum, and the summation goes over the set of spatial
lattice points x for a given Euclidean time t.
For times t, where the correlation functions are saturated

by the contribution of the lowest-mass pion state, we expect
that, e.g.,
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C�;A
ρμν ðt;pÞ ¼ h0jO�

ρμνð0ÞjπðpÞihπðpÞjJAð0Þj0i

×
1

2E
½e−Et þ τOτJe−EðT−tÞ�: ð35Þ

Here E≡ EπðpÞ, T is the temporal extent of our lattice, and
the τ-factors take into account transformation properties of
the correlation functions under time reversal. One finds
τJ5 ¼ −1, τJ45 ¼ 1, τO ¼ 1 for the operators O�

4jk, O4 and
τO ¼ −1 for Oj, where j; k ¼ 1; 2; 3. We utilize these
symmetries in order to reduce the statistical fluctuations of
our raw data, i.e., we average over the two corresponding
times t and T − t with the appropriate sign factors.
From the ratios

R�;A
ρμν;σ ¼ C�;A

ρμν ðt;pÞ
CA
σ ðt;pÞ

ð36Þ

we can extract the required bare matrix elements
h0jO�

ρμνð0ÞjπðpÞi, which carry the information on the
second moment of the pion DA.
Equation (30) shows that a calculation of matrix ele-

ments of O�
4jk requires two nonvanishing spatial compo-

nents of the momentum. We choose them as small as
possible, p ¼ 2π=L, where L is the spatial extent of our
lattice. To suppress statistical fluctuations we average over
the possible directions, e.g., p ¼ ðp; p; 0Þ, p ¼ ðp;−p; 0Þ,
p ¼ ð−p; p; 0Þ, p ¼ ð−p;−p; 0Þ for j ¼ 1, k ¼ 2. If the
correlation functions are dominated by the single-pion
states, the time-dependent factors in the ratios of correlation
functions cancel and we obtain, e.g., for the operator O�

412

and the momentum p ¼ ðp; p; 0Þ

R�;A
412;4 ¼ −

�
2π

L

�
2

R�; ð37Þ

where the constants R� are related to the bare lattice values
of the second moment of the pion DA through

hξ2ibare ¼ R−; abare2 ¼ 7

12
ð5R− − RþÞ: ð38Þ

They should not depend on the choice of the interpolating
field JA. Note that Rþ ≠ 1 and therefore for bare quantities

abare2 ≠
7

12
ð5hξ2ibare − 1Þ: ð39Þ

For the renormalized moments in the MS scheme we obtain

hξ2iMS ¼ ζ11R− þ ζ12Rþ;

aMS
2 ¼ 7

12
½5ζ11R− þ ð5ζ12 − ζ22ÞRþ�; ð40Þ

where

ζ11 ¼
Z11

ZA
; ζ12 ¼

Z12

ZA
; ζ22 ¼

Z22

ZA
ð41Þ

are ratios of renormalization constants defined in the next
section.
In the continuum limit we expect that

Z22h0jOþ
4jkð0ÞjπðpÞi ¼ −ZApjpkh0jO4ð0ÞjπðpÞi

¼ ipjpkEπðpÞfπ: ð42Þ

Hence the quantity

h12iMS ≔
Z22

ZA

h0jOþ
4jkð0ÞjπðpÞi

ð−pjpkÞh0jO4ð0ÞjπðpÞi
¼ ζ22Rþ ð43Þ

should approach unity as the lattice spacing tends to zero.
In this case the relation

aMS
2 ¼ 7

12
ð5hξ2iMS − 1Þ ð44Þ

is recovered [cf. Eq. (19)], whereas for finite lattice spacing
it follows from (40)

aMS
2 ¼ 7

12
ð5hξ2iMS − h12iMSÞ: ð45Þ

We emphasize that Eq. (44) is only recovered in the
continuum limit, which is always delicate. There are two
possibilities: Either hξ2i is measured on the lattice, the result
extrapolated to zero lattice spacing, and at the final step a2 is
obtained using the relation (44), or a2 is calculated directly
on the lattice and then extrapolated to the continuum limit.
The first approach was used in Refs. [26,27] whereas in this
paper we use the second method.

IV. RENORMALIZATION CONSTANTS

From our bare matrix elements we have to compute the
corresponding renormalized matrix elements in the MS
scheme, which is used in the perturbative calculations. In
the continuum we therefore have to deal with the renorm-
alization of the two mixing operator multiplets given in
Eq. (21). Note that Oþ

ρμν, being the second derivative of the
axial-vector current, has vanishing forward matrix ele-
ments, at least in the continuum.
On the lattice we work with the operator multiplets

Oþ
423; Oþ

413; Oþ
412; Oþ

123 ð46Þ

and

O−
423; O−

413; O−
412; O−

123: ð47Þ

Under the hypercubic groupHð4Þ, bothmultiplets transform
identically according to a four-dimensional irreducible
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representation [32]. The symmetry properties of these
multiplets ensure that they do not mix with any other
operators. Because of the well-known shortcomings of
lattice perturbation theory wewant to determine the renorm-
alization andmixing factors nonperturbatively on the lattice,
utilizing a variant of the RI’-MOM scheme. However, since
forward matrix elements of Oþ

ρμν eventually vanish, we
cannot use the momentum geometry of the original
RI’-MOM scheme but have to work with a kind of
RI’-SMOM scheme [33].
In order to describe our renormalization procedure we

consider a somewhat more general situation than what is
needed in this paper. Let OðmÞ

i ðxÞ (i ¼ 1; 2;…; d,
m ¼ 1; 2;…;M) denote M multiplets of local quark-
antiquark operators which transform identically according
to some irreducible, unitary, d-dimensional representation
of Hð4Þ. Call the unrenormalized, but (lattice-)regularized

vertex functions (in the Landau gauge) VðmÞ
i ðp; qÞ, where p

and q are the external quark momenta. The corresponding
renormalized (in the MS scheme) vertex functions are

denoted by V̄ðmÞ
i ðp; qÞ. The dependence of V̄ðmÞ

i on the
renormalization scale μ is suppressed for brevity. Note that

VðmÞ
i carries Dirac indices and is therefore to be considered

as a 4 × 4-matrix. (The color indices have been aver-
aged over.)
We choose

p ¼ μffiffiffi
2

p ð1; 1; 0; 0Þ; q ¼ μffiffiffi
2

p ð0; 1; 1; 0Þ ð48Þ

such that p2 ¼ q2 ¼ ðp − qÞ2 ¼ μ2. As our renormaliza-
tion condition we take (in the chiral limit)

Xd
i¼1

trðB̂ðmÞ
i B̂ðm0Þ†

i Þ ¼ Z−1
q

XM
m00¼1

Ẑmm00
Xd
i¼1

trðVðm00Þ
i B̂ðm0Þ†

i Þ;

ð49Þ

where B̂ðmÞ
i is the lattice Born term corresponding to VðmÞ

i .
The wave function renormalization constant of the quark
fields Zq is determined from the quark propagator, as usual
[34], and subsequently converted to the MS scheme. Using
the lattice Born term instead of the continuum Born term
and proceeding analogously in the calculation of Zq

ensures that Ẑ is the unit matrix in the free case.
The renormalization matrix Ẑ leads from the bare

operators on the lattice to renormalized operators in our
SMOM scheme. The matrix Z transforming the bare
operators into renormalized operators in the MS scheme
is then given by Z ¼ CẐ, where the matrix C is defined as

XM
m00¼1

Xd
i¼1

Cmm00 trðBðm00Þ
i Bðm0Þ†

i Þ ¼
Xd
i¼1

trðV̄ðmÞ
i Bðm0Þ†

i Þ: ð50Þ

Here V̄ðmÞ
i is the renormalized vertex function in the MS

scheme and BðmÞ
i is the continuum Born term such that the

conversion matrix C is completely determined from a
continuum calculation.
Here we have to consider the casesM ¼ 2, d ¼ 4 for the

multiplets (46), (47) and M ¼ 1, d ¼ 4 for the axial-vector
current. The required MS vertex functions in the chiral limit
for up to two loops can be extracted from Refs. [35,36]. As
we are only interested in ratios of renormalization factors,
Zq drops out and is not needed. In the following we
describe our method for the determination of the renorm-
alization matrix of the multiplets (46), (47). The procedure
for the ratios with ZA is completely analogous, because the
anomalous dimension of the nonsinglet axial-vector current
vanishes.
The calculation of the vertex functions with the help of

momentum sources is straightforward. Partially twisted
boundary conditions applied to the quark propagators allow
us to vary the renormalization scale μ independently of the
lattice size. The ensembles used for the evaluation of the Z
matrices according to the above formulas are listed in
Table I. Due to the rather small quark masses the sub-
sequent chiral extrapolation appears to be quite safe.
Ideally, the renormalization scale μ should satisfy the

conditions

1=L2 ≪ Λ2
QCD ≪ μ2 ≪ 1=a2 ð51Þ

for a lattice with lattice spacing a and extent L. Then lattice
artifacts would be negligible and the scale dependence could
be described by low-order continuum perturbation theory.
However, the above conditions are hard to realize in practice
and theZ-values at any given scale suffer fromdiscretization
artifacts as well as from truncation errors of the perturbative
expansions. Therefore we try to exploit as much of the
available nonperturbative information as possible by per-
forming a joint fit of the μ-dependence of the chirally
extrapolated renormalization matrices Zða; μÞMC for our
three β-values β ¼ 5.20, 5.29 and 5.40.

TABLE I. Ensembles used for nonperturbative renormalization.
For pion masses and lattice spacings in physical units see
Table IV.

β κ Size

5.20 0.13550 323 × 64
5.20 0.13584 323 × 64
5.20 0.13596 323 × 64

5.29 0.13620 323 × 64
5.29 0.13632 323 × 64
5.29 0.13640 643 × 64

5.40 0.13640 323 × 64
5.40 0.13647 323 × 64
5.40 0.13660 483 × 64
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The choice of the fitting procedure is motivated by the
following considerations. The (perturbative) running of the
Z-matrices is governed by the anomalous dimension matrix

γ ¼ −
�
μ
dZ
dμ

�
Z−1: ð52Þ

Introducing the running renormalized coupling gðμÞ with
μ dg=dμ ¼ βðgÞ we get

dZ
dg

¼ −
γðgÞ
βðgÞZ: ð53Þ

This system of differential equations can formally be
solved in the form

ZðμÞZ−1ðμ0Þ ¼
X∞
n¼0

ð−1Þn
Z

gðμÞ

gðμ0Þ
dgn

Z
gn

gðμ0Þ
dgn−1…

×
Z

g2

gðμ0Þ
dg1

γðgnÞ
βðgnÞ

…
γðg2Þ
βðg2Þ

γðg1Þ
βðg1Þ

: ð54Þ

From the three-loop anomalous dimension matrix one can
calculate a corresponding approximation of Wðμ; μ0Þ ≔
ZðμÞZ−1ðμ0Þ, which should describe the μ-dependence for
sufficiently large scales μ if there were no discretization
effects. Adding a plausible ansatz for an effective descrip-
tion of these lattice artifacts we arrive at the following fit
function for the matrices Zða; μÞMC:

Zða; μÞMC ¼ Wðμ; μ0ÞZða; μ0Þ þ A1a2μ2 þ A2ða2μ2Þ2
þ A3ða2μ2Þ3: ð55Þ

The fit parameters are the entries of the three renormaliza-
tion matrices Zða; μ0Þ at the reference scale μ0 and the
entries of the three matrices Ai parametrizing the lattice
artifacts. Note that we allow for a nonvanishing value of Z21

although Z21 vanishes in the continuum.
The statistical errors of the data are quite small, in

particular for larger scales, and the resulting statistical
errors of the fit parameters turn out to be unrealistically tiny.
Therefore the statistical errors will be ignored in the
following. The systematic uncertainties, on the other hand,
are much more important. In order to estimate them we
perform a number of fits varying exactly one element of the
analysis at a time. More precisely, we choose as represen-
tative examples for fit intervals 4 GeV2 < μ2 < 100 GeV2

and 2 GeV2 < μ2 < 30 GeV2, and we use the expressions

for the MS vertex functions V̄ðmÞ
i with nloops ¼ 1; 2. For the

parametrization of the lattice artifacts we either take the
complete expression in Eq. (55) or we set A3 ¼ 0. Finally,
we consider values for r0 and r0ΛMS corresponding to the
results given in Ref. [37]. The various possibilities are
compiled in Table II.

As an example we show the fit results for β ¼ 5.40 in
Table III, choosing μ20 ¼ 4 GeV2. The numbers for the
other β-values are similar.
The largest effect comes from the variation of nloops:

Working with the one-loop vertex functions increases the
result for ζ11 by about 5%, and the modulus of the mixing
coefficient ζ12 increases even by about 17%. In order to

obtain our final numbers for hξ2iMS, aMS
2 and h12iMS we

extract them from the raw data for R� using each of these
sets of values for ζ11, ζ12 and ζ22. So we get six results for
each of our gauge field ensembles. As our central values we
take the results from fit 1. Defining δi as the difference
between the result obtained with the ζs from fit i and the
result determined with the ζs from fit 1, we estimate the
systematic uncertainties due to the renormalization factors

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22 þ ð0.5 · δ3Þ2 þ δ24 þ δ25 þ δ26

q
. Here we have multi-

plied δ3 by 1=2, because going from two loops to three or
more loops in the perturbative vertex functions is expected
to lead to a smaller change than going from one loop to two
loops. This should amount to a rather conservative error
estimate.
In Fig. 1 we show the entries of the matrix

W−1ðμ;μ0ÞZða;μÞMC¼Zða;μ0ÞþW−1ðμ;μ0Þ
× ½A1a2μ2þA2ða2μ2Þ2þA3ða2μ2Þ3�

ð56Þ

for μ20 ¼ 4 GeV2 at our three β-values along with the fit
curves resulting from fit 1 in Table II. The horizontal lines
represent the fitted values ζ11ða; μ0Þ etc.
In the previous paper [26] the renormalization and

mixing factors were evaluated in a mixed perturbative-
nonperturbative approach, based on the representation of
Oþ

ρμν as the second derivative of the axial-vector current

TABLE II. Choices for the fits.

Fit
number

Fit interval
(in GeV2) nloops

Lattice
artifacts

r0
(in fm) r0ΛMS

1 4 < μ2 < 100 2 A3 ≠ 0 0.50 0.789
2 2 < μ2 < 30 2 A3 ≠ 0 0.50 0.789
3 4 < μ2 < 100 1 A3 ≠ 0 0.50 0.789
4 4 < μ2 < 100 2 A3 ¼ 0 0.50 0.789
5 4 < μ2 < 100 2 A3 ≠ 0 0.49 0.789
6 4 < μ2 < 100 2 A3 ≠ 0 0.50 0.737

TABLE III. Fit results at β ¼ 5.40 for μ20 ¼ 4 GeV2.

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Fit 6

ζ11 2.026 2.031 2.123 2.001 2.040 2.041
ζ12 −0.199 −0.205 −0.233 −0.188 −0.202 −0.203
ζ22 1.474 1.476 1.479 1.467 1.474 1.474
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[see Eq. (23)]. Repeating this calculation in a completely
nonperturbative setting we find that the overall renormal-
ization factor corresponding to ζ11 agrees within a few
percent. The nonperturbative mixing coefficient, on the
other hand, has the same (negative) sign as its perturba-
tively computed counterpart, but its modulus is up to 1
order of magnitude larger. This observation underlines the
necessity of nonperturbative renormalization, at least for
the presently reachable β-values.

V. ANALYSIS OF THE BARE DATA

As was already mentioned in Sec. III, the bare matrix
elements related to the pion DA’s second moments can be
extracted from ratios of lattice correlation functions given
by Eq. (36). We briefly describe our procedure.
The gauge field configurations used in this paper have

been generated with the Wilson gauge action and nf ¼ 2
flavors of nonperturbatively improved Wilson fermions. We
have analyzed O(1000–2000) configurations for three

different values of the gauge coupling, β¼5.20;5.29;5.40,
and pion masses in the range mπ ∼ 500–150 MeV. The
lattice spacings and spatial volumes vary between 0.06–
0.081 fm and ð1.71–4.57 fmÞ3, respectively. A list of our
ensembles can be found inTable IV. For scale settingwe used
the Sommer parameter with the value r0 ¼ 0.5 fm [37,38].
The correlation functions (34) have been computed for the

operatorsO4;O4jk [see Eq. (31)] leading to the ratiosR
�;Jopt
4jk;4 ,

where Jopt is discussed below. On most of the ensembles, we
performed more than one measurement per configuration to
increase the statistics. The source positions for the correlation
functions were selected randomly to reduce the autocorrela-
tions among configurations lying close to one another in the
Monte Carlo history. We want the interpolating operators to
have a good overlap with the ground state of the pion. To this
end, Wuppertal smearing [39,40] was applied to the sources,
with APE smeared [41] gauge fields.
In order to reduce the overlap with excited states even

further we have used the variational method [42–45] with
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FIG. 1 (color online). Renormalization and mixing factors ζij in the chiral limit, perturbatively scaled to μ0 ¼ 2 GeV [cf. Eq. (56)]
together with curves representing fit 1. The error bars show the statistical errors. The horizontal lines indicate the fitted values ζijða; μ0Þ.
Note that the fit is aimed at describing the data for large values of the scale μ, the fit interval being 4 GeV2 < μ2 < 100 GeV2.
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the two interpolators (33) to obtain an optimal interpolator
Jopt ¼ αJ5 þ βJ45. This procedure is based on the
t-dependent 2 × 2-matrix of two-point correlation functions
of the interpolating fields J5 and J45, projected onto
vanishing spatial momentum. Solving a generalized eigen-
value problem for this matrix allows one to determine Jopt
from the eigenvector belonging to the lowest energy
eigenvalue. Using this interpolator in the correlation func-
tions improves the signal of the ground state. We have also
tried to apply the additional interpolators method with a
third, time-shifted interpolator [46,47], but the results
changed only marginally. Our final numbers will be based
on the results obtained with Jopt. This differs from the
approach of Ref. [26], where only the interpolator J5 was
utilized in the final analysis.

To suppress statistical fluctuations, we have averaged
over all possible values of j; k, and all possible momentum
directions,

R�
av ¼

�
L
2π

�
2 1

12

X
j

X
k>j

X
pj¼�p

X
pk¼�p

jR�;Jopt
4jk;4 j; ð57Þ

where p ¼ 2π=L. The quantities R�
av have then been fitted

to a constant in a time interval where a plateau could be
identified. The choice of the fit ranges was based on the
goodness of the correlated χ2-values and the stability of the
results upon reducing the fit interval. The statistical errors
were evaluated using the jackknife procedure combined
with the binning method. We have observed that a binsize
nbin ¼ 4 saturates the statistical error, which means that the
autocorrelations are satisfactorily taken into account.
Our bare results are collected inTablesV,VI, andVII in the

Appendix. Comparing the errors in Table VII to those in
Tables V, VI, one gets an impression of the benefit of
employing thevariationalmethod. InFig. 2we displayR−

av ¼
hξ2ibare for the two interpolating operators J45 and J5
together with the corresponding results obtained in
Ref. [26]. We observe that our data are consistent with the
measurements in [26], but extend to considerably smaller
pion masses all the way down to the physical value.
Nevertheless, in the next section we will see that taking into
account Eq. (39) and using the nonperturbatively computed
value of ζ12 leads to a significant shift in the final result.

VI. RENORMALIZED RESULTS

In this section we present our results for the renor-
malized quantities h12iMS [cf. Eq. (43)], hξ2iMS and aMS

2

[cf. Eq. (40)]. For each ensemble, the final error budget
has to encompass the statistical errors coming from the
determination of the bare quantities on the lattice, the
systematic uncertainties due to the choice of the fit range,

TABLE IV. Ensembles used for this paper. The number of
measurements per configuration is shown in parentheses.

κ mπ= MeV Size mπL
Number of

configurations

β ¼ 5.20; a ¼ 0.081 fm; a−1 ¼ 2400 MeV
0.13596a 280 323 × 64 3.7 1999ð×4Þ

β ¼ 5.29; a ¼ 0.071 fm; a−1 ¼ 2800 MeV
0.13620a 430 243 × 48 3.7 1764ð×2Þ
0.13620a 422 323 × 64 4.8 1998ð×2Þ
0.13632 294 323 × 64 3.4 1999ð×1Þ
0.13632 289 403 × 64 4.2 2028ð×2Þ
0.13632a 285 643 × 64 6.7 1237ð×2Þ
0.13640a 150 643 × 64 3.5 1599ð×3Þ

β ¼ 5.40; a ¼ 0.060 fm; a−1 ¼ 3300 MeV
0.13640 491 323 × 64 4.8 982ð×2Þ
0.13647a 430 323 × 64 4.2 1999ð×2Þ
0.13660 260 483 × 64 3.8 2178ð×2Þ

aThese ensembles were generated on the QPACE systems,
financed primarily by the SFB/TR 55, while the others were
generated earlier within the QCDSF collaboration.
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FIG. 2 (color online). Bare results for R−
av from this paper (filled symbols) and from [26] (open symbols) for the two interpolators J45

(left panel) and J5 (right panel).
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and the errors of the renormalization constants. The
ensuing extrapolation to the physical pion mass and
eventually to the continuum will introduce further uncer-
tainties. In order to include the errors coming from the
renormalization constants we proceed as already indicated
at the end of Sec. IV. For every fit choice in Table II, we
use the renormalization factors ζ11, ζ12, ζ22 resulting
from this fit to compute the renormalized quantities
from the bare ratios R�

av according to Eqs. (40) and
(43), taking the correlations between Rþ

av and R−
av into

account. The central value is then taken from the first fit
choice, and the error due to the renormalization constants
is determined from the differences with the other fit
choices, as described in Sec. IV. In the following plots we
show the central values together with their statistical
errors, while the errors coming from the renormalization
constants are not included, but are given in the Tables.
We start by presenting our results for h12iMS. In the

continuum limit, this quantity should be one for all pion
masses. Results for all ensembles are presented in

Table VIII. In Fig. 3, h12iMS is plotted for the three
available lattice spacings using data for mπL ∼ 3.4–3.8
and mπ ∼ 260–294 MeV (or mπ ∼ 280 MeV for short; the
mass dependence is rather weak).
We also show an extrapolation to the continuum limit

assuming a linear dependence on a2. We see that the result
is consistent with unity within errors:

h12iMS
a→0 ¼ 0.9963ð186Þð51Þ: ð58Þ

Here the first error is statistical, and the second error
accounts for the uncertainty due to the renormalization
factors, estimated as described at the end of Sec. IV. It
might be surprising that an extrapolation linear in a2 works
so well although our operators are not OðaÞ-improved.
However, the covariant derivatives in the operator Oþ

4jk do
not introduceOðaÞ lattice artifacts, at least at tree level, and

the OðaÞ artifacts in O4 should cancel to some extent
between the numerator and the denominator in the ratio
(43). An extrapolation linear in a looks less stable due to
the rather small range of a-values and yields a result which
is a few percent larger.
Note that for a2 ∼ 5 × 10−3 fm2 corresponding to

β ¼ 5.29, where most of our data are collected, we obtain,
e.g., at mπ ¼ 294 MeV on a 323 × 64-lattice

h12iMS
a∼0.07 fm ¼ 0.9402ð66Þð54Þ: ð59Þ

The deviation from unity is only 6%, however, it results in a

25%–30% increase in the value of aMS
2 at the same lattice

spacing, calculated using Eq. (45) instead of the continuum
relation in Eq. (44).
The results for hξ2iMS and aMS

2 are given in Tables IX
and X, where the first error is statistical and the second
comes from the uncertainty in the determination of the
renormalization constants. Ideally, one would now take the
infinite volume limit, perform the continuum extrapolation
at fixed pion masses and finally extrapolate to the physical
mass, if it is not included in the range of simulated masses.
Unfortunately, our present set of data does not allow us to
perform all three extrapolations in a controlled way.
We can however study the finite size effects using the data

at β¼5.29, κ¼0.13620 (mπ ∼ 425 MeV) and κ¼0.13632
(mπ ∼ 290 MeV), where we have two and three volumes,

respectively. In Fig. 4 we plot aMS
2 and hξ2iMS versus mπL
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FIG. 4 (color online). Renormalized results aMS
2 (upper panel)

and hξ2iMS (lower panel) as a function ofmπL for ensembles with
β ¼ 5.29 and mπ ∼ 290 MeV. Only statistical errors are shown.
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FIG. 3 (color online). h12iMS as a function of the lattice spacing
a for ensembles with mπL ∼ 3.4–3.8 and mπ ∼ 280 MeV. Only
statistical errors are shown.

V. M. BRAUN PHYSICAL REVIEW D 92, 014504 (2015)

014504-10



for mπ ∼ 290 MeV and see that there are indications of
nonnegligible effects. In leading order chiral perturbation
theory, on the other hand, there are no finite volume
correction terms, as follows from the results in Ref. [48].
Similarly, we use our ensembles at mπ ∼ 280 MeV

and mπ ∼ 425 MeV, where we have three and two
different lattice spacings, respectively, to study discretiza-

tion effects. Results for aMS
2 and hξ2iMS are shown in Fig. 5.

Unfortunately, with only three lattice spacings at hand and

relatively large statistical errors, it is impossible to perform
a reliable continuum extrapolation.

According to Ref. [48], hξ2iMS, and hence also aMS
2 , do

not contain chiral logarithms, at least to one-loop order.
Therefore we assume a linear dependence on m2

π for the
extrapolation in the pion mass to the physical value. Since
the ensemble with the lightest pion is already very close to
the physical point, the chiral extrapolation is reliable. As
our lattice spacings do not vary that much, and a proper

continuum extrapolation of hξ2iMS and aMS
2 cannot be

attempted, we include results from all lattice spacings, but
take into account only the data for the largest volume,
where different volumes are available. The resulting

extrapolations of aMS
2 and hξ2iMS to the physical pion

mass are plotted in Fig. 6. As in these fits χ2=dof is greater
than one, we follow the procedure advocated by the Particle
Data Group [49] and multiply the errors by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=dof

p
. As

before, errors coming from the renormalization constants
are not included in the plot. We perform an extrapolation
for every fit choice given in Table II and compute the error
of the final number caused by the uncertainties of the
renormalization factors from the differences of the extrapo-
lated results as indicated at the end of Sec. IV.
From this procedure we find our final results

hξ2iMS ¼ 0.2361ð41Þð39Þ;
aMS
2 ¼ 0.1364ð154Þð145Þ ð60Þ

at the scale μ ¼ 2 GeV. They can be compared with the
earlier lattice calculations [26,27]

hξ2iMS ¼ 0.269ð39Þ; aMS
2 ¼ 0.201ð114Þ;

hξ2iMS ¼ 0.28ð1Þð2Þ; aMS
2 ¼ 0.233ð29Þð58Þ; ð61Þ
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FIG. 5 (color online). Lattice spacing dependence of aMS
2

(upper panel) and hξ2iMS (lower panel) for mπ ∼ 280 MeV
and mπL ∼ 3.4–3.8. Only statistical errors are shown.
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where, for [27], we have quoted the result for hξ2iMS on
their larger lattice and used the continuum relation in
Eq. (44) to calculate the corresponding value of the second

Gegenbauer moment aMS
2 .

It should, however, be kept in mind that all these
numbers were obtained on lattices with lattice spacings
between 0.06 and 0.08 fm. The investigation of discretiza-
tion effects for hξ2iMS and aMS

2 will remain a challenge for
future studies.

VII. CONCLUSIONS AND OUTLOOK

We have presented the most accurate, up to now, lattice
determination of the secondmoment of the pion distribution
amplitude using two flavors of dynamical (clover) fermions
on lattices of different volumes and pion masses down to
almost the physical value. So the chiral extrapolation per se
does not seem to be an issue. Also the omission of strange
quarks should not be of great importance. However, the
statistical fluctuations of the lattice matrix elements of
operators with derivatives are large for small pion masses
and require averaging over a large number of configurations
in order to obtain phenomenologically relevant precision.
We found that the signal can be somewhat improved by
using the variational method with the two interpolators
corresponding to the pseudoscalar and axial-vector currents.
The main difference of this paper from the previous

studies [26,27] is the nonperturbative evaluation of the full
2 × 2 mixing matrix of the operators with two derivatives.
In the framework of Ref. [26] the nonperturbative mixing
coefficient turns out to be of the same sign but up to 1 order
of magnitude larger than the same coefficient computed
perturbatively. This observation underlines the necessity of
nonperturbative renormalization, at least at the presently
reachable β-values.
Still, some uncertainty in the renormalization factors

remains. It is dominated by the uncertainty in the con-
version factors connecting the RI’-SMOM scheme to the

MS scheme, which are calculated in continuum perturba-
tion theory and are known to two-loop accuracy [35,36]. A
three-loop calculation is, therefore, needed in order to
further reduce the renormalization uncertainty and would
be extremely welcome.
In our paper we have also emphasized the importance of

using the corrected relation Eq. (45) between hξ2iMS and

aMS
2 for finite lattice spacing, instead of the continuum

relation in Eq. (44), due to discretization errors in deriv-
atives that lead to a violation of the product rule. This effect
is studied in detail.
From our data we cannot exclude significant discretization

effects in hξ2iMS and aMS
2 , but a quantitative study requires

simulations at smaller lattice spacings of the order of
a ∼ 0.04 fm, which are presently not available to us. Such
lattices will be generated in the future within the CLS effort
[50]. This will be a major step towards the calculation of the
second moment of the pion DA with fully controllable
accuracy. As a final remark,we note that the somewhat smaller

value of aMS
2 obtained in this paper seems to be favored by the

phenomenological studies of form factors in the framework of
light-cone sum rules, see, e.g., Refs. [7,9,11–13].
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APPENDIX: BARE AND RENORMALIZED RESULTS BY THE ENSEMBLE

The following Tables V, VI, VII, VIII, IX, and X summarize the results obtained for each gauge field ensemble separately.

TABLE V. Bare results for R�
av using J5 as interpolator.

β κl Size Fit range R−
av χ2=dof Fit range Rþ

av χ2=dof

5.20 0.13596 323 × 64 3–14 0.1674(36) 0.67 9–19 0.6013(46) 6.67
5.29 0.13620 243 × 48 8–12 0.161(25) 0.47 7–12 0.5792(97) 4.44
5.29 0.13620 323 × 64 3–14 0.1668(30) 0.73 11–20 0.6187(52) 7.73
5.29 0.13632 323 × 64 3–17 0.1705(78) 0.72 9–15 0.602(11) 7.76
5.29 0.13632 403 × 64 3–18 0.1756(33) 1.51 10–25 0.6213(36) 5.38
5.29 0.13632 643 × 64 7–15 0.1694(37) 0.82 15–26 0.6343(22) 6.67
5.29 0.13640 643 × 64 5–20 0.1627(56) 0.76 17–25 0.6421(61) 6.00
5.40 0.13640 323 × 64 3–15 0.1679(38) 0.59 14–25 0.654(14) 3.83
5.40 0.13647 323 × 64 3–15 0.1653(35) 1.04 15–22 0.657(21) 2.78
5.40 0.13660 483 × 64 3–15 0.1681(32) 0.81 15–25 0.6467(57) 4.22
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TABLE VII. Bare results for R�
av using the variational method with the interpolators J45, J5.

β κ Size Fit range R−
av χ2=dof Fit range Rþ

av χ2=dof

5.20 0.13596 323 × 64 3–16 0.1813(27) 0.63 10–19 0.6142(46) 0.52
5.29 0.13620 243 × 48 3–13 0.1660(52) 1.01 5–13 0.6039(54) 0.38
5.29 0.13620 323 × 64 4–16 0.1775(32) 0.52 9–16 0.6303(35) 0.41
5.29 0.13632 323 × 64 6–16 0.1710(120) 0.63 5–16 0.6289(44) 0.35
5.29 0.13632 403 × 64 2–23 0.1838(24) 1.52 14–24 0.6226(56) 0.40
5.29 0.13632 643 × 64 2–22 0.1761(21) 0.85 8–25 0.6353(14) 0.93
5.29 0.13640 643 × 64 2–20 0.1790(39) 0.78 10–20 0.6350(30) 1.35
5.40 0.13640 323 × 64 2–14 0.1773(27) 0.55 13–20 0.657(11) 0.45
5.40 0.13647 323 × 64 2–16 0.1742(22) 1.03 16–22 0.662(25) 0.26
5.40 0.13660 483 × 64 2–16 0.1794(24) 0.80 15–25 0.6534(53) 0.30

TABLE VI. Bare results for R�
av using J45 as interpolator.

β κl Size Fit range R−
av χ2=dof Fit range Rþ

av χ2=dof

5.20 0.13596 323 × 64 10–16 0.1859(91) 1.57 13–19 0.6354(72) 1.29
5.29 0.13620 243 × 48 7–13 0.1845(83) 1.08 10–15 0.680(12) 0.92
5.29 0.13620 323 × 64 10–15 0.1963(60) 0.13 18–24 0.617(10) 1.86
5.29 0.13632 323 × 64 9–15 0.155(14) 0.25 12–20 0.660(13) 0.67
5.29 0.13632 403 × 64 8–15 0.1976(49) 0.83 17–24 0.6441(74) 1.19
5.29 0.13632 643 × 64 10–25 0.1839(39) 1.59 16–30 0.6394(23) 1.64
5.29 0.13640 643 × 64 10–19 0.2015(97) 0.77 20–30 0.6321(67) 0.37
5.40 0.13640 323 × 64 7–15 0.1931(42) 0.41 16–25 0.682(13) 0.77
5.40 0.13647 323 × 64 3–13 0.1980(17) 0.59 17–22 0.682(17) 0.22
5.40 0.13660 483 × 64 14–20 0.1823(93) 0.60 19–29 0.6640(73) 0.52

TABLE VIII. Results for h12iMSðμ ¼ 2 GeVÞ using the variational method with the interpolators J45, J5. The first error corresponds to
the statistical fluctuations, and the second to the contribution from the uncertainty in the determination of the renormalization constants.

β κ Size h12iMSðμ ¼ 2 GeVÞ
5.20 0.13596 323 × 64 0.9298(70)(56)
5.29 0.13620 243 × 48 0.9028(81)(52)
5.29 0.13620 323 × 64 0.9422(53)(55)
5.29 0.13632 323 × 64 0.9402(66)(54)
5.29 0.13632 403 × 64 0.9308(84)(54)
5.29 0.13632 643 × 64 0.9498(20)(55)
5.29 0.13640 643 × 64 0.9494(44)(55)
5.40 0.13640 323 × 64 0.9690(159)(51)
5.40 0.13647 323 × 64 0.9757(371)(51)
5.40 0.13660 483 × 64 0.9632(79)(50)
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