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It is expected that nucleons and their parity partners become degenerate when chiral symmetry is
restored. We investigate this question in the context of the thermal transition from the hadronic phase to the
quark-gluon plasma, using lattice QCD simulations with Nf ¼ 2þ 1 flavors. We observe a clear sign of
parity doubling in the quark-gluon plasma. Besides, we find that the nucleon ground state is, within the
uncertainty, largely independent of the temperature, whereas temperature effects are substantial in the
negative-parity (N�) channel, already in the confined phase.
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I. INTRODUCTION

The role of discrete and continuous symmetries played a
fundamental role in the development of the theory of the
strong interaction, QCD. Chiral symmetry breaking and
its restoration remain topical subjects, mostly due to the
creation of the quark-gluon plasma at relativistic heavy-ion
collision experiments at the Large Hadron Collider (CERN)
and the Relativistic Heavy Ion Collider (BNL). It is
expected that chiral symmetry will be restored at high
temperature, as seen, e.g., in nonperturbative studies using
lattice QCD simulations [1,2].
In the past decades, chiral symmetry restoration at finite

temperature has been studied in great detail in the mesonic
sector [3]. One reason is that mesonic correlation functions
are relatively easily accessible on the lattice [4,5].
Moreover, susceptibilities related by chiral symmetry, such
as in the pion and scalar meson channels, can now be
computed using chiral lattice fermions [6]. Unlike the
mesonic sector, the baryonic sector has hardly been
investigated at finite temperature (early work on screening
masses from lattice QCD can be found in Ref. [7] and, in
the presence of a small chemical potential, in Ref. [8]).
Nevertheless, understanding the behavior of nucleons in a
hadronic medium or in the quark-gluon plasma is relevant
for heavy-ion collisions, where proton spectra are routinely
measured and compared to theoretical predictions. Just as
for mesons, possible in-medium modification of nucleons
and other baryons might affect signals observed in those
experiments.
In the baryon sector, the combination of chiral symmetry

and parity leads to a prediction readily testable in QCD:
namely that of parity doubling, i.e., a degeneracy between
channels related by parity, provided that both symmetries
are realized (the argument will be briefly reviewed below).
At zero temperature, where chiral symmetry is broken,
parity doubling is not observed, except perhaps in the case
of excited hadrons [9]. However, since chiral symmetry is

restored at high temperature, it should become relevant in
the quark-gluon plasma.
Recently the question of parity doubling has been taken

up in Ref. [10], where it was studied at three temperatures
in quenched lattice QCD. In this paper we present what is,
as far as we know, the first study of nucleons at finite
temperature in lattice QCD with Nf ¼ 2þ 1 dynamical
quarks, for a range of temperatures below and above the
deconfinement transition. We find clear indications of
parity doubling, occurring in coincidence with the decon-
finement crossover. Moreover, within our numerical uncer-
tainty, the mass of the nucleon ground state is found to be
independent of the temperature of the hadronic medium.

II. NUCLEON PROPAGATION

The standard interpolation operator for a nucleon, which
we will consider below, is given by (the material reviewed
here is well known; see, e.g., the textbooks [11,12])

ONðx; τÞ ¼ ϵabcuaðx; τÞ½uTbðx; τÞCγ5dcðx; τÞ�; ð1Þ

where u; d are the quark fields; a; b; c are color indices;
other indices are suppressed; and C denotes the charge
conjugation matrix. Under parity one finds that

PONðx; τÞP ¼ γ4ONð−x; τÞ; ð2Þ
and hence operators for the positive and negative parity
channels are obtained as

ON�ðx; τÞ ¼ P�ONðx; τÞ; P� ¼ 1

2
ð1� γ4Þ: ð3Þ

We consider the usual euclidean correlators, summed over
the Dirac indices and projected to zero momentum,

G�ðτÞ ¼
Z

d3xhON�ðx; τÞŌN�ð0; 0Þi: ð4Þ
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It follows from the properties under Euclidean time
reflection that, in the case of GþðτÞ, forward (backward)
propagation in time corresponds to the positive-parity
(negative-parity) channel. On a lattice at a nonzero temper-
ature T, with 0 ≤ τ < 1=T, the negative-parity channel is
then propagating with τ− ¼ 1=T − τ. Hence, both parity
channels can be obtained from the same correlator, either
GþðτÞ or G−ðτÞ. In the case that the signal is dominated by
the ground states in both channels, this leads to the simple
exponential ansatz,

G�ðτÞ ¼ A�e−m�τ þ A∓e−m∓ð1=T−τÞ; ð5Þ

with two masses m�. We note that the spectral representa-
tion is slightly more complicated than for mesonic corre-
lators and reads

G�ðτÞ ¼
Z

∞

−∞

dω
2π

�
e−ωτ

1þ e−ω=T
ρ�ðωÞ −

eωðτ−1=TÞ

1þ e−ω=T
ρ∓ðωÞ

�
;

ð6Þ

where ρ�ðωÞ are the spectral functions in the positive and
negative parity channels [13].
Provided that chiral symmetry is unbroken, performing a

chiral rotation on the quark fields immediately leads to the
result that the two parity channels are degenerate, and [12]

G�ðτÞ ¼ G∓ðτÞ ¼ G�ð1=T − τÞ; ð7Þ

up to overall minus signs. In nature, chiral symmetry is
broken at zero temperature. Indeed, the ground states in the
two parity channels differ substantially in mass, with the
nucleon Nð939Þ considerably lighter than the negative-
parity partner N�ð1535Þ. Here we study what happens
when the temperature is increased and chiral symmetry is
eventually no longer spontaneously broken. We only
consider GþðτÞ and drop the þ from now on.

III. LATTICE DETAILS

We study this question using lattice QCD simulations
with Nf ¼ 2þ 1 flavors on anisotropic lattices, with a
smaller temporal lattice spacing aτ < as, namely
as=aτ ¼ 3.5. We use a Symanzik-improved anisotropic
gauge action with tree-level tadpole coefficients and a
tadpole-improved Wilson-clover fermion action with stout-
smeared links; details on the lattice action and parameters at
zero temperature can be found in the work of the Hadron
Spectrum Collaboration [14]. The strange quark mass is
tuned to the physical value, while the light quarks corre-
spond to Mπ ¼ 384ð4Þ MeV, with Mπ=Mρ ¼ 0.466ð3Þ
[15]. We consider a number of ensembles at nonzero
temperature, as summarized in Table I. The pseudocritical
temperature Tc is determined via the renormalized
Polyakov loop. The larger value of Tc than expected is

primarily due to the light quarks being heavier than in
nature. More details on the finite-temperature ensembles
are available in Refs. [16,17].
For the nucleon operators, we employ the form (3), with

Gaussian smearing for the sources η and sinks, translated
over the lattice, using [18]

η0 ¼ Cð1þ κHÞnη; ð8Þ
where H is the spatial hopping part of the Dirac operator
and C is an appropriate normalization. Most of the results
are obtained using κ ¼ 8.7 and n ¼ 140 [19], applying the
same smearing parameters at all temperatures. The smear-
ing procedure was tuned to maximize the length of the
effective-mass plateau in the positive-parity nucleon chan-
nel at the lowest temperature. The links are APE smeared,
using one iteration with α ¼ 1.33 [20]. Correlation func-
tions are generated using the Chroma software suite [21]. A
discussion of smearing dependence is given at the end.
More details will be available in Ref. [13].

IV. RESULTS

The nucleon-nucleon correlators are shown in Fig. 1 on a
logarithmic scale as a function of τT, for the various
temperatures we consider (the lowest temperature is not
shown). In the hadronic phase, we observe approximate
exponential decay for both the forward and the backward
propagating mode, but with a clear absence of reflection
symmetry around τT ¼ 1=2, indicating that the positive-
parity nucleon, with mass mþ, is considerably lighter than
the negative-parity nucleon, with mass m−. As the temper-
ature is increased, the correlator becomes more and more
symmetric; we have used filled symbols to indicate at
which time slices the correlator is minimal, within the
statistical error. This moves toward the center of the lattice,
indicating that forward and backward propagation become
degenerate; i.e., we find parity doubling.
To find the possible temperature dependence of the

ground states, we show in Fig. 2 both parity channels

TABLE I. Details of the ensembles. The lattice size is N3
s × Nτ,

with the temperature T ¼ 1=ðaτNτÞ. Ncfg (Nsrc) denotes the
number of configurations (sources) used at each volume. The
spatial lattice spacing is as ¼ 0.1227ð8Þ fm, with anisotropy
as=aτ ¼ 3.5.

Ns Nτ T [MeV] T=Tc Ncfg Nsrc

24 128 44 0.24 171 2
24 40 141 0.76 301 4
24 36 156 0.84 252 4
24 32 176 0.95 1000 2
24 28 201 1.09 501 4
24 24 235 1.27 1001 2
24 20 281 1.52 1000 2
24 16 352 1.90 1001 2
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from the same correlator, but now as a function of τ=aτ,
starting at the opposite side of the lattice for the negative-
parity channel. The lowest temperature is now also
included. Note that we show the correlator up to its
minimum. On the positive-parity side, we observe consid-
erably less temperature dependence than on the negative-
parity side. This is further demonstrated in Table II, where
we show the results from fits to the exponential ansatz (5)
below Tc. The error combines estimates of statistical and
systematic uncertainties in quadrature. At the lowest
temperature, we note that both masses are higher than in
nature (see also Refs. [15,22]), presumably due to the
quarks being too heavy, but that the mass splitting
m− −mþ ∼ 700 MeV is of the right order, albeit with a
large error. The positive-parity mass is, within the error,
temperature independent, while m− shows significant

temperature dependence. We found that above Tc simple
exponential fits are no longer reliable. This may be due to
the absence of a clear ground state; i.e., the nucleon is no
longer a well-defined particle.
To study the onset of parity doubling in the confined

phase, the final column contains the dimensionless ratio

Δ ¼ m− −mþ
m− þmþ

; ð9Þ

with estimates of statistical and systematic errors added in
brackets. Note that in nature, Δ ¼ 0.241 at zero temper-
ature, while in the parity-degenerate case, Δ ¼ 0. We
observe a reduction of Δ as the temperature is increased,
with a rather large systematic error arising mostly from the
difficulty of determining the ground state mass in the
negative-parity channel at finite temperature.
To investigate parity doubling in more detail also

above Tc, we consider the following ratio of correlation
functions [10]:

RðτÞ ¼ GðτÞ −Gð1=T − τÞ
GðτÞ þ Gð1=T − τÞ : ð10Þ

Note that Rð1=T − τÞ ¼ −RðτÞ and hence Rð1=2TÞ ¼ 0.
Consider first low temperature. In the (extreme) case that
the correlator is dominated by the positive-parity ground
state and that the negative-parity ground state is much
heavier, m− ≫ mþ, we find that RðτÞ ¼ 1, except near
τT ¼ 1=2, due to the reflection asymmetry. On the
other hand, in the case of parity doubling, with
GðτÞ ¼ Gð1=T − τÞ, we find that RðτÞ ¼ 0. Hence, this
ratio lies naturally between 0 and 1.
The results for RðτÞ are shown in Fig. 3. We observe that

the ratio is distinctly different from zero in the hadronic
phase, indicating the absence of parity doubling, with an
appreciably lighter ground state in the positive-parity
channel. The ratio is fairly constant across the entire
Euclidean time range: the drop toward zero as τT
approaches 1=2 follows from the symmetry of RðτÞ, as
explained above, while for small τT the effects of excited
states enter. As the temperature is increased, the ratio
decreases nearly uniformly across the entire time range and
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FIG. 1 (color online). Euclidean correlator GðτÞ=Gð0Þ as a
function of τT. At each temperature, the filled symbols indicate
the minimum of the correlator, within the error.
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FIG. 2 (color online). Euclidean correlator GðτÞ=Gð0Þ vs τ=aτ
for the positive-parity channel (left) and negative-parity channel,
starting at the opposite side of the lattice (right).

TABLE II. Results from exponential fits to Eq. (5) below Tc,
with statistical and systematic errors added in quadrature. The
final column contains Δ ¼ ðm− −mþÞ=ðm− þmþÞ with esti-
mates of statistical and systematic errors added in brackets. In
nature, Δ ¼ 0.241 at T ¼ 0.

T=Tc aτmþ aτm− mþ [GeV] m− [GeV] Δ

0.24 0.213(5) 0.33(5) 1.20(3) 1.9(3) 0.209(28)(082)
0.76 0.209(16) 0.28(3) 1.18(9) 1.6(2) 0.138(29)(130)
0.84 0.192(17) 0.28(2) 1.08(9) 1.6(1) 0.197(39)(054)
0.95 0.198(25) 0.22(4) 1.12(14) 1.3(2) 0.052(35)(190)
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is close to zero in the quark-gluon plasma, the signal of
parity doubling.
To quantify the parity degeneracy further, we consider

the average ratio R, defined as

R ¼
P1

2
Nτ−1
n¼1 RðτnÞ=σ2ðτnÞP1

2
Nτ−1
n¼1 1=σ2ðτnÞ

; ð11Þ

where σðτÞ denotes the error in RðτÞ and τn ¼ naτ. Again,
the natural value of R is close to but below unity in the
chirally broken phase and close to zero in the parity-
doubling phase. The results for R are shown in Fig. 4. We
observe a clear crossover behavior from a nonzero value
below Tc to a value close to zero above Tc. The transition
coincides surprisingly well with the transition to the
deconfined phase, which is based on the behavior of the
Polyakov loop [17]. Since deconfinement and chiral
symmetry restoration are expected to occur around the
same temperature [1,2], the observed parity doubling can

hence be explained through the restoration of chiral
symmetry in the quark-gluon plasma.
To achieve these results, we found that it is essential to

suppress excited states at early Euclidean times, either by
using smeared sources and sinks or by considering only a
restricted time interval. This is in particular pertinent for
the Wilson-clover lattice fermions we use: since the Wilson
term violates chiral symmetry and becomes relevant at
larger energy scales, parity doubling of higher excited
states cannot be expected. This is demonstrated in Fig. 5,
where we show the dependence of R on various sources and
sinks. Point sources (no smearing) couple strongly to short-
distance states, for which chiral symmetry remains explic-
itly broken by the Wilson mass term. This can be partially
taken into account by excluding the first few time slices in
the analysis and considering only τ=aτ ≳ 5. Applying a
small number of smearing steps (n ¼ 10), but preserving all
time slices, has approximately the same effect, while also
excluding the early-time interval improves the signal
considerably. Finally, applying more smearing steps
(n ¼ 60; 140) allows for the signal of parity doubling to
fully emerge. We note that, since chiral symmetry breaking
for Wilson fermions at large energy scales is a lattice
artefact, it would be interesting to repeat this analysis using
chirally symmetric fermions (see, e.g., Ref. [23] for a study
of parity partners using domain-wall fermions at zero
temperature), especially in the chiral limit. Finally, we
have also verified that using different sources (with the
same quantum numbers) yields qualitatively the same
result [13].

V. SUMMARY

We have carried out a study of nucleons at finite temp-
erature using lattice QCD simulations with Nf ¼ 2þ 1
dynamical flavors over a range of temperatures. We found
approximate parity doubling, intimately linked with the
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FIG. 3 (color online). Ratio RðτÞ in Eq. (10) as a function of τT.
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FIG. 4 (color online). Averaged ratio R in Eq. (11) as a function
of T=Tc.
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transition to the deconfined phase. We found that the
positive-parity nucleon mass is largely independent of
the temperature in the hadronic phase, while the nega-
tive-parity channel shows clear temperature dependence
already below Tc. In the context of heavy-ion collisions, we
note that the temperature independence of the nucleon
justifies treating the proton as unmodified by the thermal
medium, while a temperature-dependentN� mass may have
implications for heavy-ion phenomenology [24].
As an outlook [13], we note here that we are currently

considering baryons containing strange quarks, with the
aim of determining the effect from the explicit breaking by
the larger strange quark mass. We note that the role of
excited states will be of particular interest when comparing
nonchiral fermions, such as in this paper, with chiral
fermions, such as domain wall fermions. Finally, it will
also be interesting to analyze our results in terms of baryon
spectral functions, using Eq. (6), and to address them in

terms of effective models, such as the one proposed in
Ref. [25] (see also Ref. [26] for a lattice study of the axial
charge of negative-parity nucleons in this context).
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