
Lattice calculation of parton distributions

Constantia Alexandrou,1,2 Krzysztof Cichy,3,4,5 Vincent Drach,6 Elena Garcia-Ramos,3,7

Kyriakos Hadjiyiannakou,1 Karl Jansen,3 Fernanda Steffens,3 and Christian Wiese3
1Department of Physics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

2The Cyprus Institute, 20 Kavafi Street, Nicosia 2121, Cyprus
3John von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, 15738 Zeuthen, Germany

4Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
5Goethe-Universität, Institut für Theoretische Physik, Max-von-Laue-Strasse 1,

60438 Frankfurt am Main, Germany
6CP3-Origins & the DIAS, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

7Humboldt-Universität zu Berlin, Institut für Physik, Newtronstrasse 15, 12489 Berlin, Germany
(Received 8 May 2015; published 7 July 2015)

We report on our exploratory study for the direct evaluation of the parton distribution functions
from lattice QCD, based on a recently proposed new approach. We present encouraging results using
Nf ¼ 2þ 1þ 1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a
detailed description of the computation, including the lattice calculation, the matching to an infinite
momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the
operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
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I. INTRODUCTION

Parton distribution functions (PDFs) describe the struc-
ture of hadrons by providing information on the momen-
tum, angular momentum and spin of quarks and gluons in a
hadron. Ideally, PDFs would be directly predicted by
quantum chromodynamics (QCD). Confronted with results
from deep inelastic scattering experiments, this would lead
to a most stringent test of QCD and a deep theoretical
understanding of the interaction between quarks and
gluons. Naturally, lattice QCD methods, which can cover
a broad energy range from the perturbative to the non-
perturbative regimes, would be most suitable to compute
the PDFs. However, such a calculation requires light-cone
dynamics and going to short or even zero distance on the
Euclidean spacetime lattice is not possible.
Nevertheless, through the operator product expansion,

moments of the PDFs can be expressed in terms of matrix
elements of local operators, which are accessible to lattice
QCD calculations. In fact, lattice QCD calculations of the
PDF’s moments have been very successfully carried out
with results emerging now directly at the physical value of
the pion mass; see the recent reviews of Refs. [1–4].
Despite the enormous activity of computing such

moments in lattice QCD, it would still be highly desirable
to have information on the PDFs themselves. A
reconstruction of the PDFs from their moments seems
unfeasible on the lattice, since higher moments show a very
bad signal-to-noise ratio and are very hard to compute. A
solution to this problem might be the proposal in Ref. [5],
which suggests that by computing a parton quasidistribu-
tion function, a quantity accessible to lattice computations,
contact to the required physical PDFs can be established

through a matching procedure. Such a matching has already
been worked out in one-loop perturbation theory [6] and a
first test of the approach has been carried out in Ref. [7]
using staggered fermions.
Here, we will use a different quark discretization on the

lattice, namely twisted mass fermions at maximal twist [8],
to conduct an exploratory study of the proposal in Ref. [5].
This lattice formulation of QCD has the advantage that all
physical quantities scale with a rate of Oða2Þ towards the
continuum limit, and it avoids the operator improvement
necessary in other lattice QCD formulations, easing thus
considerably the computations. Twisted mass lattice QCD
calculations for baryons have already been carried out
successfully for the baryon spectrum [9–11], for form
factors and moments of PDFs [12–16] and also for
disconnected contributions to nucleon observables [17–19].
As stated above, our work here focuses on exploring the

potential of the approach in Ref. [5]. To this end, we
concentrate on one ensemble of maximally twisted mass
fermions at a lattice spacing of about 0.08 fm and a pion
mass of about 370 MeV.
In our calculations, we obtain results for a boosting

nucleon frame, using the three lowest lattice momenta,
2π=L; 4π=L and 6π=L. Larger momenta show a signal
-to-noise ratio that is too poor to extract any meaningful
result. We compute the real and the imaginary parts of the
relevant matrix elements and find that the imaginary part is
very important to give an asymmetry between the quark
and antiquark distributions, a highly nontrivial result of our
calculation. In addition, we apply different levels of gauge
link smearing in the operator. This smearing procedure
has two effects. First, higher smearing levels reveal the
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asymmetry between quark and antiquark distribution
much clearer. Second, different smearing levels correspond
to different renormalization properties of the matrix ele-
ments considered. Thus, comparing results from different
smearing levels can give a hint about the importance of
renormalization, depending on the size of effects from
smearing. We will finally use the matching condition to
relate the quasidistribution to the real PDF and also apply
nucleon target mass correction.
It needs to be stressed that the work presented here is

only a very first step to understand the potential of the
approach of Ref. [5]. It would be very important to look at
larger momenta than used here to test that the perturbative
matching works. Using a hypothetical mixed momentum
setup (described below), we illustrate that a satisfactory
agreement with phenomenological investigations could be
obtained if larger momenta were available. We are planning
to employ larger momenta in our next calculations by
increasing our statistics by about an order of magnitude.

II. THEORETICAL SETUP

A method to calculate quark distributions directly on a
Euclidean lattice has recently been proposed [5]. If suc-
cessful, this method can greatly improve our comprehen-
sion of the structure of hadrons, as well as being the first
ab initio QCD calculation of the Bjorken-x dependence of
the quark distributions. The key observation in this pro-
posal is that from the general form of the matrix element of
a twist-2 operator between a nucleon state with momentum
P ¼ ðP0; 0; 0; P3Þ,

hPjOμ1μ2…μn jPi ¼ 2að0Þn Πμ1μ2…μn ; ð1Þ

a suitable choice of the indices μ1; μ2;…; μn makes sure
that the corresponding distribution is a purely spatial
correlation. In Eq. (1), að0Þn are the moments of the quark
distributions and Πμ1μ2…μn is a symmetric rank-n tensor
which can be formed with the target momentum P, as first
calculated by Georgi and Politzer [20]. Let n ¼ 2k, then

Πμ1μ2…μn ¼
Xk
j¼0

ð−1Þj ð2k − jÞ!
2jð2kÞ! fg…gP…Pgk;jðP2Þj; ð2Þ

where the term fg…gP…Pgk;j means a symmetric sum
of ð2kÞ!=2jj!ð2k − 2jÞ! distinct products of the form
gμ1μ2…gμ2j−1μ2jPμ2jþ1…Pμ2k . Thus, setting μ1 ¼ μ2 ¼ … ¼
μ2k ¼ 3, one gets

Π3…3 ¼
Xk
j¼0

ð−1Þj ð2k − jÞ!
2jð2kÞ!

ð2kÞ!
2jj!ð2k − 2jÞ!

× ð−1ÞjðP2
3Þk−jðM2Þj ð3Þ

or

hPjO3…3jPi ¼ 2~að0Þ2k ðP3Þ2k
Xk
j¼0

μj
�
2k − j

j

�

≡ 2~a2kðP3Þ2k; ð4Þ

with μ ¼ M2=4ðP3Þ2 and M the nucleon mass. Here, we
have introduced ~a2k as the matrix elements of the operator
without subtracting the corrections in the nucleon mass. In

the end, we want the matrix elements ~að0Þ2k , which can be
related to the usual moments of the quark distributions in
the infinite momentum frame (IMF). For now, we define

~anðΛ; P3Þ ¼
Z þ∞

−∞
xn−1 ~qðx;Λ; P3Þdx; ð5Þ

and apply the inverse Mellin transformation to Eq. (4) to
obtain

~qðx;Λ; P3Þ ¼
Z

∞

−∞

dz
4π

e−izk3hPjψ̄ð0; zÞγ3WðzÞψð0; 0ÞjPi;
ð6Þ

where Λ is the UV regulator, k3 ¼ xP3 is the quark

momentum in the z direction, and WðzÞ ¼ e−ig
R

z

0
dz0A3ðz0Þ

is the Wilson line introduced to make the quark distribution
gauge invariant. Equation (6) is called a quasidistribution
because it does not have the usual properties of a quark
distribution. Most notably, the momentum fraction x can be
bigger than 1 or smaller than 0. Also, as discussed in
Ref. [6], the calculation of the leading UV divergences to
the quasidistributions in perturbation theory are done
keeping P3 fixed while taking Λ → ∞. This is in contrast
to the case of the usual parton distributions, where one
takes the limit P3 → ∞ first; that is, one first goes to the
IMF. The dependence on the UV regulator, Λ, will be
translated, in the end, into a renormalization scale μR when
relating the quasidistribution at finite P3 to its counterpart
at infinite P3. For now, as we still do not have a
renormalization procedure for the operator and the cou-
pling, we freely identify the UV regulator in the perturba-
tive corrections in the case of the IMF with μR, the
renormalization scale, while keeping it as Λ for the case
of the quasidistributions.
To relate the quasidistributions to the usual quark

distributions, one uses the fact that the infrared region of
the distributions is untouched when going from a finite to
an infinite momentum.1 In other words, if qðx; μRÞ is the
usual distribution defined though light-cone correlations,
then one should have

1An effective field theory approach to extract the parton
distributions from the lattice observables, using a systematic
expansion in inverse powers of the nucleon momentum, was
proposed in Ref. [21].
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qðx; μRÞ ¼ qbareðxÞ
�
1þ αs

2π
ZFðμRÞ

�

þ αs
2π

Z
1

x
qð1Þðx=y; μRÞqbareðyÞ

dy
y
þOðα2sÞ;

ð7Þ

~qðx;Λ; P3Þ ¼ qbareðxÞ
�
1þ αs

2π
~ZFðΛ; P3Þ

�

þ αs
2π

Z
1

x=xc

~qð1Þðx=y;Λ; P3ÞqbareðyÞ
dy
y

þOðα2sÞ; ð8Þ

where qbare is the bare distribution, ZF and ~ZF are the wave
function corrections and qð1Þ and ~qð1Þ are the vertex
corrections. Notice that the lower limit of integration in
Eq. (8) is x=xc, where xc ∼ Λ=P3 is the largest possible
value of x which renders the vertex and wave function
corrections to the quasidistributions meaningful. Opposite
to the infinite momentum calculation, at finite P3 the terms
~ZF and ~qð1Þ do not vanish for x > 1, and thus this region has
to be included, with the cut being made at x > 1, but below
xc. On the other hand, because qð1Þðx; μRÞ ¼ 0 for x ≥ 1,
the integration range in Eq. (7) can be extended down to
x=xc as well.
Lattice simulations can be used to calculate the left-hand

side of Eq. (8) through Eq. (6). Ideally, one would use
perturbation theory to an arbitrary order to calculate the
right-hand side of Eqs. (7) and (8) to extract the quark
distribution. Currently, however, the self-energy and vertex
corrections are known to OðαsÞ only and for the nonsinglet
case [6]. With this in mind, Eqs. (7) and (8) can be
combined to give

~qðx;Λ;P3Þ ¼ qðx;μRÞ þ
αs
2π

qðx;μRÞf ~ZFðΛ;P3Þ−ZFðμRÞg

þ αs
2π

Z
1

x=xc

ð ~qð1Þðx=y;Λ;P3Þ

−qð1Þðx=y;μRÞÞqðy;μRÞ
dy
y
þOðα2sÞ; ð9Þ

and this is equivalent to Eq. (13) of Ref. [6] if we consider
quarks only. Notice that the quark number is conserved
in the above expression, as long as the integrals
~ZFðΛ; P3Þ, listed in the Appendix, have a cut in xc, as well.
We define δZð1Þ

F ðμR=P3;Λ=P3Þ ¼ ~ZFðΛ; P3Þ − ZFðμRÞ
and Zð1Þðξ; μR=P3;Λ=P3Þ ¼ ~qð1Þðξ;Λ; P3Þ − qð1Þðξ; μRÞ.
One can include antiquarks using the crossing relation
q̄ðxÞ ¼ −qð−xÞ, and then rewrite Eq. (9) as

qðx; μRÞ ¼ ~qðx;Λ; P3Þ −
αs
2π

~qðx;Λ; P3ÞδZð1Þ
F

�
μR
P3

;
Λ
P3

�

−
αs
2π

Z
1

−1
Zð1Þ

�
x
y
;
μR
P3

;
Λ
P3

�
~qðy;Λ; P3Þ

dy
jyj

þOðα2sÞ; ð10Þ
where we have solved the system for qðx; μRÞ. The form of
Eq. (10) that we implement in the actual calculations is
detailed in the Appendix.
Equation (10) can be improved by calculating the

corrections in M=P3 to an arbitrary order. As before, we

write ~að0Þn ¼ Rþ∞
−∞ xn−1 ~qð0Þðx; PzÞdx and use this definition,

together with Eq. (5), to Mellin invert Eq. (4). After some
manipulation (cf. [22]), the result is

~qðx; PzÞ ¼
1

1þ μξ2
~qð0Þðξ; PzÞ; ð11Þ

where ξ ¼ 2x
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ4μx2

p is the Nachtmann variable. The

matching and the nucleon mass corrections are
interchangeable.

III. LATTICE CALCULATION

In this section, we will describe our lattice setup and our
lattice computations.

A. Matrix elements on the lattice

On the lattice, the bare matrix elements hðP3; zÞ, which
appear in Eq. (6), can be computed as

hðP3; zÞ ¼ hPjψ̄ðzÞγ3W3ðz; 0Þψð0ÞjPi; ð12Þ

with the Euclidean momentum P ¼ ð0; 0; P3; P4Þ and
z ¼ ð0; 0; z; 0Þ. Due to the (spatial) rotational symmetry
on the lattice, the computation can be straightforwardly
applied to the other spatial directions. Our final result will
then be an average over these three directions.
The required matrix elements can be obtained from the

ratio of suitable two- and three-point functions. The three-
point function is constructed with the use of nucleon
interpolating fields and a local operator,

C3ptðt; τ; 0Þ ¼ hNαð~P; tÞOðτÞN̄αð~P; 0Þi; ð13Þ
where h…i denotes the average over a sufficient number of
gauge field configurations. A nucleon field boosted with a
three-momentum can be defined via a Fourier transforma-
tion of quark fields in position space,

Nαð~P; tÞ ¼ Γαβ

X
~x

ei~P ~xϵabcuaβðxÞðdbTðxÞCγ5ucðxÞÞ; ð14Þ

where C ¼ iγ0γ2 and Γαβ is a suitable parity projector. Here,
we will use the parity plus projector Γ ¼ 1þγ4

2
. The matrix
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element at vanishing momentum transfer (Q2 ¼ 0) can be
obtained by choosing the following operator:

Oðz; τ;Q2 ¼ 0Þ ¼
X
~y

ψ̄ðyþ zÞγ3W3ðyþ z; yÞψðyÞ; ð15Þ

with y ¼ ð~y; τÞ. After Wick contracting the quark fields, the
three-point function can be expressed in terms of quark
propagators; see Fig. 1 for a schematic picture of such a
contraction.
We can extract the matrix element from a ratio of the

above given three- and two-point functions,

C3ptðt; τ; 0; ~PÞ
C2ptðt; 0; ~PÞ

¼0≪τ≪t −iP3

E
hðP3; zÞ; ð16Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3Þ2 þM2

p
is the total energy of the nucleon

and C2pt is the nucleon two-point function, which is
constructed from the nucleon interpolating fields,
C2ptðt; 0; ~PÞ ¼ hNαð~P; tÞN̄αð~P; 0Þi. For the operator, we
will consider the nonsinglet, isovector quark combination,
symbolically represented by u − d, which avoids discon-
nected contributions.

When computing the three-point function, there is a
freedom on how to treat the propagator connecting the sink
position with the operator insertion point (highlighted in
Fig. 1). Due to momentum projection, there is a spatial sum
on both ends of the propagator, which would naively
require an all-to-all propagator. However, such a compu-
tation would need V ¼ L3 × T sets of inversions.
Here, we have tested two different methods to calculate

the propagator. The first is the sequential method, which is
exact. However, it requires the sink position and momen-
tum to be fixed. As a second choice, we have used a
stochastic method, where we use sources that contain Z4

noise on one single timeslice (cf. Ref. [23]). The advantage
of the stochastic method is its flexibility, allowing us to
freely choose the momentum at the sink position as well as
vary the timeslice of the current insertion.
Results from an initial test on a smaller gauge ensemble

[24] indicate that both methods show a compatible perfor-
mance and give an approximately equal error for the same
computational effort. Thus, for the following computations,
the stochastic method will be used, since it is more flexible
for studying larger momenta.

B. Lattice setup

All results shown in this work are computed on a 323 ×
64 lattice from an ETMC (European Twisted Mass
Collaboration) production ensemble [25], with Nf ¼ 2þ
1þ 1 flavors of maximally twisted mass fermions, i.e. two
degenerate light quarks and nondegenerate strange and
charm quarks. This ensemble has a bare coupling corre-
sponding to β ¼ 1.95, which yields a lattice spacing
of a ≈ 0.082 fm [11] and the twisted mass parameter
aμ ¼ 0.0055, which corresponds to a pion mass of
mPS ≈ 370 MeV. Our present statistics to compute the
matrix elements is 181 gauge configurations, each with 15
forward propagators at different source positions and two

FIG. 1 (color online). Schematic picture of a possible Wick
contraction of the quark fields in the three-point function.

FIG. 2 (color online). We show the results for the unrenormalized matrix elements for different source-sink separations ts. Left:
P3 ¼ 2π=L, right: P3 ¼ 4π=L.
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stochastic propagators, each propagator including both
light (up and down) flavors, i.e. in total, 5430
measurements.
To examine the influence of excited states, the compu-

tation was done for two different source-sink separations:
8a and 10a. From the comparison in Fig. 2, it can be seen
that the results from both source-sink separations are
visibly compatible within errors. It would require signifi-
cantly larger statistics to discriminate excited state effects, a
task we want to address, however, in the future. Since here
we perform an exploratory study, we will stick to the small

separation of 8a due to the significantly smaller noise
associated with it. This is especially advantageous for
studying larger momenta, e.g. P3 ¼ 6π=L, which have
generically a poor signal-to-noise ratio.

C. Lattice results

For our current statistics, we were able to extract matrix
elements for P3 ¼ 2π=L; 4π=L and 6π=L. In Ref. [7], the
authors applied HYP smearing [26] to the gauge links in the
inserted operator. This is a lattice technique, which is used

FIG. 3 (color online). Results for the unrenormalized matrix elements with different steps of HYP smearing, Left: real part, right:
imaginary part, from top to bottom: P3 ¼ 2π=L; 4π=L; 6π=L.
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to smoothen the gauge links and is expected to bring the
necessary renormalization factors closer to the correspond-
ing tree-level value. More generally speaking, such kind of
smearing will certainly influence the renormalization prop-
erties of the considered matrix elements. In order to obtain
an estimate of how renormalization could influence the
results which will be presented here, we applied two and
five steps of HYP smearing to the operator and compared
with the unsmeared results in Fig. 3.
Evidently, the effect of gauge link smearing changes the

value of the matrix elements, for both the real and the
imaginary parts. Note that the effect for the imaginary part
is stronger than for the real part. Also, the change from zero
to two steps of smearing is more significant than from two
to five steps, which indicates a saturation of the smearing
effect. We will therefore employ a maximum of five
smearing steps in this work. We note in passing that a
decrease of the noise like in other gluonic quantities, e.g. as
in [27], cannot be observed when applying smearing. A
striking observation in Fig. 3 is that while the real part is
symmetric in z, the imaginary part is highly asymmetric.
This effect will play an important role when we discuss the
quark and antiquark distributions later on.
Note that for a value of z ¼ 0, the operatorO in Eq. (15)

can be identified with the local vector current at Q2 ¼ 0.
This operator is renormalized with the vector current
renormalization constant ZV , which for this ensemble is
ZV ¼ 0.627ð4Þ [28]. After renormalization, the condition
Fu−d
1 ðQ2 ¼ 0Þ ¼ 1 (cf. [29]) should hold. Indeed, we find

ZVhu−dð0Þ ¼ 1.18ð22Þ for P3 ¼ 6π=L and ZVhu−dð0Þ ¼
0.99ð3Þ for P3 ¼ 4π=L while the value for P3 ¼ 2π=L,
ZVhu−dð0Þ ¼ 0.95ð1Þ, is a bit smaller, which is probably
due to excited state effects.2 For our final results, we will
only use data obtained for P3 ¼ 4π=L and P3 ¼ 6π=L.
As can be seen in Fig. 3, when going to larger values of

P3, the signal-to-noise ratio rapidly worsens. Thus, the
calculation of a further, larger momentum is not possible
with our present statistics.

IV. MATCHING TO QUARK DISTRIBUTION
AND NUCLEON MASS CORRECTIONS

From the matrix elements hu−dðz; P3Þ, we calculate the
quasidistributions and, after matching and nucleon mass
corrections, the quark distributions themselves. To this end,
we first apply the Fourier transformation in Eq. (6) to the
nucleon matrix elements from z ¼ −L=2 to z ¼ L=2, after
multiplying by the vector current renormalization constant
ZV . From this equation, it is clear that if the imaginary part
of the matrix elements were zero, or very close to zero,
there would be no difference between the positive and

negative x regions. In other words, there would be no
difference between the quark and antiquark distributions, as
antiquarks can be interpreted as quarks in the negative x
region, according to the crossing relation q̄ðxÞ ¼ −qð−xÞ.
Figure 4 shows the complete quasidistribution for

P3 ¼ 4π=L, after applying the Fourier transformation
and taking the real and the imaginary parts of
hu−dðz; P3Þ into account. An asymmetry between negative
and positive x values is clearly building up, which is more
pronounced for higher levels of gauge link smearing,
emphasizing the effect of HYP smearing on the renorm-
alization of these quantities Because after a proper renorm-
alization the results with nonsmeared and smeared gauge
links have to agree within errors, the effect seen in Fig. 4
clearly points to the fact that renormalization will play an
important role when looking at the quark distributions
obtained from lattice calculations in the future.
Having the quasidistribution ~qðxÞ, we can proceed to

extract the physical quark distribution qðxÞ from ~qðxÞ,
using Eq. (A8) and then applying the nucleon mass
corrections. To be consistent, the value of the momentum
cutoff is chosen to be the same as the value of the lattice
cutoff itself, that is, Λ ¼ 1=a ≅ 2.5 GeV. For the renorm-
alization scale μR, we make the same choice. This is a
somewhat ad hoc but plausible choice. Once a proper
renormalization has been carried out, the full equations for
the running with μR will be obtained.
As discussed in the Appendix, the integrals also have

a cutoff at xc ∼ Λ=P3, such that ~qðx > xc;Λ; P3Þ ¼ 0.
The last input we need for our calculation is the bare
coupling constant, for which we use the value correspond-
ing to β ¼ 1.95 of our lattice calculation. This leads
to αs ¼ 6=ð4πβÞ ≈ 0.245.
We show our results in Fig. 5 for the case of zero, two

and five steps of HYP smearing, for a nucleon with

FIG. 4 (color online). Comparison of results for ~q obtained with
five, two and no steps of HYP smearing, P3 ¼ 4π=L.

2Using the larger source-sink separation of 10a, we find
ZVhu−dð0Þ ¼ 0.98ð4Þ, cf. Fig. 2, which is compatible with a
value of one. We attribute the larger error to the larger source-sink
separation and the fact that fewer measurements were used.
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momentum P3 ¼ 4π=L and P3 ¼ 6π=L, corresponding to
0.98 and 1.47 GeV, respectively. As anticipated, HYP
smearing is essential in providing the required asymmetry
between the quark and antiquark distributions. We note that
two steps of smearing are already practically sufficient to
show the effect of the asymmetry.
As the nucleon momentum increases, the peak of the

uðxÞ − dðxÞ distribution moves to smaller values of x, as it
should, while for d̄ðxÞ − ūðxÞ it gets closer to zero for most
of the x region, but shows an increase in the small x region.

This behavior is in qualitative agreement with the behavior
of the antiquark distributions as extracted from phenom-
enological analyses [30–32]. The nucleon mass corrections
lead to a decrease of the distributions in the large x region.
This is again in full accordance with our expectation from
phenomenology and asserts that the nucleon mass correc-
tions are essential to restore the energy-momentum rela-
tions, thus ensuring the partonic interpretation of the
distributions. In addition, with increasing nucleon momen-
tum the mass corrections become less and less important, as

FIG. 5 (color online). The resulting quasidistribution ~q, PDF without subtracting the mass correction q, and final PDF qð0Þ. Left:
P3 ¼ 4π=L, right: P3 ¼ 6π=L, from top to bottom: 0 steps, 2 steps, 5 steps of HYP smearing, negative region: q̄ðxÞ ¼ −qð−xÞ,
comparison with phenomenological uðxÞ − dðxÞ curves at Q2 ¼ 6.25 MeV2 (MSTW [30], CJ12 [31], ABM11 [32]).
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expected from Eq. (11). Finally, the slight oscillatory
behavior in the large x region is a result of performing
the Fourier transformation over a finite extension only, in
our case the integration is from−L=2 toþL=2. Because the
nucleon mass corrections also make a shift of the distri-
butions from larger to smaller values of x, the oscillatory
behavior is more pronounced after Eq. (11) is applied, as
the oscillations are more noticeable in the quasidistribu-
tions in the region x > 1. Increasing the value of P3 is
similar to extending the bounds of integration and thus
reduces the oscillations. On this same line, if we used�1 as
the limits of integration in the matching, as in Eq. (10), and
thus did not take into account the x > ξ region in the last
two terms of Eq. (A8), the oscillations would be slightly
more pronounced for the case of P3 ¼ 4π=L. For P3 ¼
6π=L there would be no real difference to the results
presented in Fig. 5.
Although we find that the shape of the quark distribu-

tions resembles those of the phenomenological parametri-
zations of uðxÞ − dðxÞ, with two or five steps of HYP
smearing, we do not find an agreement on the quantitative
level. Note, however, that there is a clear tendency to
approach the phenomenological parametrizations when P3

is increased. Motivated by this observation, we made an
exploratory study where we use the matrix elements
calculated with P3 ¼ 4π=L and P3 ¼ 6π=L, but perform
the Fourier transformation in Eq. (6), as well as the
matching and the nucleon mass corrections, with
P3 ¼ 8π=L. We will refer to this particular setup as the
mixed momentum setup. The resulting distributions are
shown in Fig. 6.
It needs to be stressed that this exercise is, of course, only

hypothetical, and using this setup can lead to the loss of
normalization of the parton distributions, opposed to the
results in Fig. 5, where we found a good agreement with a
normalization of one. Nevertheless, the agreement with the

phenomenological parametrizations of the distributions at
the intermediate and large x regions is really encouraging.
This indicates that by employing an only moderately larger
value of P3 than the ones used here, we could obtain even a
quantitative agreement to the parametrizations in certain
regions of x. This concerns, in particular, the large x region,
where increasing values of P3 tend to bring the resulting
distribution down. In the small (and positive) x region, on
the other hand, it seems that increasing the nucleon
momentum is not sufficient to produce a rise of the
distribution. This may be related to the fact that there is
a limitation in the present calculation in the small x region
due to the presence of the infrared, 1=L, and ultraviolet,
1=a, cutoff regulators on a finite lattice. Thus, this
limitation will be overcome when larger lattices and
smaller values of the lattice spacing become available.
Furthermore, we stress that the here obtained results are at
only one, nonphysical value of the pion mass and the shape
of distribution might as well depend on the quark mass. In
any case, a more definite statement can only be made after
we have access to the matrix elements for P3 ¼ 8π=L. This
is not possible with our present statistics. However, we are
in the process of generating a substantially higher statistics.
This will allow us to extrapolate the data for P3 ¼ 2π=L,
P3 ¼ 4π=L and P3 ¼ 6π=L to obtain the quasidistribution
at P3 ¼ 8π=L. Although we do not expect a big difference
in the situation of the hypothetical mixed setup shown in
Fig. 6, a full analysis with real data is, of course, mandatory
and will be presented in a forthcoming work.

V. CONCLUSIONS AND OUTLOOK

In this work, we have presented our first exploratory
study of the approach developed in Ref. [5] for the
calculation of the x dependence of quark distributions
directly on the lattice, employing the twisted mass

FIG. 6 (color online). Results from an hypothetical mixed momentum analysis using different values of the momentum in the
computation of the lattice matrix element (left: P3 ¼ 4π=L, right: P3 ¼ 6π=L) than in the Fourier transformation, matching and mass
corrections (P3 ¼ 8π=L) with 5 steps of HYP smearing.
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formulation of lattice QCD. The study presented here,
together with the work of Ref. [7], constitutes the first two
attempts to implement the approach of Ref. [5] in realistic
lattice QCD calculations. Our results, represented in Fig. 5,
are comparable to those of Fig. 2 of [7], and we see that the
two calculations give similar results for the case of two
steps of HYP smearing. Yet it seems that in our case, for
P3 ¼ 6π=L, the shift of the peak of the quark distributions
towards the small x region is bigger. Also, as we increase
the number of steps of HYP smearing, the position of the
peaks is basically unchanged, but they are more pro-
nounced. On the other hand, the large x region tends to
be smaller. It is very reassuring to see that both effects
bring our results closer to the phenomenological para-
metrizations. Beyond these effects, HYP smearing is
fundamental to generate a sizeable (asymmetric in z)
imaginary part in the matrix elements. This result generates
automatically an asymmetry between the quark and the
antiquark distributions, a highly nontrivial result.
The outcome of our ab initio lattice QCD calculation

with a small and positive d̄ðxÞ − ūðxÞ is in a very good
qualitative agreement with phenomenological parametriza-
tions. In a hypothetical exercise where we use a larger
momentum of P3 ¼ 8π=L in the Fourier transformation
than we actually have in our lattice QCD calculation, we
observe a better qualitative behavior as compared to what is
expected phenomenologically, as is shown in Fig. 6.
Moreover, it is clear from both Figs. 5 and 6 that increasing
the momentum implies only marginal corrections to the
quasidistributions, the corrections for the case P3 ¼ 6π=L
being restricted from intermediate to small x regions only.
In summary, we have presented our first effort to explore

the potential to calculate quark distributions directly within
the lattice QCD formulation. Although there are clearly
shortcomings, such as not being able to reach large
momenta and the lack of renormalization, our results are
promising. In particular, our study of the quark distribution
in the mixed momentum setup indicates that only moder-
ately larger momenta than used here may be sufficient to
reach a quantitative agreement with phenomenological
parametrizations in the large x region. We are presently
increasing our statistics significantly, which will allow us to
obtain data with such larger momenta. In addition, we are
testing different approaches to perform the necessary
renormalization of the matrix elements entering the calcu-
lation of the quasidistributions. Finally, applying this
method to gluon configurations generated directly at the
physical value of the pion mass may open the exciting
possibility to address quark distributions and, therefore,
unravel the structure of the hadron from first principle QCD
calculations.
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APPENDIX

The wave function and vertex corrections in Eq. (10)
were calculated in Ref. [6]. The vertex corrections are
given by

Zð1ÞðξÞ
CF

¼
�
1þ ξ2

1 − ξ

�
ln

ξ

ξ − 1
þ 1þ 1

ð1 − ξÞ2
Λ
P3

ðA1Þ

for ξ > 1,

Zð1ÞðξÞ
CF

¼
�
1þ ξ2

1 − ξ

�
ln
ðP3Þ2
μ2R

þ
�
1þ ξ2

1 − ξ

�
ln 4ξð1 − ξÞ

−
2ξ

1 − ξ
þ 1þ 1

ð1 − ξÞ2
Λ
P3

ðA2Þ

for 0 < ξ < 1, and

Zð1ÞðξÞ
CF

¼
�
1þ ξ2

1 − ξ

�
ln
ξ − 1

ξ
− 1þ 1

ð1 − ξÞ2
Λ
P3

ðA3Þ

for ξ < 0. The wave function corrections are given by

δZð1Þ ¼ CF

Z
∞

−∞
dξδZð1ÞðξÞ; ðA4Þ

where

δZð1ÞðξÞ ¼ −
�
1þ ξ2

1 − ξ

�
ln

ξ

ξ − 1
− 1 −

1

ð1 − ξÞ2
Λ
P3

ðA5Þ
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for ξ > 1,

δZð1ÞðξÞ ¼ −
�
1þ ξ2

1 − ξ

�
ln
ðP3Þ2
μ2R

−
�
1þ ξ2

1 − ξ

�
ln 4ξð1 − ξÞ

−
2ξð2ξ − 1Þ

1 − ξ
þ 1 −

1

ð1 − ξÞ2
Λ
P3

ðA6Þ

for 0 < ξ < 1, and

δZð1ÞðξÞ ¼ −
�
1þ ξ2

1 − ξ

�
ln
ξ − 1

ξ
þ 1 −

1

ð1 − ξÞ2
Λ
P3

ðA7Þ

for ξ < 0.

In the actual calculation, we make a change of variables
in the integral term containing ~qðy;Λ; P3Þ of Eq. (10) and
also set the threshold above which the quasidistribution is
zero. We call this value xc, which is of order of Λ=P3.
When we inverted Eq. (9), we kept the limits of integration
from −1 to þ1, which is the region where the quark
distributions are defined and where factorization holds. In
practice, we will integrate from −xc to þxc, the reason
being that ~qðx > 1Þ ≠ 0 and contributions from this region
should be taken into account. As we increase the value of
P3, however, the closer we get to the physical distribution
and, as a result, ~qðx > 1Þ ∼ 0. We also break the integral
containing ~q into two terms, with the limits from −xc to
−jxj=xc and from þjxj=xc to þxc. We then make a change
of variables, ξ ¼ x=y, and Eq. (10) is rewritten as

qðx; μRÞ ¼ ~qðx;Λ; P3Þ −
αs
2π

~qðx;Λ; P3ÞδZð1Þ
�
μR
P3

;
Λ
P3

�
−
αs
2π

Z
−jxj=xc

−xc
Zð1Þ

�
ξ;
μR
P3

;
Λ
P3

�
~q

�
x
ξ
;Λ; P3

�
dξ
jξj

−
αs
2π

Z þxc

þjxj=xc
Zð1Þ

�
ξ;
μR
P3

;
Λ
P3

�
~q

�
x
ξ
;Λ; P3

�
dξ
jξj þOðα2sÞ: ðA8Þ

The integrals contain both single and double poles at ξ ¼ 1.
It can be shown that the single pole terms cancel between
Eqs. (A1)–(A2) and (A5)–(A6); e.g., the single pole in the
third term on the lhs of Eq. (A2) is canceled by the third
term on the lhs of Eq. (A6). The double poles are first
reduced to a single pole by a similar cancellation when
combining the vertex and wave function corrections, as in
the single pole case, and the remaining pole is taken care of
by using the Cauchy’s principal value prescription. The
remaining expression is finite, with the exception that the
integral of δZð1ÞðξÞ is divergent as ξ → �∞. The divergent
term is

~qðxÞ 3
2
lnðx2c − 1Þ; ðA9Þ

where we have set xc as the upper and lower limit of the
integrals of (A5) and (A7), respectively. The same limits of
integration, when integrating both Zð1Þ and δZð1Þ, are
necessary in order to maintain the quark number conser-
vation. Notice that this log divergent term is the usual UV
divergence present in the wave function.
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