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We investigate the formation of light nuclei with the nuclear mass number less than or equal to four in
2þ 1 flavor QCD using a nonperturbative improved Wilson quark and Iwasaki gauge actions. The quark
mass is decreased from our previous work to the one corresponding to the pion mass of 0.30 GeV. In each
multinucleon channel, the energy shift of the ground state relative to the assembly of free nucleons is
calculated on two volumes, whose spatial extents are 4.3 and 5.8 fm. From the volume dependence of the
energy shift, we distinguish a bound state of multinucleons from an attractive scattering state. We find that
all the ground states measured in this calculation are bound states. As in the previous studies at larger mπ,
our result indicates that at mπ ¼ 0.30 GeV the effective interaction between nucleons in the light nuclei
is relatively stronger than the one in nature, since the results for the binding energies are larger than the
experimental values and a bound state appears in the dineutron channel, which is not observed in
experiment. Possible sources of systematic error in this calculation are discussed.
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I. INTRODUCTION

The strong interaction is the origin of the formation of
nuclei. Nonperturbative lattice QCD calculation is a power-
ful tool to confirm nucleus formation from the first principle
of the strong interaction. The nucleus formation was
examined in lattice QCD in Ref. [1], in which the binding
energies for the 4He and 3He nuclei were calculated in
quenched QCD at a heavy quark mass corresponding to the
pion mass mπ ¼ 0.80 GeV. In this calculation, a multi-
nucleon bound state was identified by the volume depend-
ence of energy shift of the ground state relative to the
assembly of free nucleons. This study was followed by
calculations in Nf ¼ 3 QCD at mπ ¼ 0.81 GeV [2] and
2þ 1 QCD [3] at mπ ¼ 0.51 GeV. The 4He nucleus
formation was also reported in a different approach using
the two-nucleon potential calculation in Nf ¼ 3 QCD at
mπ ¼ 0.47, 1.02, and 1.17 GeV [4]. The binding energy
reported is much smaller than those in Refs. [1–3]. The
authors in Ref. [1] also made the first systematic study of
the volume dependence of the energy shift for the two-
nucleon states in the spin triplet 3S1 and singlet 1S0 channels
in quenched QCD [5]. This work was extended to the full
QCD case in Refs. [2,3,6]; the volume dependence was not
examined in the earlier studies of these channels [7,8]. The
calculation in Nf ¼ 2þ 1 QCD at mπ ¼ 0.39 GeV [6] was
not conclusive of bound state formations in both channels
due to large errors of the energy shift. Other calculations
[2,3,5], on the other hand, concluded that there is a nucleus
in each channel. The latter results conflict with the one from
the two-nucleon potential calculation [9].

The results obtained from calculation of the energy shift
seem to indicate that the effective interaction among
nucleons seems relatively stronger, compared to the kinetic
energy of the nucleons, than those in nature. Indeed, in the
calculations done to date, the binding energies for the 3He
and deuteron are clearly larger than the experimental
values; also there is a bound state in the dineutron channel
(1S0 channel), which has not been observed in nature.
A possible explanation of the discrepancy between the
lattice QCD results and experiment is the heavier u; d quark
masses employed in the calculations. If this is the case, at
the physical quark mass the binding energies would agree
with those in the nature, and the bound state in the 1S0
channel would disappear. In order to check this scenario,
calculations at lighter quark masses than those employed
in the previous calculations are necessary. In this paper,
we extend our previous calculation [3] at mπ ¼ 0.51 GeV
in 2þ 1 flavor QCD to a smaller quark mass of
mπ ¼ 0.30 GeV. We investigate whether the light nuclei
(4He, 3He, deuteron, and dineutron), which were observed
in the previous calculations [1–3,5], are formed or not at
this quark mass.
This paper is organized as follows. In Sec. II we explain

details of calculation including the simulation parameters
for gauge configuration generation and the calculation
method for the multinucleon channels. Section III presents
the results for the 4He, 3He, deuteron (3S1), and dineutron
(1S0) channels. Comparisons of our results with those in
the previous studies are also discussed. Conclusions and
discussions are given in Sec. IV.

PHYSICAL REVIEW D 92, 014501 (2015)

1550-7998=2015=92(1)=014501(12) 014501-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.014501
http://dx.doi.org/10.1103/PhysRevD.92.014501
http://dx.doi.org/10.1103/PhysRevD.92.014501
http://dx.doi.org/10.1103/PhysRevD.92.014501


II. SIMULATION DETAILS

A. Simulation parameters

For gauge configuration generation in 2þ 1 flavor QCD,
we employ the Iwasaki gauge action [10] and a non-
perturbative OðaÞ-improved Wilson quark action. The bare
coupling is fixed at β ¼ 1.90 for which we use cSW ¼ 1.715
[11]. The lattice spacing is a ¼ 0.08995ð40Þ fm, corre-
sponding to a−1 ¼ 2.194ð10Þ GeV, which was determined
by mΩ ¼ 1.6725 GeV [12]. We choose two lattice sizes,
L3 × T ¼ 483 × 48 and 643 × 64, to investigate the spatial
volume dependence of the energy shift between the multi-
nucleon ground state and the free nucleons. The physical
spatial extents are 4.3 and 5.8 fm, respectively. We choose
the hopping parameters ðκud;κsÞ¼ ð0.1376314;0.1367299Þ
to obtain mπ ¼ 0.30 GeV and the physical strange quark
mass, which are determined by an analysis with the results
formπ andms obtained with the same actions but at different
hopping parameters [12,13].
We utilize the domain-decomposed hybrid-Monte-Carlo

(DDHMC) algorithm [14,15] with mass preconditioning
[16], i.e., mass-preconditioned DDHMC (MPDDHMC),
for the degenerate light quarks and the UV-filtered poly-
nomial HMC (UVPHMC) algorithm [17] for the strange
quark. In both algorithms, we use the Omelyan-Mryglod-
Folk integrator [18,19] in the molecular dynamics evolu-
tion. The algorithmic details are given in Ref. [13].
We summarize the simulation parameters in Table I includ-
ing the block sizes and the preconditioning factor in
MPDDHMC and the polynomial order in UVPHMC.
We take τ ¼ 1 for the trajectory length of the molecular

dynamics in all the runs. The step sizes are chosen such that
we obtain the reasonable acceptance rates presented in
Table I. In the spatial extents of 4.3 and 5.8 fm, 1000 and
800 trajectories are generated in four and two streams after
thermalization, and the total lengths of trajectory for the
measurement are 4000 and 1600, respectively.
We calculate correlation functions in the multinucleon

channels in every ten trajectories for both volumes using
the same quark action as for the configuration generation.
The errors are estimated by jackknife analysis choosing 200
and 160 trajectories for the bin size for the smaller and
larger volumes, respectively. Statistics is increased by
repeating the measurement of the correlation functions
with different source positions on each configuration. We
calculate the correlation functions not only in the temporal
direction but also in the spatial ones with the use of
the space-time rotational symmetry. It allows to increase
the statistics by a factor 4 effectively. The parameters of the
measurement, e.g., the number of configurations and the
bin sizes, are listed in Table II.

B. Calculation method

We extract the ground state energy in the multinucleon
channels and the nucleon mass from the correlation
function,

GOðtÞ ¼ h0jOðtÞŌð0Þj0i; ð1Þ
withO being proper operators for the 4He, 3He, 3S1 and 1S0
channels and also the nucleon N, which are given in the
next subsection.

TABLE I. Simulation parameters for gauge configuration generation at ðκud; κsÞ ¼ ð0.1376314; 0.1367299Þ.
The definition of parameters is the same as in Ref. [13].

L3 × T 483 × 48 643 × 64

# run 4 2
ðN0; N1; N2; N3Þ (2,2,2,6) (2,2,2,8)
Block size 122 × 62 83 × 4
ρ 0.998 0.998
Npoly 320 340
MD time 1000 1000 1000 1000 800 800
PaccðHMCÞ 0.818 0.801 0.814 0.794 0.902 0.880
PaccðGMPÞ 0.959 0.959 0.962 0.962 0.954 0.967

TABLE II. Number of configurations, separation of trajectories between each measurement in the units of τ, bin
size in jackknife analysis in the units of configuration, number of measurements on each configuration, exponential
smearing parameter set (A; B) in Eq. (5), pion mass mπ and nucleon mass mN are summarized for each lattice size.
The number of measurements includes factor 4 by measurement with all four directions, which is explained in
the text.

L T No. configuration τsep Bin size No. measurement ðA; BÞ mπ [GeV] mN [GeV]

48 48 400 10 20 1152 (0.8,0.16) 0.3001(14) 1.057(2)
64 64 160 10 16 2048 (0.8,0.16) 0.2987(9) 1.053(2)
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We define the energy shift between the multinucleon
ground state and free nucleons on finite volume as

ΔEL ¼ EO − NNmN; ð2Þ

where EO is the lowest energy level for a multinucleon
channel, NN is the number of nucleons in the channel, and
mN is the nucleon mass. This quantity is directly extracted
from the ratio of the multinucleon correlation function to
the NN th power of the nucleon correlation function

RðtÞ ¼ GOðtÞ
ðGNðtÞÞNN

; ð3Þ

in the large time region where both correlation functions are
dominated by the ground state. We also define an effective
energy shift as

ΔEeff
L ¼ ln

�
RðtÞ

Rðtþ 1Þ
�
; ð4Þ

which is utilized to investigate plateau region in the later
section. Note that the definition of ΔEL and ΔEeff

L follows
that in Refs. [3,5], while the sign convention is opposite to
that in Ref. [1].
There are two computational difficulties in the calcu-

lation of GOðtÞ for multinucleon channels. One is a
factorially large number of Wick contractions for quark-
antiquark fields. To overcome the difficulty, we use the
reduction technique of calculation cost proposed in our
exploratory work [1]. It is noted that other reduction
techniques for the large number of Wick contractions have
been proposed for the multimeson [20] and multibaryon
[21–23] channels. Another problem is an exponential
increase of statistical errors with atomic mass number.
For this difficulty, we carry out measurements as much as
possible using multiple source points. The number of
measurements are a factor 12 and 5 times larger than those
in the previous calculation of mπ ¼ 0.51 GeV [3] for 4.3
and 5.8 fm spatial extents, respectively.
Another difficulty in the nucleus calculation is to

distinguish a multinucleon bound state from an attractive
scattering state in a finite volume [24–26]. This problem is
handled by studying the volume dependence of the mea-
sured ΔEL as in Refs. [1,5]. While the energy shift of an
attractive scattering state vanishes in the infinite volume
limit as 1=L3 [24,27], the physical binding energy of a
bound state remains at a finite value in the limit.

C. Interpolating operators

The u; d quark propagators are solved with the periodic
boundary condition in all of spatial and temporal directions
using an exponentially smeared source,

qð~x; tÞ ¼
X
~y

Ae−Bj~x−~yjq0ð~y; tÞ; ð5Þ

for j~xj ≠ 0, and qð~x; tÞ ¼ 1 for j~xj ¼ 0, after the Coulomb
gauge fixing, where q0 is the local quark field. We choose
the smearing parameters A ¼ 0.8 and B ¼ 0.16 on the two
volumes to obtain reasonable plateaus of the effective
energy for the nucleon and ground states in the multi-
nucleon channels. The stopping condition of the quark
propagator ϵ ¼ jDx − bj=jbj < 10−6 is applied in both
volumes to reduce the calculation time. We have checked
in a subset of the configurations that the results with this
looser stopping condition agree with the ones using a more
stringent stopping condition ϵ < 10−14 in more than six
digits, even for G4HeðtÞ at t ¼ 12. The systematic error
coming from the discrepancy is much smaller than the
statistical error in the current calculation.
The interpolating operator for the proton is defined as

pα ¼ εabcð½ua�tCγ5dbÞuαc; ð6Þ

where C ¼ γ4γ2 and α and a; b; c are the Dirac and color
indices, respectively. The neutron operator nα is obtained
by replacing uαc by dαc in Eq. (6).
The 4He nucleus has zero total angular momentum and

positive parity JP ¼ 0þ with the isospin I ¼ 0. We employ
the simplest 4He interpolating operator with zero orbital
angular momentum L ¼ 0, and hence J ¼ S with S being
the total spin [28],

4He ¼ 1ffiffiffi
2

p ðχ̄η − χη̄Þ; ð7Þ

where

χ ¼ 1

2
ð½þ −þ−� þ ½−þ −þ� − ½þ − −þ� − ½−þþ−�Þ;

ð8Þ

χ̄ ¼ 1ffiffiffiffiffi
12

p ð½þ −þ−� þ ½−þ −þ� þ ½þ − −þ� þ ½−þþ−�

− 2½þ þ −−� − 2½− −þþ�Þ; ð9Þ

withþ=− being up/down spin of each nucleon, and η; η̄ are
obtained by replacing þ=− in χ; χ̄ by p=n for the isospin.
The 3He nucleus has JP ¼ 1

2
þ, I ¼ 1

2
and Iz ¼ 1

2
.

We employ the interpolating operator in Ref. [29],

3He ¼ 1ffiffiffi
6

p ðjp−nþpþi − jpþnþp−i þ jnþpþp−i

− jnþp−pþi þ jpþp−nþi − jp−pþnþiÞ: ð10Þ

The two-nucleon operators for the 3S1 and 1S0 channels
are given by
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NN3S1ðtÞ ¼
1ffiffiffi
2

p ½pþðtÞnþðtÞ − nþðtÞpþðtÞ�; ð11Þ

NN1S0ðtÞ ¼
1ffiffiffi
2

p ½pþðtÞp−ðtÞ − p−ðtÞpþðtÞ�; ð12Þ

respectively. In the 3S1 channel the operators for the other
two spin components are constructed in a similar way. We
increase statistics by averaging over the three correlation
function with each spin component operator.
Using the interpolating operators above, we calculate

correlation functions in each channel. For the source
operators in all correlation functions, we insert the smeared
quark fields of Eq. (5) for each nucleon operator located at
the same spatial point ~x. Each nucleon in the sink operator,
on the other hand, is composed of the point quark fields
corresponding to q0 in Eq. (5), and projected to zero spatial
momentum. To save the computational cost we use the
nonrelativistic quark operators, in which the Dirac index in
Eq. (6) is restricted to the upper two components in the
Dirac representation.

III. RESULTS

A. Nucleon and pion masses

The results for effective mN in the two volumes are
shown in Fig. 1 together with the exponential fit result of
CNðtÞ and the one standard deviation error band. Plateaus
are clearly seen for t ≥ 8 for both volumes. The difference
of the fit results between the two volumes is 1.4 standard
deviations, and hence statistically not very significant. We
also do not expect much finite size effect for these large
volumes satisfying mπL > 6. In the following sections, we
therefore consider that the difference is caused by statistics,
and will not estimate the systematic error from it. The pion

effective masses in each volume show better consistency
than the nucleon mass, as presented in Fig. 2. Those fit
results are tabulated in Table II.

B. 4He channel

The effective energy shift ΔEeff
L defined in Eq. (4) is

shown in Fig. 3 for the two volumes. Clear signals are seen
for t ≤ 10, but for larger t the statistical error increases
rapidly. A plateau appears at t ¼ 9–12 on the larger
volume, while it is not clearly seen on the smaller volume.
More statistics is desirable for establishing a plateau in this
case. We calculate the energy shift ΔEL in Eq. (2) by a
single exponential fit of RðtÞ in Eq. (3) using the same
range t ¼ 9–12 for the two volumes. The systematic error is
estimated from the variation of the fit results with six
different fit ranges, where the minimum or maximum time
slice is changed by �1, and the minimum and maximum
time slices are changed byþ1 andþ2. The central fit result
is shown in Fig. 3 by solid lines with the band representing
the statistical error. The dashed lines denote the total error
adding the statistical and systematic errors by quadrature.
In Fig. 4 we illustrate how we estimate the systematic error.
Shown in the figure are the results of eight fits obtained by
shifting the fitting range as explained in the figure caption.
The horizontal band with solid lines shows the total error
obtained by adding the statistical error and the systematic
error from the seven fits on the left by quadrature. We
observe that the seven fits on the left reasonably covers the
variation, with the eighth fit at the rightmost with the fitting
range shifted byþ3 from (tmin; tmax) falling within the band
of solid lines within one sigma. We therefore consider that
our estimate of systematic errors is reasonable under the
current statistics. The values of ΔEL with the statistical and
systematic errors are summarized in Table III.
Figure 5 shows the volume dependence of ΔEL as a

function of 1=L3. The inner bar of each data denotes the

0 4 8 12 16 20
t

0.47

0.475

0.48

0.485

4.3 fm
5.8 fmm

N

FIG. 1 (color online). Nucleon effective masses on ð4.3 fmÞ3
and ð5.8 fmÞ3 volumes in lattice unites. The fit result with one
standard deviation error band is expressed by solid lines.

0 4 8 12 16 20
t

0.134

0.136

0.138

0.14

4.3 fm
5.8 fmmπ

FIG. 2 (color online). Same as Fig. 1, but for pion effective
masses.
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statistical error and the outer bar represents the total
error with the statistical and systematic ones added in
quadrature. Since the volume dependence is not large, we
estimate the energy shift in the infinite volume limit ΔE∞
by a constant fit as presented by solid line and open circle in
Fig. 5. An exponential type extrapolation, ΔEL ¼ ΔE∞þ
C expð−CeLÞ, cannot be carried out in this paper due to the
smaller number of data than its free parameters. The
systematic error is estimated from the variation of the
central values obtained by 49 fits. The 49 fits are constant
fits with a various combination of 72 data set, where in each
volume we have seven data with different fit range of RðtÞ
as explained in the above. The result of ΔE∞ with the
statistical and systematic errors are tabulated in Table III.
From the result that ΔE∞ is nonzero and negative, we
conclude that the ground state is bound in this channel. The
binding energy equals −ΔE∞ ¼ 47ð7Þðþ20

−11Þ MeV where

the first and second errors are statistical and systematic,
respectively.
The result for −ΔE∞ is compared with the experimental

value of 28.3 MeVand with the previous three results [1–3]
in Fig. 6. The binding energy for mπ ¼ 0.3 GeV obtained
in this paper is similar in magnitude with our previous
results for Nf ¼ 2þ 1 at mπ ¼ 0.51 GeV [3] and Nf ¼ 0

at mπ ¼ 0.80 GeV [5]. Compared to experiment, if one
used the upper total error, our current value is consistent
within 1.5σ. The result of the Nf ¼ 3 calculation at mπ ¼
0.81 GeV [2] is about 3 times larger than the other results.
This difference might be due to different quark masses of
the calculation or dynamical quark effects. On the other

0 4 8 12 16 20
t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

4
He

0 4 8 12 16 20
t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

4
He

FIG. 3 (color online). Effective energy shift ΔEeff
L for 4He

channel on ð4.3 fmÞ3 (top) and ð5.8 fmÞ3 (bottom) volumes in
lattice units. The fit result with one standard deviation error band
and total error including the systematic one is expressed by solid
and dashed lines, respectively.

0 1 2 3 4 5 6 7
fit range

-0.08

-0.06

-0.04

-0.02

0

4
He

0 1 2 3 4 5 6 7
fit range

-0.08

-0.06

-0.04

-0.02

0

4
He

FIG. 4 (color online). The fit range dependence of energy shift
ΔEL for 4He channel on ð4.3 fmÞ3 (top) and ð5.8 fmÞ3 (bottom)
volumes in lattice units. The horizontal axis corresponds to the
fit range ðtmin;tmaxÞ;ðtmin−1;tmaxÞ;ðtminþ1;tmaxÞ;ðtmin;tmax−1Þ;
ðtmin;tmaxþ1Þ;ðtminþ1;tmaxþ1Þ;ðtminþ2;tmaxþ2Þ, and ðtminþ3;
tmaxþ3Þ from left to right. tmin and tmax are minimum and
maximum time slices of the fit range, respectively, whose values
are explained in the text. The total error band including the
statistical and systematic is expressed by solid lines.

STUDY OF QUARK MASS DEPENDENCE OF BINDING … PHYSICAL REVIEW D 92, 014501 (2015)

014501-5



hand, the result obtained with the two-nucleon potential
extracted from Nf ¼ 3 calculations at mπ ¼ 0.47 GeV [4]
has a very small binding energy, ΔE ¼ 5.1 MeV, com-
pared to the other results.

C. 3He channel

Figure 7 shows the effective energy shift ΔEeff
L in Eq. (4)

for the two volumes. The signals are better than those in the
4He channel shown in Fig. 3. A plateau is seen for the
smaller volume case, while it is less clear in the region of
t ¼ 8–12 for the larger volume case. The energy shift ΔEL
in Eq. (2) is determined by an exponential fit to RðtÞ in
Eq. (3) with the fit range of t ¼ 8–12 and 9–12 for the
smaller and larger volumes, respectively. The systematic
error of ΔEL is estimated in the same way as for the 4He
case as described in the above subsection. The fit results
with the statistical and systematic errors are shown in Fig. 7
and Table III. The explanations for the solid and dashed
lines are given in the previous subsection. Figure 8 shows
how we estimate the systematic error. The relative

difference of the extra fit result with the slid fit range by
þ3, as explained in the previous subsection, from the
central fit result with the total error is less than 1.6σ.
Aweak volume dependence of ΔEL observed in Fig. 9 is

similar to those in the previous results [1–3]. A constant fit of
ΔEL with only the statistical error gives a large value of
χ2=DOF ¼ 4.1, where DOF denotes degrees of freedom. It
agrees with the two data within the total error as shown in
Fig. 9, however. Thus, we take the constant fit result as the
estimate of the central value of ΔE∞ in this calculation.
We estimate the systematic error of ΔE∞ in the same

way to the 4He case. We omit 18 constant fit results,
however, with χ2=DOF > 4.1. The extrapolated result
of ΔE∞ is clearly nonzero and negative as presented in
Fig. 9. Thus the ground state is a bound state, correspond-
ing to the 3He nucleus, with a binding energy of −ΔE∞ ¼
21.7ð1.2Þðþ13

−1.6Þ MeV, where the first and second errors are
statistical and systematic, respectively.
The quark mass dependence of the energy shift is plotted

in Fig. 10. Our present result together with our two
previous calculations [1,3] show very small dependence,
while NPLQCD reported a much deeper bound state [2].
All lattice results in the figure have the binding energy
larger than the experimental value 7.72 MeV.

D. Two-nucleon channels

We present ΔEeff
L in Eq. (4) for the 3S1 and 1S0 channels

in Figs. 11 and 12, respectively. The signals are clean up to
t ≈ 14, but statistical fluctuations spoil the signals in the

TABLE III. Energy shift −ΔEL in physical units and fit range
for 4He and 3He channels on each spatial volume. Extrapolated
results in the infinite spatial volume limit are also presented. The
first and second errors are statistical and systematic, respectively.

4He 3He

L −ΔEL [MeV] Fit range −ΔEL [MeV] Fit range

48 46ð13Þðþ55
−11Þ 9–12 18.7ð1.9Þðþ15

−3.1Þ 8–12
64 47ð9Þðþ6

−8Þ 9–12 23.7ð1.6Þðþ13
−2.5Þ 9–12

∞ 47ð7Þðþ20
−11Þ � � � 21.7ð1.2Þðþ13

−1.6Þ � � �

0 0.2 0.4 0.6 0.8 1
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2
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Yamazaki et al. 2+1f V∞ [3]

This work 2+1f V∞

ΔE(
4
He)[MeV]

FIG. 6 (color online). m2
π dependence of energy shift for 4He

channel in MeV units. Open and closed symbols denote the
quenched [1] and full QCD [2–4] results, respectively. The results
of Refs. [1,3] and this paper are the ones in the infinite volume
limit. The error of the result obtained from the two-nucleon
potential was not estimated in Ref. [4]. The experimental result
(star) is also presented for comparison.
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(
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FIG. 5 (color online). Spatial volume dependence of ΔEL for
4He channel in MeV units. The outer bar denotes the total error
of statistical and systematic ones added in quadrature. The inner
bar is for the statistical error. The constant fit result is shown by an
open circle symbol. The experimental value (star) is also presented.
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larger time region. The values of jΔEeff
L j in the 1S0 channel

are smaller than those in the 3S1 channel. A similar trend
was seen in the previous studies [2,3,5]. We observe a clear
plateau with a negative energy shift for 9≲ t≲ 14,
although of a less quality for the 3S1 channel for the
smaller volume. We determine ΔEL by an exponential fit to
RðtÞ of Eq. (3) with the fixed fit range of t ¼ 9–13 for the
3S1 channel, and with t ¼ 10–14 for 1S0. The fit results are
presented in Figs. 11 and 12, and are summarized in
Table IV. The systematic error estimations for the 3S1 and
1S0 channels using the results with the several fit ranges, as
in the 4He and 3He cases, are presented in Figs. 13 and 14,
respectively.
The volume dependence of the energy shift in the two

channels is shown in Figs. 15 and 16. In both channels, the
volume dependences are mild, so that the data can be
reasonably fitted by a constant. The results for the constant
fit are nonzero and negative. This indicates that the ground
states in the two channels are bound states. The same
conclusion is also obtained by a fit including finite volume
effects of the two-particle bound state [25,26],
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-0.04
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0
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3
He
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3
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FIG. 7 (color online). Same as Fig. 3, but for the 3He channel.
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FIG. 8 (color online). Same as Fig. 4, but for the 3He channel.
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FIG. 9 (color online). Same as Fig. 5, but for the 3He channel.
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ΔEL ¼ −
γ2

mN

�
1þ Cγ

γL

X0

~n

expð−γL
ffiffiffiffiffi
~n2

p
Þffiffiffiffiffi

~n2
p

�
; ð13Þ

where γ and Cγ are free parameters, ~n is a three-dimen-
sional integer vector, and

P0
~n denotes the summation

without j~nj ¼ 0. In the fit, we use the weighted average
value of mN with the two volume data. In the above
equation, it is assumed that
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FIG. 11 (color online). Same as Fig. 3, but for the 3S1 NN
channel.
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FIG. 12 (color online). Same as Fig. 3, but for the 1S0 NN
channel.

TABLE IV. Same as Table III for 3S1 and 1S0 channels.

3S1 1S0

L −ΔEL [MeV] Fit range −ΔEL [MeV] Fit range

48 13.8ð0.9Þðþ3.6
−1.7Þ 9–13 7.7ð0.9Þðþ2.4

−1.2Þ 9–13
64 15.6ð1.2Þðþ1.0

−1.3Þ 10–14 9.5ð0.9Þðþ0.5
−0.8Þ 10–14

∞ 14.5ð0.7Þðþ2.4
−0.8Þ � � � 8.5ð0.7Þðþ1.6

−0.5Þ � � �
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FIG. 10 (color online). Same as Fig. 6, but for the 3He channel.
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−ΔE∞ ¼ γ2

mN
≈ 2mN − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N − γ2
q

: ð14Þ

Note that the degrees of freedom are zero in the fit with
Eq. (13). The fit result is presented in each figure at
1=L3 ¼ 0. We take the constant fit as the central value of
the binding energy −ΔE∞, and estimate the systematic
error in the sameway as in other channels. In the systematic
error estimation, we include the fit result using Eq. (13),
while we exclude nine and eight constant fit results in the
3S1 and 1S0 channels, respectively, which yield
χ2=DOF > 3. The results for the binding energy are
−ΔE∞ ¼ 14.5ð0.7Þðþ2.4

−0.8Þ MeV for the 3S1 channel and
8.5ð0.7Þðþ1.6

−0.5Þ MeV for 1S0 with the first and second errors
being the statistical and systematic, which are also
summarized in Table IV.
In Figs. 17 and 18, the results for ΔE∞ in the present

paper are compared with those of the previous studies
[2,3,5–8] as a function of m2

π . Almost all results report
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FIG. 13 (color online). Same as Fig. 4, but for the 3S1 NN
channel.
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FIG. 14 (color online). Same as Fig. 4, but for the 1S0 NN
channel.
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FIG. 15 (color online). Same as Fig. 5, but for the 3S1 NN
channel. The fit result using finite volume dependence of
two-particle binding energy Eq. (13) is also plotted.
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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .

IV. CONCLUSION AND DISCUSSION

We have extended our previous nuclei calculation in
2þ 1 flavor QCD at mπ ¼ 0.51 GeV [3] to the lighter
quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
3S1 and 1S0, the ground state is a bound state by investigating
the volume dependence of energy shift ΔEL. The binding
energies estimated for the infinite volume are as follows:

−ΔE∞ ¼

8>>>>><
>>>>>:

47ð7Þðþ20
−11Þ MeV for 4He;

21.7ð1.2Þðþ13
−1.6Þ MeV for 3He;

14.5ð0.7Þðþ2.4
−0.8Þ MeV for 3S1;

8.5ð0.7Þðþ1.6
−0.5Þ MeV for 1S0:

ð15Þ
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FIG. 16 (color online). Same as Fig. 15, but for the 1S0 NN
channel.
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FIG. 17 (color online). Same as Fig. 6, but for the 3S1 NN
channel. Open and closed symbols denote the quenched [5,7]
and full QCD [2,3,6,8] results, respectively. The results of
Refs. [2,3,5,6] and this paper are the ones in the infinite volume
limit.
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FIG. 18 (color online). Same as Fig. 17, but for the 1S0 NN
channel.
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These values differ little from those obtained at mπ ¼
0.51 GeV [3]. The largest relative difference occurs for
the 3S1 channel, which is only a 1.9σ effect if we use the total
error adding the statistical and systematic ones by quadrature.
Therefore, our conclusions at mπ ¼ 0.30 GeV are similar to
those in Ref. [3] for mπ ¼ 0.51 GeV: the binding energy of
the 4He nucleus is comparable with the experimental value,
while the 3He nucleus and the deuteron are about 3 and
7 times larger than the experimental values, respectively, and
a bound dineutron is observed in the 1S0 channel.
The differences we observe from experiment may arise

from various sources, either computational or physical in
origin. Statistical errors are fairly large in the calculations
even for light nuclei. While the negative value of the energy
shift is certain in all channels we looked at, better statistics
and improved techniques will be welcome to better control
the extraction of the energy shift for each volume and the
infinite volume extrapolations.
The quark mass is heavier than experiment in all

calculations to date. The binding in the 1S0 channel is
shallower than the 3S1 so that the former bound state may
become unbound as mπ decreases toward the physical
value. This can only be verified by calculations of the
nuclear binding energy at smaller quark masses.
It is also possible that the finite lattice spacing effect is

rather subtle. The short distance repulsion, in the language of
nuclear potential, is possibly affected more by such effects
than the long distance attraction, so that finite lattice spacing
effects may push out the multinucleon wave function, and
then the ground state would become a scattering state, for
lattice spacings smaller than some value.

Another possible source of systematic error is excited
state contaminations in the calculation. We have assumed
that the nucleon and nucleus correlation functions are
dominated by the ground state in the large t region, where
the plateau of ΔEeff

L in Eq. (4) appears. While we have
tuned the smearing parameter of the quark field to increase
the overlap of the nucleus operator to its ground state, from
the current data we cannot completely exclude the pos-
sibility that it is not sufficient to suppress the contami-
nations. To investigate the size of possible contaminations,
we might try analyses with the variational method [30]
using correlation function matrices.
For now, however, we think that a calculation at the

physical point, keeping the lattice spacing, is the next step.
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