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We present the one-loop matching condition for the unpolarized and polarized generalized quark

distributions in the nonsinglet case. The matching condition links the quasi distributions defined in terms of

spacelike correlators at finite nucleon momentum to the light-cone distributions, and it is useful for extracting
the latter from the former in a lattice QCD calculation. Our results show that at one-loop and leading power
accuracy the matching for the light-cone generalized quark distribution H (H) is nontrivial, whereas no
matching is required for E (E). Therefore, E (E) can be smoothly approached by its quasi counterpart in the
large momentum limit. We also present the matching for the distribution amplitude of the pion.
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I. INTRODUCTION

One of the important goals of quantum chromodynamics
(QCD) is to understand the internal structure of nucleons in
terms of the fundamental degrees of freedom of QCD—
quarks and gluons. The parton distribution functions (PDFs)
play a crucial role in characterizing the nucleon structure.
They are defined as the forward hadronic matrix elements of
light-cone correlations, and they describe the momentum
distributions of quarks and gluons inside the nucleon. In
recent years, their generalization to nonforward kinematics,
known as generalized parton distributions (GPDs) [1-4],
also received considerable attention (for recent reviews on
GPDs, see, e.g., [5-7]). In contrast to parton distributions,
GPDs encode more information about the internal structure
of nucleons, and they can be viewed as a hybrid of parton
distributions, form factors, and distribution amplitudes. They
played an important role in providing a three-dimensional
spatial picture of the nucleon [8] and in revealing the spin
structure of the nucleon [1]. Experimentally, GPDs can be
accessed in exclusive processes such as deeply virtual
Compton scattering or meson production. However, defined
as nonlocal light-cone correlations, they are rather difficult to
access by lattice QCD simulations.

Recently, a direct approach to accessing parton distri-
butions and related quantities has been proposed [9—19].
According to this approach, the light-cone parton distri-
bution can be studied by investigating the large momentum
limit of a quasi parton distribution, which is a time-
independent spacelike correlation and thus can be simu-
lated on a Euclidean lattice. The light-cone distribution
is then recovered from the quasi one by a factorization
formula or matching condition. This procedure, in princi-
ple, applies not only to parton distributions, but also to
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other quantities defined on the light cone. In Ref. [12], we
presented a factorization formula connecting the light-cone
and quasi parton distributions and proved its validity up to
one-loop order, where we showed that the quasi and light-
cone parton distributions have the same collinear singu-
larities, and the matching factor connecting them is
sensitive to UV physics only.

In this paper, we consider the one-loop matching for
GPDs. In particular, we focus on the unpolarized GPDs
H(x, & t) and E(x, &, ), and the polarized ones H(x, &, 1)
and E (x,&, 1), which are defined in terms of the following
matrix elements:
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where L(—3.3) is the gauge link along the light cone and
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In the limit &£,¢r— 0, H and H reduce to the usual
unpolarized and polarized parton distributions, while the
information encoded in E and E cannot be accessed since
they are multiplied by the momentum transfer A. Only in
exclusive processes with a finite momentum transfer can £
and E be probed.

We will study the unpolarized and polarized GPDs, as
well as their quasi counterparts defined in terms of space-
like correlations, and we will compute the one-loop
corrections. Based on the one-loop results, we then propose
a factorization formula for quasi GPDs and extract the
matching factors relating them to the light-cone GPDs. The
matching for the GPD H (H) turns out to be similar to that
for the parton distribution, whereas the matching for E (E)
is trivial since, as we will show in this paper, the quasi and
J
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light-cone definition yields the same result for £ (E) at one-
loop and leading power accuracy. This implies that the
light-cone GPD E (F) can be smoothly approached by the
large momentum limit of its quasi counterpart; hence, its
simulation on the lattice is relatively simple. As a related
quantity, we also present the matching for the distribution
amplitude of the pion.

The rest of this paper is organized as follows. In Sec. II,
we present the definitions of quasi GPDs and our con-
ventions. In Sec. III, the results of our one-loop calculation
for the unpolarized and polarized GPDs are given. The
factorization formula for the quasi GPDs is presented in
Sec. IV, where the one-loop matching factors are given. We
also present the one-loop matching condition for the pion
distribution amplitude. Section V contains our conclusions.

II. QUASI GPDs AND CONVENTIONS

The quasi GPDs are defined in full analogy to the light-
cone ones, and they can be extracted from the following
matrix elements defined on a spacelike interval along the z
direction [10]:
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The gauge link L points along the z direction, and H, &, H,

and £ may depend on p*. We define
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and ¢ is the same as in the light-cone GPDs since it is
Lorentz invariant. £ defined here approaches & in the light-
cone GPDs when the hadron’s longitudinal momentum
approaches infinity.

In the following we will focus on the generalized quark
distributions in the nonsinglet case and will consider quarks
as external states. The on-shell conditions for the initial and

final state quark
A\ 2
(p23) =

2m

[
and the definition + = AZ lead to

P’ = \/m2+17§—4—i,
2¢p?
LML= E)pl+ A —4mP (48 pl + 1)
4(m* + p2) -t

A0 =

A

’

(5)

where we have kept a quark mass m to regularize
potential collinear singularities and have chosen A, to
point in the positive x direction without loss of general-
ity. For |A,| to be real, we have the following
constraint:
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In the infinite momentum limit p* — oo, this reduces to
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which is the constraint for £ in the light-cone GPDs. We
will also assume & > 0.

III. ONE-LOOP RESULT FOR GPDs

In this section, we present the one-loop results for the
quasi and light-cone GPDs. As in the case of parton
distributions, we choose the axial gauge A* = 0 throughout
the computation since, in this gauge, the gauge link
becomes unity. We also use a transverse momentum cutoff
to regularize the UV divergences.

PHYSICAL REVIEW D 92, 014039 (2015)
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One-loop diagrams for GPDs in the axial gauge.

Let us start with the unpolarized case. From the
definition of Eq. (3), it is easy to see that the quasi
distributions yield the same result as the light-cone ones
at tree level:

HO(x,&1) = HO(x,& 1, p) = 5(1 - x),
EO(x,&1) = EO(x,&,1,p%) = 0. (8)

At one-loop level, the contributing Feynman diagrams in
the axial gauge are shown in Fig. 1. Let us first look at the
gluon-exchange diagram. In the axial gauge, the gluon
propagator is given by —iD,, (k)/k* with the numerator

n,k, + nyk k, k
D (k) = _ vy 2 Sl 9
(k) = Gy — 0k )
where n - k = k%, n? = —1. The first term on the rhs of the

above equation leads to the Feynman gauge result for the
diagram, which can be written as
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(10)

After a Feynman parametrization and integration over k° and k|, we have the following result for the first term in the

curly brackets above:

g

Iy =

r , (11)

ZCF 1
p* [ dy
7 VG=y)p+ (=38P + (1= y)2m?

where we have used k* = xp?, and y is the Feynman parameter.
The contribution of the second term in the curly brackets in Eq. (10) can be computed analogously, and the

result is
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Performing the Feynman parameter integrations in Eqs. (11) and (12), we are able to extract the contribution of I'; to the
quasi GPDs ‘H and & with the help of the Gordon identity. The result reads
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0 x> 1,

where yu is the transverse momentum cutoff for regularizing
potential UV divergences. Some remarks on the above
results are in order. To obtain Eqgs. (13) and (14), we take
the limit 4 — oo, and then p* — o0, m — 0, where we keep
the leading term in u, p®, and m of H; and &, [for &, the
leading term is O(m?)], and we ignore the power sup-
pressed corrections of the type (1/p*)"(n > 1). If we do
not take p* — oo, power corrections should be kept in the
light-cone GPDs as well, in order for the quasi and light-
cone GPDs to have the same IR behavior. As in the PDF
case [12,13], the quasi GPD result H; does not vanish in
the full x range. However, its collinear singularities exist
only in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) and Efremov-Radyushkin-Brodsky-Lepage

|

(ERBL) regions £<x<1 and -¢{<x <& In the
DGLAP region, the collinear singularities do not straight-
forwardly reduce to the corresponding PDF result with the
Altarelli-Parisi kernel when taking the limit &, ¢ — 0,
because we assume a finite 7 in taking the limit m — 0.
If = 0, as in the PDF case, the above assumption does not
apply, and the term leading to In(—¢) above will lead to
In m?2, and thus to the correct collinear behavior of PDF. £
is UV convergent as expected since it is zero at tree level.
There is no UV divergence in H, but a logarithmic
dependence on p® instead, as in the one-loop results for
PDFs. Moreover, the coefficient of Inp* in H in the
DGLAP region reduces to the corresponding PDF result
when & = 0.
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The second numerator structure in Eq. (9) leads to
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where &,(x, &, t,pu, p?) is of order O(m?/p?), which is power suppressed compared to &, in Eq. (14) and is therefore
ignored.

The last numerator structure yields
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which contributes to H(x, &, 7, u, p*) only with

asCr /p* + p2(1 = x)* = |1 - x|p* (18)
2n pe(1—x)? )
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Summing over all of these contributions, we obtain the following results for the gluon-exchange diagram in Fig. 1:
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x EW(x, &, t,p, p?) = & (x, &, 1., p7). (19)
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Now, we present the one-loop results for light-cone GPDs. As in the PDF case [12], the one-loop corrections for light-
cone GPDs can be obtained by first integrating over °, then taking the limit p* — oo and integrating over k , . This leads to
the following results for the three numerator structures in Eq. (9):

e x+¢ m? 1—x=2¢
2<:<1+«:) ln( )+Wln(_ ) e Ingg
1+x2—252
H b £ t9 - S F —x 2 X
(x & tp) 2w\ 52)1n(”7) +7(1 EC)“ )§2>ln( %)
11x§2251 x 11x§2251 .f f<x<l1
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2(x=¢ - 2£(14x 482 (1-x)?
G + M I
xX+E2 x
El(xfty):aSCFm_z +2<1+§2)1n§%§ —f<x<é
2r —t X+§2 1+x - 1
1-& In(:%) + 1 2 lTé E<x<
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=) Hiig {ln”z +In[(1£5)?]} —E<x<¢
2(x—£) x+& 1+&\2
Hy(x,& t,u) = asCr ) oon-ain :ﬂ + =g G
T gl ferel
(I=x)(1=¢) " N —x
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E2(x7 é, t,//t) = 0,
Hy(x,&.t.u) =0, (20)
the sum of which is
x+& 2¢ 2 452
sty (1 20 G + 58 In g,
C 14222 1 (1-x)? -1 fex<
(.. 1) = 25CF ) ~Fi-wi-25 ™ Giver ~ niE f<x<¢
b 9 9 27T
142282 1?4228 o (1-x)?
(I—=x)(1- 52)1 —t ( —x)(l—§2)1 1-&) 5 <x<l
0 otherwise,
.6 t) = Ey(x.6.1.0) e

The results do not vanish only in the DGLAP and ERBL
regions. There is a logarithmic UV divergence In 4 in the
above results whose coefficient agrees with the coefficient
of Inp? in HW), and also with the evolution kernel of
nonsinglet GPDs in the DGLAP and ERBL regions. It is
interesting to see that E(!) and £(!) are equal. This means no
matching is required for the GPD E up to one-loop and
leading power accuracy; therefore, the light-cone E can be
smoothly approached by the quasi £ in the large momen-
tum limit. The reason behind this is simple: the light-cone
GPD FE and its quasi counterpart are zero at tree level and
thus are UV convergent at one-loop level.

Next, we look at the contribution of self-energy
diagrams in Fig. 1. The computation of the quark wave

|

function renormalization factor is essentially the same
as in the PDF case [12]; the only difference is in the
momenta of the quarks. Since the incoming and outgoing
quarks now have different momenta, we have two wave
function renormalization factors 186Zp(p +4A) [or
16Zr(p £1A) for light-cone GPDs]. For simplicity,
we denote 8Zp(p £3A) (8Zp(p £3A)) as 6Zr (&, 1)
(6Zp+(£.1)). These factors can be related to each
other as

5ZF,+ (5’ t) = 5ZF,—(_§’ t>’ 5ZF,+ (5’ t) = 6ZF.—(_57 t)‘

(22)
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Using the same strategy as in Ref. [12], we obtain the following results for the wave function renormalization
factors:

X— x=¢
(1_51)21nﬁ_1%§ x<§
l=x 1 P3| _d=x 1, 401=)*(x=¢)
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M o x+é-2
=~ enen * > L
Summing over all of these contributions and including also 6Z5 ., we have
(FEeyms= f+f< &) ) - ot s y <=
—f(—Cf,Y)ln - fEy) I+ f(- §Y)1nm
+4f(—§,y)—@+m+ﬁ —f<y<¢

asC 2 )
20 == [ a8 (r(en) + fl-g3) I+ fle ) Ing
Hf (=& y) Ingrrpiee + 4UF(EY) + F(=6) + 15— a

+ E<y<l

pz(lﬂ—y)2
—f(Ey) T = f(=6. ) I35 + e+ i y> 1

where

f(&.y) =

I—¢ 1-y 2(1-&7 (24)
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Similarly, on the light cone one obtains

C (2 ) - 2 fex<
0Zp - = —a; F/dx (1-¢7 nox+2ini= (=) E<x
' 0 otherwise,
2(x— 2 _
0Zpy_ = —aSCF / dx (1—(«5)(152)6) (ln# + 2lni—_f() E<x<1
o 0 otherwise,
6Zp;_ =0, s

S0 __asCr [ ) =(F(&y) + f(=£.3)) Int = 2f (£.y) In =5
F = o y e ’
2f(=E) IS+ et f<y<l

0 otherwise.

From the above results, it is clear that the coefficients of In Z—% in Zg) and In 5722 in ngl) in the DGLAP region [£, 1] reduce to
the PDF result when & — 0. Several further checks have been performed on our results: the one-loop results for GPDs
reduce to that for PDF when &, t — 0 (although for H, this is nontrivial); the x integrals of the Feynman part equation (10)
contribution to GPDs, which is the most complicated one among all three numerator structures, agree with the form factors
of a local quark current computed in the Feynman gauge. We also checked the polynomiality of the logarithmic terms in the
above results.

In the case of polarized GPDs, the vertex contribution can be obtained by replacing y* with y*y> in Eq. (10), whereas
the self-energy contribution remains the same. We present the result of the vertex contribution below. For the quasi GPDs,
we have

7‘:{(1)()‘:’ g’ t’ﬂ’ pz) - H<1>(xa 57 t’l'lv pz)7

0 x < =£
2(E=1)(E=x) In(z4) + 2&(1 + x) In %
b2 asC I’l’l2 20252
EV(x &t p?) == F f-oy) e I e<x<e¢ (26)
AE(1 + x) In(") + 4(&% + x) In 15 E<x<l
0 x> 1,

whereas on the light cone we have

HY (x, & 1,1, p?) = HV (x, &, 1, u, p?),
EV(x,& 1,1 p?) = EV(x, & 1,1, p7). (27)

IV. ONE-LOOP FACTORIZATION

Before we construct the factorization formula connecting the quasi and light-cone GPDs, let us summarize the one-loop
results in the previous section. For the unpolarized case, we have
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P! 1 1
H(x, &t p, p%) = 1+§<5ZF(19—§A> +5ZF(19+5A>>]5(1—X)+H“)(xv§’f’ﬂ’lﬂz)
= (1+ ZM)8(1 = x) + HO(x, &, 1, 1, p°),

H(x,E t,u) = _1 +%<5ZF<p—%A> +5ZF<p+%A>>}S(1 —x)+HY(x,& t,1)

= (1+2)8(1 = x) + HO (x. &, 1.p0). (28)

Similar results can be written down for the polarized case. A crucial difference between H and H is that the latter vanishes in
the regions x < —& and x > 1, whereas the former does not. The connection between the quasi and light-cone GPDs can be
established as

Id

up to power corrections suppressed by p?, where the integration range is given by the support property of the light-
cone GPD.
The matching factor Zy can be perturbatively expanded as

)= -3) 5 A ()
za (22 ) =5(1- Z0 (2 s 2 L Ho. 30
H(yypz y+2”yypz+0 (30

where H.o. denotes higher-order contributions. From the one-loop results for H and H, the matching factor can be
extracted as

(&2+1n) lnjy%g (=28%4n*+1) ln% P
1) 2@00=1) T e n<-¢
+ 2 I 2 =
e (1 + ﬂ) InL 4 S22 (ln[4(1 — ) - 1n”+—g)
n+¢ 2 _ 2 n+¢ u B
(1) qe ) TEED (& = )] + e + ey {<n<¢
Zy (0,C.u/p?)/Cr = L2 1 2 L . (31)
o 0 + 5oz (n[16(7" = &) + 21n(1 — 1))
_ e qan=t 208 u
2é(l—cz>lnn+i (=8 T p(i=ny f<n<1
12
(&2+1) ln% (=284 +1) 1“% u
B 72 ) R e o § R e n> 1.
The above matching factor is valid for y > &; however, it can be extended to the full y range as
1 X 1 X 5 u 5 I
NE ( 5 >/ F=73 [ <H>9(x <=£)0(x <y) +F2< 2 )0(-E<x < 9O(x <)
[\ Ty y y'y pt y'y p
X X
+F3<_,§ ﬂ) (§<x<y)+F4<— ¢ %)9(x>§)9(x>y)], (32)
yy p yy

where F | , 3 4 are given by the matching factor in the four different regions in Eq. (31) (with a replacement Ina — 1/21n a?
so that they are real functions); p* shall be replaced by yP?, with P* being the averaged longitudinal momentum of the
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external hadrons. The validity of the above equation can be checked by explicit computations. The coefficient of ln - is the
same as the evolution kernel of the light-cone GPD.
Near # = 1, one has an extra contribution from the self-energy correction
2 (2.6.2) = 524 nfag - (33)
yy pe
with
+¢ 1
(f(C ) =5+ f(=Con) Ing ) i n<-¢
2 —
—f(=C.n) Inkz = f(&on) Ing=h = F(=C.m) In[4(L + ) (1 = )]
C +4f(_§a’1)_1+§2_1_41{+%_”+pz<1ﬂ_n)2 _C<7]<§
522) __asCr / dn 2 (34)
27 —(f(&m) + f(=C.m) In G5 = £ (E.n) In[4(n = £)(1 = n)]
—f(=C.n) In[4(C +nm) (1 = )] + 4(f(&n) + f(=C.m) + 7%
-3 4K
1_§2+ z( )2 C<’7<1
+C 1
_f(g 77) 11'1 f( g ’7) 1n'7 + 1-¢2 + pr(lﬂ_n)Z n> 1.
One can check to see that 522) provides a plus distribution Zep(x/y) =68(x/y—1) (36)

for the singularity at x =y in the matching factor

ZS) (x/y,&/y, )/ p*). The above matching factor also trans-
forms the logarithmic dependence on p® in H(x, &, t, u, p*)
into the renormalization scale dependence in H(x, &, ¢, u).
Note that we have the same linear divergence as in the PDF
case. Moreover, when & — 0, the region [—¢, £] disappears
and the matching factors in the remaining regions reduce to
those for the PDF.

In the above result, we take into account the quark
contribution only. The antiquark contribution is given by
making the following replacement in Eq. (32):

y = —y. (35)

Summing over both the quark and the antiquark contribu-
tion, one obtains the complete matching factor, which

X = —X,

. . 2 .
contains in the an—; term the complete evolution kernel of

the light-cone GPD.

The factorization of E can be constructed analogously.
However, from the results of £ and E, the matching factor
for E is simply given by

o) = [ 5

up to one-loop order and leading p* accuracy. Since E does
not show up at tree level, it is UV convergent and thus does
not have a cutoff dependence. Accordingly, £ does not have
a logarithmic dependence on p*. Therefore, the light-cone
GPD E can be smoothly approached by the large momen-

tum limit of E. This is also true, in principle, for other light-
cone quantities that do not exhibit a UV divergence. The
simulation of such quantities on the lattice are, therefore,
relatively simple.

Since HY =HW, AD = O, and ED = Y, the
above factorization also applies to the polarized GPDs with
the same matching factors.

In the following, we consider the matching for the
distribution amplitude, whose evolution kernel can be
obtained from that of the GPD as a limiting case. Here,
we focus on the simplest type, the distribution amplitude of
the pion. The light-cone pion distribution amplitude ¢(x) is
given by

et (a5 ) st (<55 (5) o) @7

where the two quark fields are separated along the light cone, and x(1 — x) denotes the momentum fraction of the
quark (antiquark). As in the case of GPDs, it can be studied from the large momentum limit of the following quasi

correlation:
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- d
d(x. p*) = /2;6‘

with the two quark fields separated along the spatial
direction. The one-loop factorization for the pion distribu-
tion amplitude can be written down analogously as

$(x.u, p?) = /)1 dyZ,(x, y, p, p*)p(y, ). (39)

The matching factor Z,(x,y,u, p*) can be obtained by
starting with the light-cone and quasi distribution ampli-
tudes, Eqs. (37) and (38), and computing the one-loop
corrections, respectively. It can also be obtained from the
above matching factor for GPDs by crossing the initial
quark to the final state, which leads to the following
replacement for the momentum fractions:

PHYSICAL REVIEW D 92, 014039 (2015)

e pp (=5 ) (<55 (5) o) (38)

|
This corresponds to setting

x—=2x—1, y—>2y—1, E—1 (41)

in Eq. (32). Note that one also needs to replace the averaged
longitudinal momentum of external hadrons P* below
Eq. (32) by p?/2, with p* being the longitudinal momen-
tum of the pion.

Expanding the matching factor Z(x, y, u, p%) as

a 1
Zy(x,y, 4, p*) = 8(x —y) +ﬁZ;)(X,y,/4,pz) +-,

(42)
¢ Zy%I 1/6 > 2x -1 (40) we then have
|
Zf/,l)(x,y,ﬂ, P*)/Cr = Gy(x,y,p, p7)0(x < 0) + Ga(x,y, 4, p)O(0 < x <y)
+ G3(x, y, . p9)O(y < x < 1) + Gy(x,y. u, p*)0(x > 1), (43)
with
_ _ Y
Grloyo i 2) = <2(1x—y)7L 12yx) mxi i <2(1x—y) 12yx+y1X> ln)(C)(Cx —yi) pz(xﬂ—y)
Gy(x,y, u, p*) = <ﬂ+y 1x> lni—§+ <2(1x_y) - 12_yx+y1x) In[4(x — y)?]
< 1> nfaa(l =0 + <2(yx— 1) 12_yx_in> - ;x+i_yix pz(xﬂ—y)
G(qup)—Gz(l—xl s b DY),
Guternr) = (g5 )0 (T ) e e (44)

Here, we have taken into account charge conjugation
invariance and the fact that the one-loop diagram for
the pion simultaneously involves the quark and the
antiquark state. We have checked to see that the
above matching factor agrees with the result of direct
computation.

Near x = y, one has an extra contribution from the wave
function renormalization

2 (x v, p?)/Cr = 62 (2nfas)é(x —y),  (45)

where 62{(;) is given by

014039-11



M et al. PHYSICAL REVIEW D 92, 014039 (2015)
—1 1 1 1— 1 1
(it + oty — k) 2+ (G 4=k Ings
1 1
2—1) ~ 2y pz(;l—x)2 x<0
2
(=5 +55) (& + mfax(y - 0)) + (5125 - 2ty
+L)1nx—y_¥+;x+i_¢++ O<x<y
C y—x x=1 2(y-1) 2 2y y—x (y—x)?
57, :_0’; F/dx o e (46)
T _ z
~ =t = a2 (0 + 4 =) (- 3)]) + (55
1 1 x=y 1 2(1=x) 1 1
+§—y:)1n7+z—y+m—y)2+2<1—y>+yfx+pv<f—x>2 y=x<l
_1 1 1 1- 1 1
- (2(){—)1)2 T30 " 5=) Iy~ (2)67 Tay~ »Tx) In3%
1 1
o Tyt =l

One can explicitly check to see that the wave function
renormalization factor provides a plus prescription for the
factor in Eq. (43).

V. CONCLUSION

We have presented the one-loop matching conditions for
the unpolarized and polarized generalized quark distribu-
tion in the nonsinglet case. The matching conditions relate
the quasi GPDs defined in terms of spacelike correlations
and the light-cone GPDs. For the GPD H (H), the matching
is constructed in analogy with the PDF matching, and the
matching factor reduces to that of the PDF in the limit
£ — 0. For E (E), as it is UV convergent, the matching
factor is trivially given by a ¢ function, implying that the
light-cone GPD E (E) can be smoothly approached by its
quasi counterpart £ (€) in the large momentum limit. This

facilitates its extraction from lattice simulations. We have
also presented the matching condition for the pion dis-
tribution amplitude.
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