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Hadron masses under strong magnetic fields are studied. In the presence of strong magnetic fields
exceeding the QCD energy scale eB ≫ Λ2

QCD, SUð3Þflavor ⊗ SUð2Þspin symmetry of hadrons is explicitly

broken so that the quark components of hadrons differ from those with zero or weak magnetic fields
eB ≲ Λ2

QCD. Also, squeezing of hadrons by strong magnetic fields affects the hadron mass spectrum. We

develop a quark model which appropriately incorporates these features and analytically calculate various
hadron masses including mesons, baryons, and those with strangeness.
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I. INTRODUCTION

Quantum chromodynamics (QCD) exhibits highly
nontrivial behaviors in the presence of strong magnetic
fields exceeding the QCD energy scale eB ≫ Λ2

QCD [1].
Indeed, lattice simulations are performed without suffering
from the notorious sign problem and many interesting
phenomena are observed such as (inverse-)magnetic cataly-
sis [2–5], anisotropy in the quark-antiquark potential [6],
and nontrivial eB-dependence in hadron masses [7–9],
albeit their physical interpretation is still in intense dis-
cussions. On the experimental side, such strong magnetic
fields are realized in the peripheral collisions of relativistic
heavy ions and possibly in the interior of neutron
stars. Thus, it is also phenomenologically important to
improve our understanding of QCD under strong magnetic
fields.
In this paper, we discuss hadron masses under strong

magnetic fields. Recent lattice studies [7–9] calculated π; ρ
meson masses and observed that (i) not only charged meson
masses Mπþ ;Mρþ but also neutral meson masses Mπ0 ;Mρ0

depend on the strength of magnetic fields eB; (ii)Mπþ ;Mρ0

increase as
ffiffiffiffiffiffi
eB

p
while Mπ0 ;Mρþ show weak

eB-dependence; (iii) there is a mass hierarchy Mρ0 ∼
Mπþ > Mρþ ∼Mπ0 for eB ≫ Λ2

QCD. So far two phenom-
enological studies employing a relativistic Hamiltonian
technique [10] and the Nambu-Jona-Lasinio model [11]
have been done to explain these nontrivial behaviors.
However, there is no consensus on the physical reason
why there is such nontrivial behaviors.
The purpose of this paper is to present a simple analytical

model which clearly explains the physics of hadron masses
under strong magnetic fields. We also apply the model to
predict other hadron masses including baryons and hadrons
with strangeness.

II. MODEL DESCRIPTION

Before presenting the model, let us first clarify what are
the essential properties for describing hadron masses under
strong magnetic fields.
(i) Quark degrees of freedom: Since the typical energy

scale of the system is now characterized by magnetic fields
stronger than the QCD energy scale eB ≫ Λ2

QCD, the
internal structure of hadrons, i.e., the quark degrees of
freedom should be explicitly treated to describe hadron
masses.
(ii) Explicit breaking of SUð3Þflavor ⊗ SUð2Þspin

symmetry of hadrons: SUð3Þflavor ⊗ SUð2Þspin symmetry
of hadrons is the key concept in describing hadron
masses with zero magnetic field [12–14]. However, this
SUð3Þflavor ⊗ SUð2Þspin symmetry is completely broken
under strong magnetic fields because quarks form the
Landau levels and their lowest energies depend on the
spin and the electric charge. As a result, the quark
components of low-lying hadrons under strong magnetic
fields differ from those with zero or weak magnetic
fields eB≲ Λ2

QCD.
(iii) Strong deformation of hadrons: Without strong

magnetic fields, the typical volume of a hadron is solely
determined by the confinement of QCD and is roughly
given by ð1=ΛQCDÞ3. Under strong magnetic fields, how-
ever, hadrons are strongly squeezed in the transverse
direction hri ∼ 1=

ffiffiffiffiffiffi
eB

p
not by QCD but by strong magnetic

fields and therefore the typical volume would be given by
ð1= ffiffiffiffiffiffi

eB
p Þ2 × ð1=ΛQCDÞ. As a result, the typical distance

between quarks inside a hadron jrqqj decreases as the
magnetic field gets stronger. Due to this reduction of jrqqj,
the mass contribution from the long-range interaction
between quarks, i.e., the confinement potential of
QCD ∝ jrqqj decreases.
When describing hadron masses under strong magnetic

fields, one should take into account all of the essential*h_taya@hep1.c.u‑tokyo.ac.jp
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properties (i)-(iii). We are going to develop a simple
analytical model which incorporates all of the properties:
A quark model under strong magnetic fields (i) whose
quark components of hadrons are reorganized to respect the
explicit breaking of the SUð3Þflavor ⊗ SUð2Þspin symmetry
(ii), and which includes the confinement potential of
QCD (iii).
Let us consider a Hamiltonian H, for a single quark with

an electric charge q and a current quark massm, of the form

HðrÞ ¼ α · ð−i∇ − qAðrÞÞ þ βVðrÞ;

AðrÞ ¼ 1

2
Breθ;

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ σ2⊥r2 þ σ2∥z

2
q

: ð1Þ

Here, we take cylindrical coordinates r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; θ ¼

arctanðy=xÞ and denote the Dirac matrices with α and β.
The vector potential A is chosen to realize a constant
magnetic field along the z-axis B ¼ Bez. The potential V
contains not only the mass term m2 but also the term
σ2⊥r2 þ σ2∥z

2, which phenomenologically represents the
linear confinement of QCD. The parameters σ⊥; σ∥ char-
acterize the confinement force of QCD1 in the transverse
and the longitudinal direction with respect to the magnetic
field, respectively. Notice that the chiral symmetry is
explicitly broken by the potential V. We also stress that
the detailed choice of the confinement potential in V does
not affect our qualitative results. The advantage of this
particular choice of V [Eq. (1)] is that the Dirac equation
i∂tψ ¼ Hψ is analytically solvable.
By solving the Dirac equation, one finds that the lowest

energy levelM, which we shall call constituent quark mass,
and the probability density ρ≡ ψ†ψ of a single quark in the
s-wave state are given by

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqB=2Þ2 þ σ2⊥

q
þ σ∥ þm2 − qBs

r
ð2Þ

and

ρ ¼ jNj2e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqB=2Þ2þσ2⊥

p
r2e−σ∥z

2

×

2
641þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqB=2Þ2 þ σ2⊥

p
− qBs=2Þ2r2 þ σ2∥z

2

ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ σ2⊥r2 þ σ2∥z

2
q

Þ2

3
75: ð3Þ

Here, s ¼ 1 for spin up ð↑Þ and −1 for spin down ð↓Þ, and
N is the normalization constant. For strong magnetic fields
qB ≫ σ⊥, Eq. (2) behaves as

M ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ σ∥ þ jqBj − qBs

q
: ð4Þ

The constituent quark mass M increases as
ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp

for
qs < 0 while M stays almost constant for qs > 0. Notice
that Eq. (4) is independent of the transverse confinement of
QCD σ⊥ ≠ 0 because hadrons are now strongly squeezed
in the transverse direction hri ∼ 1=

ffiffiffiffiffiffi
qB

p
by the strong

magnetic field [see the exponential factor in Eq. (3)] and
the mass contribution from the transverse confinement
of QCD ∼σ⊥hri becomes negligible. We also note that
Eq. (4) is a slight modification of the naive lowest Landau
energy for a charged pointlike fermion, ELLL ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqBj − qBs

p
, due to the longitudinal confinement

of QCD σ∥ ≠ 0. On the other hand, weak magnetic fields
qB ≪ σ⊥ perturbatively deform hadrons to shift their
masses as

M ∼MðB ¼ 0Þ − qBs
2MðB ¼ 0Þ : ð5Þ

Here, MðB ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2σ⊥ þ σ∥

q
is the constituent

quark mass at B ¼ 0. Equation (5) is nothing but the
Zeeman splitting formula with the g-factor g ¼ 2.
The eB-dependence of the constituent quark mass M

[Eq. (2)] of u↑; u↓; d↑; d↓; s↑; s↓ is plotted in Fig. 1. We
have set σ ≡ σ∥ ¼ σ⊥ ¼ ð200 MeVÞ2 ∼ Λ2

QCD and mu ¼
md ¼ 0 MeV; ms ¼ 350 MeV so as to reproduce the
empirical value of the constituent quark masses at
B ¼ 0, i.e., Mu;Md ∼ 350 MeV and Ms ∼ 500 MeV.
Here, we have assumed that the parameters σ⊥; σ∥ do
not depend on magnetic fields and thus they are always
spherically symmetric σ⊥ ¼ σ∥ and constant. We remark
that this simplification does not change our qualitative
results, while some studies have suggested that the gluon
dynamics could be modified, i.e., the confinement force,
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FIG. 1 (color online). The constituent quark massM (Eq. (2)) of
u↑; u↓; d↑; d↓; s↑; s↓ as a function of the strength of the
magnetic field eB. Parameters are set as σ⊥ ¼ σ∥ ¼
ð200 MeVÞ2 and mu ¼ md ¼ 0 MeV; ms ¼ 350 MeV.

1Although the parameters σ⊥; σ∥ resemble to the phenomeno-
logical string tension of QCD σph, they are not the same in a strict
sense: The phenomenological string tension σph represents the
force acting between a pair of dynamical quarks. Our parameters
σ⊥; σ∥ characterize the force acting on a single quark moving in
an effective single-particle potential of the confinement.
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which is represented by the parameters σ⊥; σ∥ in our model,
might vary under strong magnetic fields through quark loop
corrections [6,15].
Figure 1 clearly illustrates the explicit breaking of the

SUð3Þflavor ⊗ SUð2Þspin symmetry of hadrons under strong
magnetic fields. Indeed, we have

Mu↓ > Ms↑ ∼Md↑ > Ms↓ ≳Md↓ ∼Mu↑ ð6Þ

for strong magnetic fields eB ≫ σ ∼ Λ2
QCD. The constituent

quark mass of u↓; s↑; d↑ increases as
ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp

because
qs < 0, while it stays almost constant for s↓; d↓; u↑
because qs > 0, as is explained in Eq. (4). Thus, the mass
hierarchy Mu↓;Ms↑;Md↑ > Ms↓;Md↓;Mu↑ appears. For
the lighter qs > 0 quarks u↑; d↓; s↓, the splitting Ms↓ ≳
Md↓ ∼Mu↑ arises from the current quark mass difference
ms ≳mu ¼ md. For the heavier qs < 0 quarks u↓; d↑; s↑,
the splitting Mu↓ > Md↑ ∼Ms↑ appears due to the electric
charge difference jquj ¼ 2e=3 > jqdj ¼ jqsj ¼ e=3. Here,
the current quark mass difference becomes unimportant
because the constituent quark mass of qs < 0 quarks is
largely determined by the electric charge only
Mqs<0 ∼

ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp

. On the other hand, for weak magnetic
fields eB ≪ σ ∼ Λ2

QCD, the constituent quark mass of
u↑; d↓; s↓ decreases as eB increases and its magnitude
is slightly larger for u↑ than for d↓; s↓ [see Eq. (5)]. This is
the consequence of the deformation of hadrons by magnetic
fields: Hadrons are squeezed by magnetic fields and
therefore the mass contribution from the QCD confinement
potential ∼σjrqqj decreases. Since jrqqj becomes smaller for
larger electric charge q, we have a stronger reduction of
Mu↑ than Md↓;Ms↓.
Equation (6) is an essential relation to construct the

proper quark components of hadrons under strong magnetic
fields. This is summarized in Table I. For example, the
quark components of ρþ meson, which is a composite of
u; d quarks and has the total electric charge Q ¼ 1 and the
total angular momentum J ¼ 1, is given by u↑d̄↑. Indeed,
the otherQ ¼ 1; J ¼ 1 states such as u↓d̄↓ are heavier than
u↑d̄↑ because of the mass hierarchy Eq. (6). Simply
speaking, the proper quark components of hadrons under
strong magnetic fields are determined by maximizing the
number of qs > 0 quarks, whose constituent quark mass
stays almost constant, and by minimizing the sum of the
electric charge

P
qs<0jqj of qs < 0 quarks, whose con-

stituent quark mass increases as
ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp

. We note that all
the hadrons under strong magnetic fields are spin-aligned
due to this reconstruction of quark components of hadrons.
Now, we are ready to compute hadron mass MHadron

under strong magnetic fields. By using the constituent
quark mass Mquark [Eq. (2)] and the proper quark compo-
nents of hadrons displayed in Table I, we have

MHadron ¼
X

quarks∈Hadron
Mquark: ð7Þ

Here, we have neglected the quark interactions at short
distances, one-gluon exchange potential for example,
because its mass contribution is always suppressed by
the strong coupling constant αS. The important point in
Eq. (7) is that the eB-dependence of hadron massMHadron is
largely determined by the number of qs < 0 quarks and
that MHadron increases as

P
qs<0

ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp

for strong mag-
netic fields eB ≫ σ ∼ Λ2

QCD. It should be stressed that the
mass formula Eq. (7) is appropriate for strong magnetic
fields eB ≫ σ ∼ Λ2

QCD because it incorporates all the
essential properties (i)-(iii). For weak magnetic fields
eB≲ σ ∼ Λ2

QCD, the mass formula Eq. (7) is not adequate
to describe hadron masses precisely because the properties
(i)-(iii) are not the essence for weak magnetic fields.
However, Eq. (7) does roughly reproduce the physical
hadron masses even for weak magnetic fields because they
are largely determined only by the constituent quark masses
at B ¼ 0, which is why we have set the value of the
parameters σ; m so as to reproduce the empirical value of
the constituent quark mass at B ¼ 0. In order to obtain a
better description for weak magnetic fields, one needs to
take into account some other properties which Eq. (7) have
neglected: The restoration of the SUð3Þflavor ⊗ SUð2Þspin
symmetry of hadrons, the quark interactions at short
distances, and chiral corrections. The chiral corrections
are especially important for describing π meson masses

TABLE I. Quark components of hadrons under strong magnetic
fields.

Meson Quarks Baryon Quarks

π0 u↑ū↓; d↓d̄↑ p u↑u↑d↓
πþ u↑d̄↓ n u↑d↓d↓
π− d↑ū↓ Λ u↑d↓s↓
η u↑ū↓; d↓d̄↑; s↓s̄↑ Σþ u↑u↑s↓
η0 u↑ū↓; d↓d̄↑; s↓s̄↑ Σ0 u↑d↓s↓
K0 d↓s̄↑ Σ− d↓d↓s↑
K̄0 s↓d̄↑ Ξ0 u↑s↓s↓
Kþ u↑s̄↓ Ξ− d↓s↓s↑
K− s↑ū↓ Δþþ u↑u↑u↑
ρ0 d↑d̄↑; d↓d̄↓ Δþ u↑u↑d↑
ρþ u↑d̄↑ Δ0 u↓d↓d↓
ρ− d↓ū↓ Δ− d↓d↓d↓
ω d↑d̄↑; d↓d̄↓ Σ�þ u↑u↑s↑
ϕ s↑s̄↑; s↓s̄↓ Σ�0 u↓d↓s↓
K�0 d↓s̄↓ Σ�− d↓d↓s↓
K̄�0 s↑d̄↑ Ξ�0 u↓s↓s↓
K�þ u↑s̄↑ Ξ�− d↓s↓s↓
K�− s↓ū↓ Ω− s↓s↓s↓
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under weak magnetic fields. We leave these improvements
for a future work.

III. HADRON MASSES

We analytically calculate various hadrons masses by
using Eq. (7) and the results are plotted in Figs. 2 and 3.
The masses of light mesons composed of u; d quarks

only are plotted in the left panel of Fig. 2. The thick lines
are our model calculation and the symbols are the existing
lattice results [7,8]. One can immediately confirm that our
model calculation is qualitatively consistent with the lattice
results. Indeed, we reproduce the mass hierarchy

Mρ0 ∼Mπ� > Mρ� ∼Mπ0 ð8Þ

for strong magnetic fields eB ≫ σ ∼ Λ2
QCD. There,

Mρ0 ;Mπ� increase as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqdBj

p
because ρ0; π� contain

d↑ or d̄↓ which has qs < 0, while there is no qs < 0

quark in ρ�; π0 and thus Mρ� ;Mπ0 stay almost constant,
i.e., have weak eB-dependence.2 For weak magnetic fields
eB ≪ σ ∼ Λ2

QCD, Mρ� ;Mπ0 decrease as eB increases. This
is the consequence of the deformation of hadrons by
magnetic fields. For comparison, we also plotted the naive
lowest Landau energies, Mπ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMπ�ðB ¼ 0ÞÞ2 þ eB

p

and Mρ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMρ�ðB ¼ 0ÞÞ2 − eB

q
, respectively, for π�

and ρ� as pointlike particles in the thin black dashed lines.
The deviation of our model from these lines at large eB,
which is consistent with the lattice results, reflects the
importance of the internal quark structure of hadrons.
Now, we turn to the masses of strange mesons composed

of u; d; s quarks. The results are plotted in the right panel of
Fig. 2. Our model predicts

Mϕ ≳MK�0 ∼MK� > Mηs ≳MK0 ∼MK�� ð9Þ

for strong magnetic fields eB ≫ σ ∼ Λ2
QCD. For the major

hierarchy Mϕ;MK�0 ;MK� > Mηs ;MK0 ;MK��, the interpre-
tation is the same as that for the light meson masses. The
former hadrons contain qs ¼ −e=3 < 0 quark but the latter
do not. The minor splittings Mϕ ≳MK�0 ;MK� and Mηs ≳
MK0 ;MK�� appear because of the current quark mass
difference ms ≳mu ¼ md. We also show the naive lowest
Landau energies for K�; K�� as pointlike particles in the
thin black dashed lines. We again observe the deviation
between our model and the naive lowest Landau energies
due to the internal quark structure of hadrons.
The masses of light baryons (left panel of Fig. 3) and

strange baryons (right panel of Fig. 3) are also investigated.
The physics is the same as that for the meson masses:
The number of qs < 0 quarks, the sum of the electric
charge

P
qs<0jqj of qs < 0 quarks and the number of

strange quarks determine the mass hierarchy for strong
magnetic fields eB ≫ σ ∼ Λ2

QCD. Our model predicts mass
hierarchies

MΔ0 > MΔþ > MΔ− ∼Mn ∼Mp ∼MΔþþ ð10Þ
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FIG. 2 (color online). Various meson masses as a function of the strength of the magnetic field eB. [Left] Light mesons. The thick lines
are the model calculation and the symbols are the lattice results; filled symbols for Ref. [7] and open symbols for Ref. [8]. Different
shapes for open symbols distinguish the lattice space and the volume of the simulations in Ref. [8]. The thin black dashed lines are the
naive lowest Landau energies for charged π mesons, Mπ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMπ�ðB ¼ 0ÞÞ2 þ eB

p
, and charged ρ mesons,

Mρ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMρ�ðB ¼ 0ÞÞ2 − eB

q
. We note that only jszj ¼ 1 component of ρ meson is considered here because sz ¼ 0 component

of ρ meson is mixed up with π meson under strong magnetic fields. [Right] Strange mesons. The thick lines are the model prediction.
The thin black dashed lines are the naive lowest Landau energies for charged K mesons, MK� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMK�ðB ¼ 0ÞÞ2 þ eB

p
, and charged

K� mesons, MK�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMK��ðB ¼ 0ÞÞ2 − eB

p
.

2We note that there is a discrepancy in the existing lattice
results [7,8] on the eB-dependence of Mρ� ;Mπ0 under strong
magnetic fields. Although both studies [7,8] reveal that the
eB-dependence of Mρ� ;Mπ0 are weak, Ref. [7] claims that
Mρ� ;Mπ0 slowly increase as the magnetic fields get stronger
while Ref. [8] shows there is no such increase in Mπ0 (Mρ� is not
studied in Ref. [8]), i.e., Mπ0 stays almost constant.
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for light baryons and

MΞ�0 ≳MΣ�0 > MΞ− ≳MΣ− ∼MΣ�þ > MΩ−

≳MΞ�− ∼MΞ0 ≳MΣ�− ∼MΛ0 ∼MΣ0 ∼MΣþ ð11Þ

for strange baryons.

IV. SUMMARY AND DISCUSSION

We have studied hadron masses under strong magnetic
fields. We have developed a quark model which incorpo-
rates the explicit breaking of the SUð3Þflavor ⊗ SUð2Þspin
symmetry and the strong deformation of hadrons, which are
identified to be the essential properties to describe hadron
masses under strong magnetic fields. Various hadron
masses, including baryons and hadrons with strangeness,
are analytically calculated by the model. In particular, the
eB-dependence ofMπ;Mρ are qualitatively consistent with
the recent lattice results [7–9]. The model also gives us a
clear explanation why there is a nontrivial eB-dependence
in hadron masses under strong magnetic fields: Under
strong magnetic fields exceeding the QCD energy scale
eB ≫ Λ2

QCD, only the quarks in the lowest Landau level
become important. In the lowest Landau level, the con-
stituent quark mass increases as

ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp

for qs < 0 quarks
while it stays almost constant for qs > 0 quarks. Thus, the
eB-dependence of hadron masses is largely determined by
the sum of constituent quark mass of qs < 0 quarks inside a
hadron.
Since hadron masses are one of the most basic properties

of hadrons, the results of this study have a wide range of
applications when discussing hadron physics under strong
magnetic fields. Let us illustrate some examples. One
example is decay modes of hadrons: Some decay modes
are kinematically suppressed or enhanced because of the
mass hierarchy under strong magnetic fields (see Figs. 2

and 3). The modification to decay modes was suggested by
Ref. [16] which discussed a suppression of ρmeson decays.
Our study suggests that other decay modes are also
modified, for example, K0 → πþπ− is suppressed so that
the lifetime of K0 may become longer. Another example is
the equation of state (EoS) of nuclear matter under strong
magnetic fields. This is important for the physics of neutron
stars. Not only the hadron masses but also interactions
between hadrons would affect the EoS. This is because
hadrons are spin-aligned under strong magnetic fields as
displayed in Table I and hence the spin-dependent part of
the hadronic interactions would change.
For the further improvement of our model, it may be

important to consider the gluon dynamics: The gluon
dynamics could be modified under strong magnetic fields
through quark loop corrections. As a result, the confine-
ment force, which is represented by the parameters σ⊥; σ∥
in our model, could depend on magnetic fields [6,15] as
already mentioned. Also, it is discussed that the constituent
quark massM could vary (magnetic catalysis; see chapter 2
of Ref. [1] for a review). If this is the case, the constituent
quark mass M acquires additional mass contribution
∼ðsmall numberÞ × ffiffiffiffiffiffiffiffiffijqBjp

under strong magnetic fields
eB ≫ Λ2

QCD. This results in the slow increase of Mρþ ;Mπ0

and the small splitting Mρþ ≳Mπ0 observed in the lattice
study [7]. This splitting Mρþ ≳Mπ0 is explained by the
constituent mass splitting Mu↑ ¼ Mū↓ ≳Md↓ ¼ Md̄↑ due
to the electric charge difference jquj > jqdj. In this
situation, the ground state of π0 would be given by
π0d ¼ d̄↑d↓, not by π0u ¼ ū↓u↑. Thus, we
have Mρþ ¼ Mu↑ þMd̄↑ ≳Md↓ þMd̄↑ ¼ Mπ0 .
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FIG. 3 (color online). Various baryon masses as a function of the strength of the magnetic field eB. The thick lines are the model
prediction. [Left] Light baryons. [Right] Strange baryons.
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