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Dibaryons in a constituent quark model
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We investigate the properties of dibaryons containing u# and d quarks in the constituent quark model. In
constructing the ground state wave function, we choose the spatial part to be fully symmetric and the remaining
color, isospin, and spin part to be antisymmetric so as to satisfy the Pauli principle. By adapting the isospin ®
spin (/S) coupling scheme that combines the isospin basis function with the spin basis function, and
subsequently coupling this to the color singlet basis function, we construct the color @ isospin @ spin states
compatible with the physical states of the dibaryon. By using the variational method, we then calculate the mass
of the dibaryon in a nonrelativistic potential model, involving Coulomb, color confinement, and color-spin
hyperfine interaction. In particular, to assess the stability for different types of the confinement potential, we
introduce one that is linearly proportional to the interquark distance and another to its square root. For all cases

considered, we find that there are no compact bound states against the strong decay.
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I. INTRODUCTION

The recent observation of d*(2380) with quantum
number /(J*) = 0(3") measured by the WASA detector
at COSY [1-6] revived interest in the study of multiquark
hadrons and led to the renewed investigation of the possible
existence of either the AA or six-quark state. Theoretically,
starting with the work of Jaffe [7], there were already many
studies on the stability of a six-quark system. In particular,
in relation to d*(2380), a study of nonstrange diybaryon
was made in Ref. [8], and a work in Ref. [9] was based on
the one gluon exchange interaction. Initially, using the bag
model with a strange quark, Jaffe [7] predicted that the H
dibaryon with J¥ = 0" and I = 0 consisting of uuddss
could be stable against decay into two A baryons when only
the color-spin hyperfine interaction was taken into account.
Using a similar quark model, Silvestre-Brac and Leandri
[10] classified all dibaryon states within the SU(3)p
representation, and they investigated the stability of these
states against the decay into the allowed two baryon decay:
Through this study, they found that the QQ dibaryon is
most likely bound, and the H dibaryon could be stable.

Additional models were used to study the stability of the
H dibaryon; these include lattice gauge [11], bag model
[12], Skyrme model [13], and potential model [14]. In
Ref. [15], using the Goldstone boson exchange interaction,
the authors predicted that the H dibaryon could not exist.
While experimental searches for the H dibaryon seem to
suggest that it is not stable against strong decay for realistic
quark masses, recent lattice gauge theory calculations
suggest that it does become bound when the quark mass
increases [16,17].

In addition to the study of the H dibaryon, the dibaryon
with strangeness —1 or —3 has been proposed by Maltman
[18] and Goldman [19], respectively. Pepin and Stancu [20]
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investigated the stability of the uuddsQ (Q = c or b) type
of quark configuration with a chiral constituent quark
model, and they found the dibaryon to be unstable against
strong decay. The stability of a multiquark system is known
to increase when heavier quarks are included in the
tetraquark configuration (ggb b) [21-24]. Although the
mechanism for stability is different, dibaryons with heavy
quarks, such as ¢*Q* (Q = ¢ or b), have been studied
within the simple chromomagnetic model [25].

In this paper, we investigate all dibaryon states contain-
ing the u and d quarks, and we calculate their masses in the
framework of the nonrelativistic quark model by using the
variational method, with a potential that includes the color-
spin hyperfine potential introduced in Ref. [26]. In order to
examine the stability of the dibaryon for strong decay, we
first fit the parameters of the model to reproduce the masses
of the baryon multiplet. Then, by comparing the dibaryon
masses to the relevant two baryon threshold, we determine
whether the dibaryon is bound against strong decay.

The confinement part in our model originates from the
effect of the one gluon exchange interaction A{A¢. But, in
principle, the Hamiltonian in the SU(3) symmetric quark
model can also have a term proportional to the SU(3)
invariant operators in the cubic form which could originate
from an intrinsic three-body color confinement interaction.
There are two independent three-body color invariant
operators: one that can be expressed in terms of two
different types of Casimir operators of SU(3), the other
that cannot. Since we expect that adding a three-body color
invariant operator is very important for the stability of a
dibaryon with different flavors, it is necessary to introduce
a formula for the operators in terms of the element of the
permutation group Sg, based on the established formula by
Stancu [27] and Dmitrasinovic [28]. Using this formula, we
calculate the matrix element of the operators with respect to
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the color singlet basis function in a six-quark system and
explore the role of the operators in baryon and dibaryon
masses.

This paper is organized as following. We introduce the
Hamiltonian and fit the baryon spectrum in Sec. II. We
construct the spatial function in a simple Gaussian form in
Sec. III. We present all of the physical states and construct
the color @ flavor @ spin states of a dibaryon in Sec. IV.
We show the numerical results obtained from the varia-
tional method and deal with the three-body color operators
in Sec. V. Finally, we give the summary in Sec. VI.

II. HAMILTONIAN

For the nonrelativistic Hamiltonian, we take the confine-
ment and hyperfine potential for the color and spin degree
of freedom given by

6 2 6

p; 3 c o
H = i - — oy C 5¢ 1
;(m, * 2m<) 16;’11’11(‘/11 + Vi) (1)

1

where m;’s are the quark masses, A¢/2 is the color operator
of the ith quark for the color SU(3), and V{; and V7 are the
confinement and the hyperfine potential, respectively. For
the confinement potential, we adopt the following two
different types.

(a) Type 1:

v
ve—-S4_p 2)
‘ Fij 4o

In the following analysis, we take the units for «, a,
and D to be MeV fm, (MeV)~! fm, and MeV,
respectively.

(b) Type 2:

_D. (3)

Here, the unit of a; is taken to be (MeV)™! (fm)!/2,
The hyperfine term which effectively splits the multiplets of
baryon with respect to spin is given by

fl2 2. 1 7
V;S;S _ hc K4726—(rij)2/(r0ij)_6i -0, (4)
m;m;c (VOij) Tij

where the unit of «’ is taken to be MeV fm. Here, r;; is the
distance between the interquarks |r; —r;| and (ry;) are
chosen to depend on the masses of the interquarks, given by

rOij—1/<a+ﬂM)’ (5)

m,—l—m]

where the unit of a is (fm)~! and the unit of g is
(MeV fm)~!. We choose to keep the isospin symmetry
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TABLE 1. Parameters fitted to the experimental baryon octet
and decuplet masses for the two different types of potentials.

K ag D K’ a B m, m

Type 1 107.6 0.001062 952.6 107.6 2.36 0.0015 340 610
Type 2 109.6 0.001103 963.6 168.6 2.16 0.0018 348 612

by requiring that m, = m, (MeV). In the Hamiltonian, the
parameters have been chosen so that the fitted mass of both
the baryon octet and the decuplet are comparable with those
of experiments. The fitting parameters are given in Table I,
and the masses obtained with these parameters using the
variational method are given in Table II. It should be noted
that including the pion and sigma exchange potentials are
important for a consistent description of three-quark and
six-quark states, as discussed in Refs. [29,30]. However, in
this work, we are first interested in searching for a possible
compact bound dibaryon structure within the purely
gluonic exchange potential. Extensions to include pion
and sigma exchange potentials will be left for future work.

A. Baryon spectrum

In constructing the basis function of a baryon, we restrict
the flavor symmetry to isospin part only so that we consider
only the u,d quarks as identical quarks, and we find the
total wave function of baryon according to the Pauli
principle. When we calculate the expectation value of
the potential terms for baryon with certain symmetry, it
is convenient to introduce the following three Jacobian
coordinates so as to reduce our problem to the two-body
system in the center of mass frame.

(a) Coordinate I:

1 2 1 1
= — —_ s = — _— _— . 6
X1 \/5(1'1 ) X2 \/;<1'3 21'1 21'2> (6)

(b) Coordinate II:

1 2 1 1
J’1:ﬁ(rl—r3), 2= 3 1'2—51'1—51'3- (7)

(¢) Coordinate III:

—l(r r3) —\/Er Ly (8)
Zl*\/zz 3), 2= 3\ 7575 )

By using a simple Gaussian function, we construct the
following fully symmetric spatial function for baryons
composed of u and d constituents only:

R = exp[—a(x;)? = b(x;)?] + exp[—a(y;)? — b(y,)?]
+ exp[—a(z1)* = b(z2)*], )

where a and b are variational parameters. Since the total
wave function of the baryon, such as N and P (I = 1/2,
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S=1/2)or A (I =3/2,S=23/2), is fully antisymmetric
due to the Pauli principle, the rest of the total wave function
must be fully antisymmetric if we choose the spatial
function to be fully symmetric.

Concerning the color basis function of the baryon, we
consider the color singlet state, as the hadrons are observed
to be colorless. The baryon has only one color singlet
state, coming from the irreducible representation of
Blc ® [3]c ® [3]¢. given by

which is fully antisymmetric under the exchange of any two
particles among 1, 2, and 3. We note that the Young tableau
follows the rule of the standard Young-Yamanouchi rep-
resentation, which will be shown later in detail.

For the spin basis functions, the baryon can have
S = 1/2 consisting of two different types, and S = 3/2
containing one type, as follows.

(@ §=3/2:
153/2)= [1]2[3] =111-
(b) §S=1/2:

151/%)= ;2‘%@m T — 411,

1{3
5 |=¢%<m - ).

As we can see, the spin part of the basis functions of baryon
|S3/ 2) is completely symmetric, while that of |S}/%) and
|S %) is partially symmetric; the former being symmetric
between particles 1 and 2, and the latter antisymmetric
between particles 1 and 2.

Likewise, we construct the isospin basis function of the
baryon for / =3/2 and I = 1/2.

1S,/%)=

PHYSICAL REVIEW D 92, 014037 (2015)

12/>: . |

= % (udu — duuw).

For the baryons with (/ =3/2, S =3/2) and (I = 1/2,

S =1/2), the antisymmetry property of the total wave
function can be easily obtained from the direct product of
the totally antisymmetric part of the color basis function
times the totally symmetric properties of the remain
function comprised of the spatial function, the isospin
basis functions, and the spin basis functions. The fully
symmetric part of the isospin @ spin basis function in both
cases of the isospin and the spin and can be written as
(@ Al =3/2,S=3/2):

|I3/2 S3/2> |I%/2> ® |S3/2>
(b) N, P(I_1/2 S=1/2):

[11/2.512) = 5 (11%) @ 1517) +11,7) ® [55%)).

In the case of (I=1/2, S=1/2), we can see that
[1'/2,5'/2) is symmetric between particles 1 and 2. The
remaining symmetry for permutation (23) can be deduced
from the following formulas, according to the rule to the
standard Young-Yamanouchi representation:

2] 112] V313

@I~ ol T2
- B B (11)
13] _ 11]3], v3[1]2]

(23)2 =3 +7§

Now, we can construct the basis function of the color ®
isospin @ spin for (/ =3/2, S=3/2) and (I =1/2,
S =1/2), which are completely antisymmetric. These
are given by

|13/2,S3’/2> —
|Il/2,Sl/2> —

|C> ® |I3/2,S3/2>,

IC) @ |I'/2,5/2). (12)

(@) 1=3/2: For the hyperon, we treat the strange quark as distin-
13/2)= ——— guishable from the u and d quarks and will not require
the total wave function to be fully antisymmetric. It is then
(b) I=1/2: easy to construct the total wave function for the hyperons
1 2| with strangeness s = —1 and s = —2 that satisfy the Pauli
|1, 1/ 2>_ 3 :%(Zuud — udu — duu), principle in the u and d quark sectors only.
TABLE II. This table shows the mass of baryons in octet and decuplet obtained from the variational method. The
fourth row indicates the experimental data (unit: MeV).
G 3) 3> 3) ©, 3) ) 3 3) (1, 3) G 3
(1,S) NP = A ) = T+ A
Type 1 977.1 1315.3 1115.6 1206.0 1530.2 1403.4 1267.5
Type 2 976.3 1380.3 1115.6 1238.2 1593.0 1419.3 1237.2
Exp 938.2-939.5 1314.8-1321.7 1115.6 1189.3-1197.4 1530-1531.8 1382.8-1387.2 1230-1234
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III. SPATIAL FUNCTION

In order to construct a fully antisymmetric wave function
of dibaryon containing only identical u# and d particles,
we choose the spatial function to be fully symmetric such
that the rest of the wave function represented by color ®
flavor ® spin should be antisymmetric. Since we restrict
the SU(3) flavor of the dibaryon to the isospin symmetry
only, the flavor state can be identified with the isospin
quantum number. In describing the system consisting of six
quarks, it is convenient to deal with the system in the center
of mass frame, reducing the number of suitable Jacobian
coordinates of the system to five. The five Jacobian
coordinates are given by

1 1
x%:ﬁ(rl—rz)’ xizi(r3—r4+r5—r6),
1
x§:§(r3—r4—r5+r6), x}‘zi(r3+r4—r5—rf,),
1
ol — r3+ry+rs—+rg—2r, —2r). 13
Sy Rt e 2 - 2n) "

The variational method for calculating the mass of the
dibaryon turns out to be easy when the Gaussian form with
respect to the Jacobian coordinates is used for the spatial
wave function. Using the Jacobian coordinates given in
Eq. (13) in the Gaussian wave function, we find the form to
be symmetric under the exchange of any two particles
among 3, 4, 5, 6 and at the same time symmetric under the
exchange of two particles between 1 and 2; these symmetry
properties are denoted as [3456][12]. Introducing the
variational parameters a, b, c, the spatial function is then
given by

RS =exp[—(a(x})?>+b(x})? +b(x})? +b(x})? + c(x1)?)].
(14)

In addition to this Gaussian function, the full symmetry
of the spatial function requires the linear sum of 14
additional Gaussian functions, each of which has a specific
symmetry under particle exchange. The next set of five
Jacobian coordinates with the symmetry of [2456][13] is
given by

1 1
x%:ﬁ(rl_rS)’ x%zi(rz—r4+r5—r6),
1
x§=§(rz—r4—rs+r5), xizi(r2+r4—r5—r6),
1
x2=——=(ry+ry+1rs5+15—2r —2r3). 15
5 m(z 4+ Is5+ T 1 3) (15)

The corresponding Gaussian function specifying the sym-
metry of [2456][13] is given by
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R =exp[—(a(x})* 4+ b(x3)* + b(x3)? + b(xF)? + c(x3)?)].
(16)

We find that the set of Jacobian coordinates necessary
to obtain the fully symmetric wave function under the
exchange of any two particles among 1, 2, 3, 4, 5, and
6—and consequently the corresponding Gaussian
functions—is the one with the following symmetry:
[3456][12], [2456][13], [2356][14], [2346][15], [2345]
[16], [1456][23], [1356][24], [1346][25], [1345][26],
[1256][34], [1246][35], [1245][36], [1236][45], [1235]
[46], [1234][56].

Combining these Gaussian functions with the symmetry
into a linear form, we obtain the spatial function with three
variational parameters a, b, ¢, which is fully symmetric as
follows:

RS = RS +Rsz + RS3 + RS + RS
+ R%e + R%7 + R*s —+ R%o —+ RS0

+ RS 4+ RS2 4+ RS13 4+ RS14 4 RSIs | (17)
It is easy to check the symmetry of the spatial function
with respect to all of the permutations of Sg by considering
only the five permutations (12), (23), (34), (45), and (56),
as these permutations generate all of the permutations
of S6'

IV. CLASSIFICATION OF DIBARYON
WITH ISOSPIN SYMMETRY

A. Isospin and spin state of the dibaryon

In this section, we investigate the state of the dibaryon
consisting of identical u, d quarks, whose flavor part is
characterized by isospin symmetry. Since the color ®
isospin @ spin state of each quark can be represented by
[3]c ® [2]; ® [2], the direct product of six quarks enables
us to classify all of the states of the dibaryon with respect
to the state of isospin and spin, denoted by |7, S). In our
notation, the [3] indicates the fundamental representation
of SU(3). [2]; the fundamental representation of SU(2),,
and [2]¢ the fundamental representation of SU(2). In our
case, where we choose the spatial function of dibaryon to
be fully symmetric, the color ® isospin @ spin state
of the dibaryon will be chosen to be fully antisymmetric.
The fully antisymmetric state of the color ® isospin ® spin
state can be easily obtained from the classifying of the
multiplets of the direct six product of [12].,s, Which is
the fundamental representation of SU(12).,g, and gives
the multiplet with dimension 924 represented by Young
tableau [1°]. Using the original representation of
[3]c ® [4];5, which we will equivalently represent as
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([3]c [4]15), the totally antisymmetric multiplet of [1°]
can be decomposed as

[1crs = ([He- [5015)([8]c- [64]5)([10] - [10]5)
S ([10]¢, [10];5)([27]¢. [6]15)- (18)

By using the Young tableau, we can easily find that the
multiplets on the right-hand side of Eq. (18) are fully
antisymmetric. According to the permutation group
theory, for a given Young tableau, the fully antisymmetric
function can be constructed by multiplying the Young
tableau by its conjugate of the Young tableau, where
the conjugate representation of a given Young tableau
can be obtained by exchanging the row and column in the
Young tableau:

(e, B0lis)= | | |@ |
(1S]c- [64)15)= & |
([T0]c: [10]15)= s 1.
([10]c (10]r5)= || - |®: | |,

([27]c, 6]15)= | ‘®_

Because the dibaryon is supposed to be a physically
observable color singlet state, the dibaryon belongs to
the five independent color singlet states represented by
the Young tableau of [2,2,2] from the classification of the
multiplets of the direct six times [3].. Hence, only the
([1]¢, [50];5) states in Eq. (18) are allowed as the physical
states of the dibaryon. We can also find the decomposition
of [50],¢ with respect to the multiplets of [2], ® 2],
given by

(5015 = ([1];- Bls)@([3];. [1]s)([3];. [5]5)
(51, Bls)o([7];. 1)@, [7ls). - (19)
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TABLE III. The decay mode for the dibaryon into two baryons
with respect to the (1, S) states.

AA AN AN NN AA NN
,S) (3,0) (2,1) (1,2) (1,0) 0,3) 0,1)

These |1, S) states are all the possible states of dibaryon
with isospin symmetry which satisfy the antisymmetry
property and the color singlet requirement as an
observable. As we see in the Eq. (19), the isospin and
the spin of the dibaryon with isospin symmetry have
I=0(8§=0), I=1(S=1), I=2(S=2), and [=
3(S = 3), coming from the classification of SU(2) of the
dibaryon, given by

2, ® 2], ® 2], ® 2], ® 2], ® [2],
= [1];20 ® Fi33®[3];1 ® Fluz
(5], ® Fis1®[7],—3 ® Fg)s (20)

where F indicates the number of times the corresponding
state (/) appears in the product. Moreover, the subscript of F
represents the Young tableau for the state (1), Fj33 =5,
Fug =9, Fs1) =5, and Fjg = 1. Consequently, there are
six different kinds of |, S) states of the dibaryon which
dictate the possible two baryon decay mode in the strong

force as shown in Table III. In order to investigate the stability
of the dibaryon against a strong decay, we will examine
energies in relation to the threshold for the decay mode.

It is very important to understand the property of
the basis functions of the dibaryon in calculating the
expectation values of both the confinement and the
hyperfine potential, proportional to 4{4; and A{ASc; - o},
respectively. So we will now establish the basis functions
of the color, isospin, and spin based on the Young
tableau, which are very useful for constructing completely
antisymmetric states. Then, the expectation values can be
easily calculated by using the complete antisymmetry
properties.

B. Color basis functions

The dibaryon of our interest with isospin symmetry
has a color singlet function represented by the Young
tableau of [2,2,2], as we mentioned earlier. Since the
dimension of the Young tableau of [2,2,2] is 5, there
are five color singlet functions corresponding to the
Young tableau of [2,2,2]. We define the color singlet
functions as follows:
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ll = {[(12)63]s[4(5
5[6

= 556 (D G)e ) 20" ()" 0)

1 o

- 56ijk(1’(1)q](2)q
1 i .

- 56¢jk61'(1)q](3)q
1 o

+ —eikq' (1)¢’ (2)q

6)s]s 11

*(5)etmnd' (3)q™ (4)q" (6)
F(4)etmnd' (2)4™ (5)q™ (6)
*(4)€etmnd' (3)q™ (5)q" (6)

eied' (1)d7 (2)g" (3)etmnd' (4)g™ (5)¢™(6)),

_ 2;6@;& (1)¢7 (2)¢" (5)etmnd' (3)g™ (4)g™ (6)

1 ) )
- 56ijk(1’(1)q](2)q

1 ) )
+ 5E¢jkql(1)qj(2)q

" ()etmnd' (3)a™ (5)g" (6)

*(3)etmnd' (4)g™ (5)q" (6)),

:{[(12)63] [4(56)3]s 11

= 2\/—(6%(1 (e’ (3)¢" (4)etmnd' (2)4™ (5)¢™ (6)

2e”kq (1) (2)¢" (4)etmnd (3)g™ (5)¢™ (6)

+ seied’ (1)@ (2)0"(3)eumnd' (4)g™ (5)q" (6)),

B %ﬁ“”‘kqi“)qj(?)q’“ (Detmnd'(3)4"™ (5)q" (6)

- §Eijkqi<1>qﬂ'<2>qk<3>elmnql<4>qm<5>q"<6>>,

33]1[4(56)3]1 }1

We note that the color singlet functions followed by the
standard Young-Yamanouchi representation are symmetric
with respect to any adjacent particles that lie in the same
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row, and the functions are antisymmetric with respect to
any particles that lie in the same column. The definition
next to the Young tableau expresses the convenient inter-
mediate states for constructing the color singlet, and it
originates from the [8] ® [8] and the [1] ® [1]. The ortho-
gonality of the color singlet functions, (C;|C;) = &;;, is
easily obtained by using the tensor form and, in fact,
results from the orthogonality of the standard Young-
Yamanouchi bases.

There are several ways for calculating the expectation
value of 4745 with respect to the color singlet functions.
Among those, it is very useful to consider one that is based
on the irreducible matrix representation of the permutation
group with respect to the standard Young-Yamanouchi
bases whose irreducible matrix for the transposition is
symmetric. Moreover, when considering the operator
for describing three gluon exchange, through either
i fabclfﬂj’ﬂj or dabc/lf%fﬂj, as we shall show in the detailed
calculation in Appendix B, this method gives us a simple
form if we know the irreducible matrix representation of the
permutation group. However, in our case with the fully
antisymmetric color ® isospin @ spin state, labeled by
|CiI;Sy), we only need the expectation value of A{AS
because the expectation value of A{4j can be obtalned
from the former using the antlsymmetrlc property of the
basis functions. In fact, this calculation is performed using
the formula, Y% ; 24 = —8/3N, where N is the number
of the participant particle in this dibaryon, N = 6, resulting
in 15(A45) = —16. Here, 15 is the number of ways of
pairing between particle i and particlej (i < j,i,j =1,2,3,
4,5, and 6).

C. Flavor basis functions

Since the flavor of the dibaryon is in the irreducible
representation of SU(2), we consider the flavor basis
functions in terms of the isospin representation that is
allowed for the dibaryon. As in the case of color basis
functions, the isospin part can be obtained using similar
techniques based on the Young tableau. Moreover, it is
convenient to establish the orthogonal basis functions with
a certain symmetry, making use of the standard Young-
Yamanouchi bases. For the dibaryon, as mentioned above,
the representation of the isospin has I = 0, whose Young
tableau is [3,3] with a dimension of 5, I = 1, whose Young
tableau is [4,2] with a dimension of 9, I =2, whose
Young tableau is [5,1] with a dimension of 5, and I = 3,
whose Young tableau is [6] with a dimension of 1.

(a) I = 0: five basis functions with Young tableau [3,3],

112(3 11214 113]4
)= 19)= )=

1[2[5 1[3[5 ’
0\ __ 0\ _
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(b) I = 1: nine basis functions with Young [4,2],

1]2[3[4 1]2[3]5 1]2]4]5
= LRl gy 12305) (L2l
~ [1]3]4]5) 12[3]6] .. [1[2]4]6]
1= el 1B)= i o= 5l
1[3]4[6 1]2]5]6 1]35]6
= (309 112000) gy 1131500

(c) I = 2: five basis functions with Young tableau [5,1],

112|13(4|5 112(3(4|6
1(2{3|5|6 11214]5|6
113]4]5|6

|I§>—2 ““

(d) I = 3: one basis function with Young tableau [6],

1£)= [1]2]3[4]5]6]

We can also see the orthogonality of the isospin states
(1 I L) = §;; in a given irreducible representation of isospin
from the orthogonahty of the standard Young-Yamanouchi
bases as well as the orthogonality between any two
different irreducible representations, according to the group
theory.

D. Spin basis functions

For the spin states of the dibaryon, the representation of
spin states of the dibaryon is the same as that of the isosopin
states because the irreducible representation of SU(2)
should also be applied in this case:

(a) § = 0: five basis functions with Young tableau [3,3],

1123 11214 1134
0\ __ 0\ __ 0\ __

125 1[3[5 ’
0\ __ 0y __

(b) S = 1: nine basis functions with Young tableau [4,2],

C213l4] o [1]203]5] ery [1]2]4]5]
IS1= 516l 1920= [l 193)0= [37;

3[4[5 1]2[3]6 1]2[4[6

sty= 2 1y L2BIO] gy 121

1[3]4[6 1]2]5]6 1[3]5]6

5= (LS gy (0280 g Lo
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(c) S = 2: five basis functions with Young tableau [5,1],

st [T | TP
st [T 5, [IPTEETE
5o [JPIETE

(d) S = 3: one basis function with Young tableau [6],

15%)= [1]2]3[4]5]o].

We are now in a position to construct the completely
antisymmetric function of the color @ isospin & spin state
of dibaryon, which we will denote by [C;,I;,Sy). In
particular, we choose the ) basis function to be in
the [3,3] representation, and in the conjugate of the color
singlet [2,2,2], so that the color singlet ® isospin @ spins
becomes fully antisymmetric. With this IS coupling
scheme, we can find the fully antisymmetric function of
|C, 1, S) for all (I, S)’s, by using the Clebsch-Gordan (CG)
coefficient for making the representation of [3,3] of isospin
® spin function. In calculating the Clebsch-Gordan coef-
ficients of the element of the permutation group, Sg, it is
convenient to use the factorization property that factorizes
the CG coefficients of §,, into an isoscalar factor, which is
called a K matrix, and the CG coefficients of §,_;. For
example, the isoscalar factor can be defined by [31]

S P'dy'If"1p"d"y" |1 f pay)

=K1 IS 1d Y [ )d"y 11 p)ay),

(22)

where S in the left-hand (right-hand) side is a CG
coefficient of S, (S,_;). In this notation, [f,] is the
Young tableau associated with S,_; which can be obtained
from [f], the Young tableau of S,, by removing the nth
particle characterized by pgqy; p is the position of the nth
particle in the row, ¢ the position of the (n — 1)th particle in
the row, and y the position of the (n — 2)th particle in the
row, respectively. In our case, by repeating the process of
factorizing the CG coefficients of S¢ further, we find the
CG coefficients from the following formula,

S(FTp'ay' ' If"1p"q"y" " |[f1payr)
= K(1p'"p" I Ip)K () d 1 la" 1 f pla)
X K ([ 1 U5 )" 1 [f gl )
X Sy 17 L g 11 1L gy} (23)

where § in the third row is the CG coefficient of S3. When
we calculate the CG coefficients, we use the relevant
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isoscalar factors for Sy, S5, and Sg in Eq. (23) which were
obtained by Stancu and Pepin [32]. Then, we find the five-
dimensional basis function of |I’, 8/} for (I =i,S = j)
corresponding to the Young tableau of [3.3]:

o 112|3 o 112(4
Tt SJ _ ) 17,7 g _ '
1S )= I STl =
o 11314 o 112{5
1 ¥ — ? J —
|[I ’S ]3> 215 67 |[I7S ]4> 3|4 6’
C 35

T J = .

Here, the detailed representations of all five of the basis
functions in terms of the IS coupling scheme are given in
Appendix A. As discussed above, we find the color ®
isospin @ spin state satisfying the fully antisymmetric
property for (1,S) = (i, j), to be given by

.18y = %ucn ® |I1'.57]5) - 1C2) @ |11, §7),)
—1C) @ |1 S) + [Ca) @ [[F. 57
_1Cs) ® [, ),)). (24)

In dealing with the expectation value of —4{ 70, - o; with
respect to the |C, I, S) state for all (1, S)’s, the symmetry
property of the state makes this calculation simple in that
(— l<] AiASo; - o)) = 15(=A{A50, - 02), as argued previ-
ously. Moreover, using the symmetry properties of the
wave function, one can derive the effective formula which
is expressed in terms of the Casimir operators of the

isospin, spin, and color, given by [33]

- Z/l‘/l‘z)' o;

i<j

_ EN(N—6) A+ ) +§s<s+ N+2C.|, (25

where N is the total number of quarks in this system, and
C.= 4—11/16/12 that is, the first kind of Casimir operator of
SU(3) in the system of the N quarks. Since we must
consider only the color singlet as a physical observable, the
term C,. vanishes. For practical purposes, our calculation of
(—=A{4A501 - 0,) can be easily performed with the symmetry
between particles 1 and 2 in the |C,I,S) state, whose
property of the symmetry is definitely derived from the
Young tableau. Then we find the following formula:

1 81 4
XSAS |> = —§>7 s |[1]2) = §‘>7
g1 - 02 |> - _|>7 Loz |> = |>

(26)
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V. NUMERICAL RESULTS

In this section, we analyze the numerical results obtained
from the variational method by using the completely
symmetric spatial function as the trial function. Table V
shows the result of the analysis with the trial spacial wave
function given in Eq. (13) after adding 14 additional forms,
as discussed before. Among all the dibaryons with (7, §), it
is the dibaryon with (I = 0, S = 3) that is most likely to be
stable against the strong decay. However, as we see in
Table V, we find that even for this state the two baryon
threshold lies below the dibaryon mass.

Although a simple comparison of (— >"%_ ;A5 ASo; - 0;) in
the hyperfine interaction between the dibaryon and the two
baryons, as given in Table I'V, shows the splitting is minimal
in the (I =0,5 = 3) channel, the lowest mass of the
dibaryon for both types of the potential considered is far
above the threshold of two A baryons.

Table V shows that the dibaryon mass is larger for the
type 1 potential than for the type 2 one. This is because
the size of the dibaryon in the former is smaller than that in
the latter, as determined by the inverse of the variational
parameters a, b, c. To better understand this point, we show
the values of each energy term of the dibaryon with
(I =0,S =3) in Table VL.

Since the size of the dibaryon in both types of potential
are similar to that of a single baryon as shown in Table VII,
the value of the kinetic part of the dibaryon is compara-
tively larger than the sum of that of the two A baryons due
to additional Kinetic terms. Moreover, the value of kinetic
part of dibaryon in type 2 is much smaller than that in
type 1 due to its relatively small increase in size.

In addition to the kinetic term, the effect of the half-power
confinement part of the type 2 potential causes the mass of the
dibaryon to decrease compared to the case of type 1.
Nevertheless, the lowest mass in type 2 is still about
155 MeV above the threshold of two A baryons, and no
other choice for the confinement potential, such as one-third
power, is expected to change the stability of the dibaryon.

In investigating the stability in the present work, we can
consider the three-body color confinement operators which
are mentioned in the Introduction, as this approach may
change the stability of multiquark configurations, such as
that of the dibaryon. The two types of operators can be
expressed in terms of the permutation operators given by

TABLE IV. The expectation value of —» 7_ /lf/lc(r o; with
respect to |C,1,S) for all possible (I,S) configurations in the
dibaryon, which will be denoted by V,. AV is V, — (V1 + Vi),
in which V,; and V, are those baryons to which the dibaryon can

decay.

(.S (3,0) 2,1) (1,2) (1,0) 0,3) 0,1)

V4 48 & 16 8 16
AV 32 & 16 24 0

| R wice
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TABLE V. The mass of the dibaryon in (/, S) state with the two types of potentials given in Egs. (2) and (3). The
binding energy Ej is taken to be the difference between the mass of the dibaryon and the two baryon threshold. The
dimension of the variational parameters are given in fm=2.

{,S) (3,0) 2,1) (1,2) (1,0) 0,3) 0,1)
Type 1 3132.3 2926.5 2808.5 2710.8 2808.5 2639.6
Variational a=1.2, a=0.09, a=1.4, a =3, a=14, a=3.6,
parameters b=1.2, b=1.5, b=1.38, b=14, b=1.38, b=14,
c=14 c=1.7 c=09 c=13 c=09 c=13
Eg 597.3 681.9 563.9 756.6 273.5 685.4
Type 2 2845.5 2711.7 2629.9 2558.6 2629.9 2504.1
Variational a=0.6, a=0.5, a=20.7, a=22, a=0.7, a=2.06,
parameters b=0.7, b=0.9, b=1.1, b=0.8, b=1.1, b=0.38,
c=0.6 c=0.38 c=05 c=0.7 c=05 c=0.38
Eg 371.1 498.2 416.4 606.0 155.5 551.5
TABLE VI. The values of each energy term of the dibaryon TABLE VII. The expectation value of the relative distance

with (I =0,5 =3) and the A baryon. AE is the difference
between the dibaryon and the two A baryon in each term.

Type 1 Kinetic Linear Coulomb Hyperfine
Dibaryon 1282.8 2603.6  —446.9 186.9
A Baryon 589.2 12148 2393 111.6
Variational parameters a=14b=2.1
AE 104.2 173.8 31.6 -36.3
Type 2 Kinetic 1/2 power Coulomb Hyperfine
Dibaryon 7227 29241  -346.6 132.5
A Baryon 3332 14104 -186.6 81.7
Variational parameters a=14b=07
AE 56.2 103.2 26.7 -30.8
: N T ooy, ]
d°F{FPF; = 7 (k) + (k)] + 51
L. .. . :
= L) + (i) + (k)]
SRR = = (60 = (k). @7)

where 1 is the identity operator, and (ijk) and (ij) are
operators belonging to the permutation group of Sg,
which are called 3-cycles, and 2-cycles, respectively,
and F¢ =1/22¢. Also, there is another formula for
d***F¢F?F{, which can be conveniently shown to be
invariant under the SU(3) algebra, given by [27]

20

3) 5
c i+jt+k 3

e FFF = | Ol -3 (28)

1
6

where C is the first kind of Casimir operator, and C) the
second kind of Casimir operator of SU(3). Since the
baryon consists of three quarks, the SU(3) invariant
operators are written by

between any two quarks for the dibaryon with (1, S) = (0, 3) and
the A baryon. Since the spatial wave function for both the
dibaryon and the baryon are fully symmetric, all of the expect-
ation values of |r; —r;| for i and j (i < j = 1~ 6) are the same,
for both cases. The units are in femtometers.

Dibaryon Baryon
Type 1 (Ir; =r;[) = 0.652 (Ir; = r;]) = 0.608
Type 2 (Ir; —r;|) = 0.858 (Ir; —r;|) = 0.799
b " 1 1
dCF{FSFS = Z[(123) + (132)] +§I
1
—£[02) + (13) + (23)]
FUFFLFS = - 2[(123) - (132)) (29)

For a baryon which has one color singlet represented by
the standard Young-Yamanouchi basis of Young tableau
[1,1,1], we use the irreducible representation with one
dimension given by

o2|= (=12  (0€Ss) (30)
3 3

where (—1)° is 1 if o is an even permutation, and —1 if 5 is
an odd permutation. By using this formula, we can easily
calculate the action of the operators on the color singlet of

the baryon, |C) = —z¢;;q'(1)¢’(2)"(3) in Eq. (10),
be roa 1ob 10
dF{F}F{|C) = 57 |C). (31)
FAFLFLFS|C) = 0. (32)

As we can see, while the introduction of d**°F¢ F5F¢ can
contribute to the baryon mass, f*F¢F5FS will not.
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Likewise, for a dibaryon which has five color singlet
bases corresponding to the standard Young-Yamanuochi
bases of Young tableau [2,2,2], we can calculate the
irreducible matrix representation of the permutation oper-
ators belonging to S¢ in the form of a 5 x 5 matrix in terms
of the five color singlet bases. Since the irreducible matrix
of (ij) and [(ijk) + (ikj)] are symmetric, and the irreduc-
ible matrix of (ijk) is antisymmetric, d***F¢F ;’F * has the
form of a symmetric matrix and f**“F¢ F?F{ has the form
of a Hermitian matrix with vanishing diagonal elements.
As we will show in detail in Appendix B, the matrix of
d*cFAFSFS and fe°F{F5F¢ are given by

(Cild** F{F3FS|C\) = (Cold** F{F3F5|Cy) =

(c Id"”CF”FbF3IC3>:<C4\d“’”F"FbF3IC4> %
(Cs|debe FaFLFS|Cs) = 10/

(Cy|fFaFbFE|Cy) = <C2‘fachanFc|C2> _

(C3|f ™ F{F3F§|Cs) = <C4|f“”°F"F”F”|C4> =
(Cs|f*F{F3F§|Cs) = (33)

Then, we can find the expectation value of the three-body
confinement operators d**°F¢F5FS and fo°°F{F5F in
terms of |C,I',§/) for (I =i,S = j), remembering that
when

L ey ® |I1.85) - Co) ® [[1. 57])

V5
=1C3) @ |II'. 8']3) + 1Ca) @ [[I'. §7,)

= 1Cs) ® [[I. 87],)).

|C, I, §7) =

one finds the following:

. e 5 10
(C.I.S/|d " FYFSFS|C. 11, 8T) = < <—4 oot 3>
1
—. 34
: 34)
(C, I, ST|feP F¢FLFS|C, I, §7) = 0. (35)
Because of the complete symmetry of |C,I',57)

under any permutation of Sg, one finds that (C,I,
SidbeF¢Fb FS|C I, S7) = (C, 11, S7|d* F{F5 FS|C, 1T, S7)
for any I,m,n (I<m<n=1~6). A similar relation
holds for (C, I, S/|feb¢F{Fb F|C,I', §/). Consequently,
we can make the following conclusion about the effect of
the three-body force to the spectrum of both the baryon and
the dibaryon.

First, for the f type, as can be seen from Eq. (32), the
three-body force does not contribute to the mass of
the baryon. For the dibaryon, we have to add all

PHYSICAL REVIEW D 92, 014037 (2015)

contributions coming from three quarks that can be
selected from six quarks inside the dibaryon. However,
as can be seen from Eq. (35) and the discussions above, all
expectation values vanish and do not contribute to the
dibaryon mass.

For the d type of three-body operators, the situation is
more involved. As can be seen in Eq. (31), the color
factor of the d type of the three-body force is 10/9 for the
baryon. This part has to be multiplied by the expectation
value of the spatial part of the three-body force to obtain
its contribution to the baryon mass. The color part of the
d type of the single three-body force to the dibaryon is
1/9 for any three quarks, as seen in Eq. (34). However,
there are (C3 = 20 combinations of three quarks within
the six-quark state. Therefore, the total color factor is
20/9 for the dibaryon, which is twice the factor for the
baryon. The actual contribution to the mass will depend
on the detailed spatial functional form multiplying the
SU(3) invariant operators. For the simplest choice, we
can choose it to be the sum of a two-body potential
such as (V123:d“b”F’fFlz’Fg(ru/ao+r13/a0+r23/a0)).
However, for such a simplified form, because the color
factor for the dibayon is just twice that of the baryon, as
would be the case for the contribution from the two-body
confinement part of the potential, the addition will only
result in a reparametrization of the confinement param-
eter and will not change our previous result on the
stability of the dibaryon. On the other hand, an intrinsic
three-body force will change the situation and, on those
grounds, it is of great importance to have some ideas
on the understanding of the two-body and three-body
confinement.

VI. SUMMARY

In order for the total wave function to be fully anti-
symmetric in a six-quark system with only u, d quarks, we
first consider the spatial function that is fully symmetric
and find 15 Jacobian coordinates appropriate for the
symmetry. We then construct the spatial function desirable
for this scheme with a Gaussian spatial function to perform
a variational method in a nonrelativitic Hamiltonian.
Second, we classify the physical states with respect to
isospin (/) and spin (S), and find the color singlet basis
functions, isospin basis functions, and spin basis functions
allowed to the six-quark system, and we construct the
color ® isospin @ spin states that should be completely
antisymmetric, by means of an /S scheme that couples the
color basis function to the IS basis function. We find that
there does not exist a compact dibayron system in any
system that is stable against the decay into two bayrons
with corresponding quantum numbers. Hence, the
recently observed peak in the / = 0,5 = 3 B = 2 channel
[1-6] should be a molecular configuration composed
of two A dibaryons [34].
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APPENDIX A: COMPLETELY ANTISYMMETRIC COLOR ® ISOSPIN ® SPIN STATE

In this section, we present the isospin @ spin basis function of the dibaryon for (1, S) = (i, j), |[I*, $']), which is obtained
from the IS scheme and the corresponding color ® isospin & spin state, |C, I, §/), which satisfy the fully antisymmetric
property. From the CG coefficient in Eq. (23), in the case of (1, S) = (0, 1), the |[°, S']) basis functions belonging to the
Young tableau of [3,3] are presented as the following:

112]3
IO 1 —
I[1°,S']1) 1506
V6 V10 2v/5 V10 NG
=-—|I7) ® [S1) + —|I?) ® |93) + ——|I}) ® |93)— —|13) ® |S3) — ~—|I3) ® |S§)
9 9 9 18 9 (Al)
V60 V10 V5 V60 V30
+¥II§>®\S§>—FII§>®\&}>—?|I§>®\S%>+¥\I§>®IS§>— 1—8\12>®|5§>
V60 V30 V60
+¥|1‘2>®|Sé> —F|I5O>®|Si>+ ¥|I§>®|S%>.
11214
IO 1 —
V10 V20 V15 V6 V10
=— 1—8|I?> ®153) — 1—8|I?> ®|Sg) + F'I% ® |Sg) + ?|I§> ®|51) — W|IS> ®153)
V5 V20 V10 V30 V5
+FiDelsh - L2 o1 + L) e Ish + LR e s+ i) o1s) (A2
V10 V30 V30 V15 V15
+TII§>®|S%>+¥II§>®IS§>—FIL?)@IS%)—1—8|12>®|S§>+F|12)®|5§)
V30 V15 V30
+W\Ig>®|55>+l—8|fg>®\5i>—W\IQ>®|5%>-
13[4
0 1 _
V10 V20 V15 V5 V10
=— FU?) ® |S1) — 1—8|I?> ® 1S + F'If) ® [S§) — ?|I§> ®1S1) — T|I§> ®|S})
30 6 10 20 V5
Y0 e s+ O e st - Y e sk - Y st - i e lsh  (A3)
36 9 18 18 9
V10 V30 V15 V30 V30
— ——|I3) ®15§) — = 1I8) ® [Sg) + —=19) ® |51) — ~—|17) ® |S7) — ——|I2) ® |S3)
9 36 18 36 18
AE o, V15 1, V30 |
+F|I5>®|S4>+W|I5>®|S5>+%|15>®|56>-
112(5
0 1 _
V30 V15 V30 V15 V15 1
:F|I?>®|5§>+1—8|I?>®|Sé>—F|Ig>®|521> BT |13) ® |S3) + 15 2 @155) (Ad)
V30 V15 V30 V6 V30
+ ¥|I§> ®15§) — 1—8|I§> ®|51) + ¥|I§> ® |S7) — TILE’> ®|S1) + ETE 117) ® |Sg)
V30
—?\I§>®|S§>.
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I, 8=t
—— 00y 6 1)+ Y410y 6 1) — Y019y o [y + L0418y o 11y — Y41 |3 -
#2218 o 5+ S0 I58) — D) st~ SR 0 I5k) - D o s
)

Coupling the isospin ® spin basis function obtained from the /S scheme to the color singlet basis function, we find the
color ® isospin ® spin state satisfying the fully antisymmetry property for (1, S) = (0, 1). This is given by

C.I.8") = LS(ICO ® [[1°.5's) = 1Co) @ [[I°. 5']4) = |C3) @ [[I°. 8']3) +Cy) ® [[1°.8'],) = |Cs) @ [[1°.S'])).
(A6)

In the case of (I,S) = (1,0), the |[I', S°]) basis functions belonging to the Young tableau of [3,3] are presented as the

following:

112(3
1 0 _
11+, S%]1)= 1506
V6 V10 21/5 V10 V5
23\111>®|5?>+7|le>®\S?>+T\Isl>®|5?>—1—8\I§>®|53>—?|fé>®\53>
(A7)
V60 V10 V5 V60 V30
+¥|I§)®\SS)— F|fi>®|5§>*?|I71>®\S§>+¥\15>®|5§>*1—8\I§>®|52>
V60 V30 V60
+¥|fé>®|52>—w|fi>®|5g>+ ¥|I71>®|S§>.
11214
1 0 _
V10 V20 V15 V6 V10
_—1—8|I§>®\5?>—1—8\I§>®|59>+1—8|I§>®\S?>+?|I1l>®|58>*K|121>®|S§>
V5 V20 V10 V30 V5
+7\Ii>®\53> —1—8|I§>®\SS>+T\I§>®|SS>+¥|I§>®\SS>+7|&>®|S§> (A8)
V10 V30 V30 V15 V15
+T|I%>®|S§>+¥|191>®|5§>*1—8|121>®|52>*F|I§>®|SE>+1—8|I51>®|52>

V30 V15 V30

30 15 30
+ ¥|161> ®|59) + F\Ib ®159) — ¥|I71> ®199).
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1= afs[g
— ‘{_?ub ®|S9) — *{—2_;|171> ®199) + ‘{—1_85|I§> 2 |S7) - %glfb ®|53) - @II% @ 52)
o1+ L eist) - Wi eisy - Dim el - Lol (49
- @uﬁw ®159) - %u@ ®159) + \4—1_85|Ii> ®|58) - %'m @154 - \4—3_;'12” ®15%)
+ \/1—1_85|Ii> ® |S9) + \g—l_;|151> ® |S3) + %r@ ®153).
1, S0 =g
=— \{_3_;|1§> ®159) + *{—1_85|Ig> ®89) — \{—3_;|121> ®|99) — \{—1_;|15> ®53) + \1—1_85|I§> ®53) (AL0)
=30 o159 - Y 0159) + Yy 0159 - 21 0159 + Y 0 1s5)
Y00 159)
1=l
= \{—3_;\141) ® |S9) + *{—1_;’|1;> ® |S?) — Jl—l_;’ub ® |S3) + %Uﬁ ®[83) — \i—?’_é;)lfb ®153) (Al1)
s 0159 + Y21 o 158) - L2y o 58) - Yl o [58) - L1rt) @ 159)
-0 e 159,

Likewise, we find the color ® isospin ® spin state satisfying the fully antisymmetry property for (7, S) = (1,0) to be

given by

C.I'.8%) = —(IC1) ®|[I'.8%s) = |C2) ® [[I',8%4) = |C3) ® [[I', 5]5) + [Cy) @ |[I'. 8%) — |Cs) @ |[I'. 8% )).
(A12)

In the case of (I,S) = (1,2), the |[I', $?]) basis functions belonging to the Young tableau of [3,3] are presented as the
following:

L
NG

0, =R
=@|ﬁ> ®152) + @\Ib o153 + 311 @ |53)- 5I1) ©155) = 5l1h © 153 (A13)
N §|151> 2 |52)4+ %u@ 2 152) + ¥|I§> ®153) - \/gllé> ®157)— §|f71> ®53)
- gu@ ® |S7) — %EII& ®153).
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[, 5%2)={1ote
Yy e 15h - 21 @158 + Y1) @ |53)— 21 0 155 + L1 0 1) "
-y o 152)- L2 o158+ L1 e 13 + L2 o 53— L1 o 1)
+2eish -2 e - e 1) - L 15 + L) e |5,
I, 8%)=pre
S o152 - Ly @152 - L e 159+ L) o 159 - S @1 -
iy 15— L2 0153 - 241 @158 + L 0 150+ 20 ) o [
~Pimeish - 2 e s+ L e 18 - L e 158 + L e 5.
5=t
2B 015+ 2 015 + L e ish- Wiy o 1s) - Limeisy (A0
- %u@ o158~ 15 + L1 152 + L1 15D 1 @ 153
1, 8%s)= 5115
28 0158 - Yo @ 153 + 2211 @ 1s31- L4 @155 - Wik 0 1) (A17)
v §|Ié> 0158 im0 159 + L4 0157 + L41d) 0 15— LL1) o |95)

We find the color ® isospin ® spin state satisfying the fully antisymmetry property for (7, S) = (1,2) to be given by

(|C1> ® |[I'.8%]5) = 1C2) @ |[I'. 8]4) = |C3) ® [[I'. 8%]3) + |Cy) ® [[I', 5°]) = |Cs) @ |[I'. °])).
(A18)

|C, 1", §?) =

%\

In the case of (I, S) = (2, 1), the |[I?, S']) basis functions belonging to the Young tableau of [3,3] are presented as the
following:
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172, 8")1)= ot
B2 61t + 2 113) 0 1sh) + 2103) © 15— 212y 015D - Sy @ 1) Ao
L2 e1she U2 015+ 2213 0 5 - L1 e |sh- L2 o |sh
- eish - L o).
7,5 )=t
By 15t - L) e ish + L2 e ish- 21 @ 15 + 24 @ 1) .
- §II§> @ 184)— %L@ ®[95) + %glfﬁ @|56) + %II@ @ |95)— %§II§> ®15)
L2m e s - A e ish- L e ish - Lim e ish + L e is).
2, 5=t
VT2 01t — L1y @153 - 2112 o 50+ Y1) @1} - 2113 IS o)
- iy olsi- LI oI5k - 21 @ 1sh + L) o [sh+ L2130 |5}
iy e ish - 2 e lsh+ L) 015 - L) o 15 + L 0 ).
172, 50 =0
2 oish+ 23 w5+ L e lsh- L eish - Limesy  (A2)
- %u@ o15%)- %ub 9 154) + %u@ 015+ L3 o 15— 012 |53
172, 8= 315t
2B o1sh - Dy olsh + 208 e sh- L o sh - L elsy  (A2)
+ %_II& @ [95)— %6\@ ®]57) + %\L@ @ ]57) + ?u@ @ S9)— @\I% @ 1Sg).

We find the color ® isospin ® spin state satisfying the fully antisymmetry property for (/,S) = (2,1) to be

given by
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1 2 Gl 2 ¢l
ﬁ(|c1>®\[1 S's) = 1C2) @ |17, 5Ma)

—1C3) ® [[12.5']5) +|Ca) @ |[12.5'],)
- 1Cs) ® [[12.5'],)). (A24)
For the case of (1,S) =(3,0) and (1, S) = (0,3), we

find straightforwardly the fully antisymmetric color ®
isospin @ spin state, written by, respectively,

&?WQ®WNM@—Wﬁ®WNM%
S0 ® 1) ® IS +1C) ® ) ® |5
~1C5) ® 1) ® S1). (A25)

1
ICJO,53>=%( C)®115) ®[5%) - C) ®|15) ® |S?)

C.I2.8") =

IC. 1, 8% =

—1C3) ®15) ®[5%) +Ca) ®115) ® |S°)

—|Cs5)®11) ®[5%)). (A26)
APPENDIX B: THREE-BODY COLOR
OPERATORS

In this section, we derive the three-body color operators,
which is invariant to SU(3), in terms of the relevant
permutation operators. This will enable us to represent
the three-body color operator with respect to color singlet
basis functions of the dibaryon. We can express the algebra
of SU(3) as the permutation of two particles, as in the case
for the algebra of SU(2):

1 1
(12) = 51 + 50'1 + 09,
1 1
(12) = 51 + 5/13'/15.
Here, I is the identity operator, and (12) is the 2-cycles
permutation. Then, noting that (123) and (132) can be written
as (123) =(23)-(12) and (132) = (23)-(13), we can
straightforwardly present the 3-cycles permutation as [35]

(B1)

11 11
(123) = (23)-(12) = <§I+§A§ﬂ§> (§1+§ﬂj‘/{§)

11 ,
=51+ EZA,%; + 24P FIFS F§ 4 2i f* FIFS F,

i<j

(B2)

1 1 1 1
(132) =(23)-(13) = <§I+§A§‘A§> <§I+§i§i§)

11 ,
=gl + 82/15/1; +2debe FaFb RS — 2 fabe FaFL Fe.

i<j

(B3)
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By adding Eq. (B3) to Eq. (B2) and subtracting Eq. (B3) from
Eq. (B2), we obtain d**° F{ F5 F§ and f9¢ F¢ F5 F. Also, we
can apply this process to any (ijk) (i < j <k=1~6)and
finally obtain Eq. (27):

dCF{FPFL = 3—‘ [(ijk) + (ikj)] + %1
— £ [0) + (@0) + (B,
JUFEFLE = = (178) - (i) (B4)

Now, we can construct the matrix representation of the
three-body color operators in terms of the standard Young-
Yamanouchi bases corresponding to the color singlet bases
of dibaryon. As mentioned earlier, the standard Young-
Yamanouchi bases which are orthonormal to each other are
written by

The matrix of d*’“F{F?F{ is given by

—% O 0 0 O
0 —35—6 0O 0 O
dach?Fgng 0 0 _% 0 0 ’
0O 0 O —35—6 0
0
0O 0 O 13
—% O 0 0 0
0 —35—6 0O 0 O
dyp FOFLFS=| 0 0 -2 0 0 [,
35 5
0 0 0 g 57
5
0O 0 O 575 0
—35—6 0 0 0 0
25 5 5
0 % 0 &5 s
dypFOFSFS=] 0 0 —5% 0 0 |,
0 5 5 __5_
6V3 36 18v2
5 5
0 v 0 BTV 0
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_5
% 0 0 0 0
5
0 2B 0 -5 5 -% 0 0 0 0
36 6vV3  6V6 5
d.. FéFPFe = 0 0 _3 0 0 8 _0% 205 05 (5)
b = , 25 __5_ 5
abct 11 2% 6 . ; 36 ) ; dachllngFg: 365 65\/§ 6\/56 ,
_Wi 36 _18\/§ 0 —m 36 _—18\/5
5_ 5 0 5 _5_
0 66 0 18v2 0 66 182
_5
% 0 000 20 0 0 0
0 -2 0 0 5
36 0 -2 0 0 0
d, Fapbpe—=| 0 0 R =S5 -2 oo o 3 s s
abcl' 1314 0 s 4 AN K dop FEF5FG = 365 2\/5 6\/55 )
63 36 - _5_ 3 __5_
0 Vi 1B 00 -55 % “ma
- - S5 __5
6vV6  18V2 0 O o VA 0
35 5 5 5 5
B XA A % oA 35 5 5 5 5
72 24 3 _5 5 _5 _
8v3 8V3 12V2 2 A A > o5
55 S 5
8v3 72 24 243 12V6 -5 3 _5 5 5
8v3 12 24 243 12V6
d.. FaFbFc — S 5 S 5 5
abct 14385 — 83 24 72 243 12v6 | d. Fapbpe — 5 s 5 5 s
5 5 5 5 5 abct 243475 83 24 72 243 12v6 |’
24 243 243 72 36v2 s s s s s
55 5 5 24 243 243 2 36V2
12v2 12v6 12V6 36V2 5 5 5 5 0
35 5 5 5 5 T12v2 12v6  12v6 36v2
72 8/3 83 24 T 122
35 _5_ __5_ S 5
_5_ S _5 __.5 __5 72 83 8v3 24 12v2
8v3 72 24 243 12v6 S S 5 5 ;
d. Fapbpe—| -5 23 S 5 5 83 72 24 T3 T 12v6
abc 113006 = 83 24 72 243 12v6 |
d FanFc: __5_ S S __5 __5_
5 5 5 5 5 abet 27376 8v3 24 72 243 126 |
24 243 243 72 362 s 5 s S S
5 5 5 5 0 24 T3 243 2 36v2
T12v2 12v6 12v6  36V2 5 5 5 5 0
2v2  12v6 126 36V2
35 5 __5 S 5
72 24
83 83 122 35 S _5 _5 __5
_5 3 5  __5 __5 2 83 83 24 12V2
8v3 72 24 243 126 s s S S S
d. Fapbpe— | —5_ s s _.s5s __s 3V3 72 24 T3 T 12v6
abel' 14 l's = 8v/3 24 72 A 1 |
d.. FiFbpe — _5_  _5 S 5 5
5 _.5_ __.5_ _5 _5_ abe 27475 ™ 8V3 24 7 w3 12ve |°
24 72
243 243 36v2 s s s s S
S_ _5_ _ 5 _5 0 24 243 43 72 36V2
12v2 126 12V6  36V2 5 5 5 5 0
T12v2 C 12v6 126 36v2
35 _5 5 _5 __5_ Vo V2
72 24
V383 12v2 35 5 5 5 S
_5 5 _5 _5_ 5 72 8/3 8/3 24 12V2
8v3 72 24 243 12v6 s S S S S
d.. FiFbFc — 5 _5 5 __5 __5 8vV3 T2 24 243 12v6
abet 11456 83 24 72 243 " 12v6 |°
d FanFc_ S5 5 S 5 5
_5 5 __5_  _>5 5 abe®204%6 T | 83 24 T2 243 126 |°
24 72
243 243 36v2 s s s s s
__5 5 __5 5 0 24 243 243 T2 36V2
12v2  12v6 12V/6  36V2
5 5 5 5 0

014037-17



WOOSUNG PARK, AARON PARK, AND SU HOUNG LEE PHYSICAL REVIEW D 92, 014037 (2015)

5
3% 0 0 0 0 The matrix of f,,.F{F7F{ is given by
0 -2 0 0 0
25 5 5 .
ducFSFiFs=| 0 0 % 55 EE |, S
5 5 5
0 0 5 % “T%n M9 0 0 0
0 0 -2 -5 O facFiF5FS=1 0 0 0 —15 0|
-2 0 0 0 0 0 0 o2 0
25 5 5
0 5% 0 -5 & 0 0 0 0
dpFSFPFE=] 0 0 —-% 0 0o |, 0o M3 g 0o 0
0 -2 0 % -3 !
6v3 36 18v2 .
0 s 5o -5 9 0 0 0
6v/6 18v2 b e P
Fapc FOFSFS = 0 0 0 w5 |
_% 0 0 0 0 0 0 W 0 0
0 2 0 2 -2 — L
36 6v3 616 0 0 7 0 0
daché’FfiFé = 0 0 _357) 0 0 ’ i i
0 5 o0 5 __5_ 0 0 0 -1 —35
s - e 0 0 ' 0 0
5 5 i
fach?FgFg: 0 -3 0 ﬁ _ﬁ ’
-2 0 0 0 0 i 0 i 0 0
36 i —55
0 -2 0 0 0 ) 23
dupcFFLFG=| 0 0 =55 00 |, v 0w 00
; 35 5 . ,
0 0 0 5 355 0 0 0 i i
S5 .
0 i 0 0 0 —i 0 0
s 0 0 0 0 fachtllFIZJFg: i 0 ﬁi _ﬁa P
36 -0 - 0 0
0 -2 0 0 0 3 23
dypF4FEFs=| 0 0 =% 0 0 (B6) 55 0 5= 0 0
0 0 0 -0 3
0 0 0 o0 L 0 -% 0 0 0
Moo 0 0 0
We.canprovethatZ;Kk da,,CF?Fj?E,i isinvariantto SU(3),  f,, FOFSFS = | 0 0 0 4\"5 2%/6 ,
which means that it commutes with the generators of ; ;
dibaryon F¢=1/2 (A{ + A5 + A5 + A + A¢ + A¢) since it 0 O -z 0 -5
is proportional to the identity operator, as can be seen in the 0 0 i i 0
following: V6 2v2 _
0 0 0 i _ﬁi
20 0 0 0 i iv3
9 0 -i o 3
6 0 % 0 0 f FanFc 0 i 0 i i
abc = 4 “o2/3 a6 |
S dy FeFiF =0 0 % 0 (B7) e o sk
i<j<k 0 0 0 % 0 T4 0 2V3 0 42
00002 W e w6 s Y
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0 0 -5 35 o 0 0 i -
i i3 i i3
s T >0 ) T
fachllngFg: ﬁ O _ﬁi _ﬁg fachgFgFg_ O i 0 ﬁ ﬁg
0 73 i -1 0 -3 0
W3 i A /R B
W2 46 42 W2 42 46 42
0 0 i 0o 0 0 i -
e 0 0 & -5 i
fachtllFfl)Fg: él_l 0 0 % fachgFiFg_ 0 _411 0 0 _1735
w0 0 - i 000 -
i i3 i 0 S A S 1V T 0
NG W2 42 W2 46 42 42
0 0 i - 0 0 0 -i =
0 Lo 00 -igh g
Fapbpe — 0 _ i 0 0 i3 Fapbpe — 0 i 0 0 _iV3
fubc 11748 ¢ — ' 4 4\/2 P fuhc 20040 — ' 4' 4\'/5 ’
im0 0 i fomms 00 -3
A S A/ T i i i3 i 0
42 46 442 42 42 46 42 42
0 0 0 -1 —ﬁ 0 0 0 i' ﬁ
R L R
fape FSFEFE =] 0 I 0 0 0o |1, fape FSFEFS = 0 -£ 0 0 0 |,
i 4\5 0 0 0 —i ﬁg 0 0 0
55 —5 O 0 0 —55 e 00 0
0 M 0 0 0 0 - o 0
-2 0 0 0 0 o 0 0 ok
fabL‘FgFgFi_ 0 0 0 _ﬁg _ﬁg P fachngthg: % 0 0 0 0 ’
0 0 ﬁ 0 —ﬁ 0 —ﬁg 0 O. 2\’6
0 0 ﬁ z\l_ﬁ 0 0 —ﬁa 0 _2lﬁ 0
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i iv3 i i
0 0' i () i 0 0O o0 ~55 T3
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0 0 -2 0 0

0 0 0 = -L
faneFSFEFE=135 0 0 0 0 |

0 - 0 0 0

0 &£ 0 0 0

0 0 M 0 0

0o 0 0 Mo
fareFSFSFG=1 _i5 9 0 0 0

0 - 0 0 0

0O 0 0 0 0

(B8)
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In this case, it turns out that the SU(3) invariant
operator is f ., F{FSFS + fapc FOFSFS + fapFOF5FS+
Fave VP3G A+ fape FUFSFS + fape FUFSFS + fape F{FSFG
+f abe FFSF 5 ape F{ FF G ane F{FF§+f ape FSF5 Fi+
Fabe FSFSFS+ fape FSFSF+ fane FSFFS+ fap FSFIF G+
FaveFSFSFG+ fanc FSFGFS + fapc FSFIFG + fap F§FSFG
+fape F4F IS’F ¢, due to the fact that this operator is

(B9)
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