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We examine the role of resonant coupled channel final state interactions (FSIs), as well as weak
annihilation and exchange contributions, in explaining all the two-body hadronicD → PP decay modes. In
the un-unitarized amplitudes we include modified Wilson coefficients with nonfactorizable corrections as
parameters. For the hadronic form factors, the z-series expansion method is used to get the q2 dependence.
The FSI effects are incorporated via a phenomenological approach with widths of resonances to various
channels taken from observations where available, and others as additional parameters to be determined
from fits of all the theoretical rates to the measured ones. Our results for the rather hard to explain
D0 → KþK−; πþπ− are in agreement with measured values. We demonstrate that both weak exchange and

FSI effects are required to get the correct branching ratio for the D0 → K0K̄0 mode. Using our unitarized
amplitudes we evaluate the strong phase difference between the amplitudes for D0 → K−πþ and D0 →
Kþπ− and find it to be in complete agreement with the recent BES III result.
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I. INTRODUCTION

With the advent of the B factories, along with even the
Tevatron having sufficient luminosities to perform excel-
lent heavy flavor studies, and more recently with the data
pouring in from LHCb and BESIII, quark flavor physics is
changing its role from being the ground for confirming the
Kobayashi-Maskawa mechanism for CP violation to pro-
viding the observables that can test or constrain physics
beyond the Standard Model. With improved precision
measurements, the goals of hadronic weak decays will
cease to be seeking observables free from hadronic uncer-
tainties and instead become actually precisely understand-
ing the QCD effects.
Along with the plethora of data on semileptonic and

hadronic rare decays, CP asymmetries, and mixing in B
decays, the discovery of charm mixing and hints of CP
violation in the charm sector resulted in nonleptonic charm
meson decays being a focus of attention in the last few
years [1,2]. Since CP violation in charm, direct, and mixing
is expected to be negligible, any hint of CP violation in
charmed mesons is expected to be from physics beyond the
Standard Model and hence charm may be instrumental in
providing insights into new physics [3–11]. In fact, earlier
FOCUS [12], CLEO [13], and various other collaborations
had produced many interesting results in the charm sector.
The 3.2σ hint [14,15] of a difference of CP asymmetries
between the singly suppressed KþK− and πþπ− charmed
decay modes resulted in a large volume of work [16–32],
mostly using different models of new physics to explain the
result. The hint has since then been slowly moving towards
zero and currently there seems to be no evidence for any

direct CP violation in charm in any mode [33]. Even
though this hint for the CP asymmetry slowly disappeared,
from all the recent work done on the charm decays to the
two pseudoscalar modes motivated by this hint, it was clear
that it is critical to first understand the observed branching
ratios of all the charmed hadronic decay modes well, within
the Standard Model, before any observation of an anoma-
lous rate or any new CP asymmetry can be claimed as due
to the presence of new physics.
However, this is not an easy task. The mass of the charm

quark (1.275 GeV) makes it very difficult to come up with a
proper theoretical technique for calculation of hadronic
charmed meson decays. The charm, unlike the bottom
quark, is not sufficiently heavy to allow realization of the
infinitely heavy quark limit. Therefore, the well-known
theoretical approaches based on QCD, for example, heavy
quark effective theory [34,35], QCD factorization [36,37],
the perturbative QCD approach [38–41], and the soft-
collinear effective theory [42], which lead to very satis-
factory predictions for B decays, cannot be used to explain
data in the case of charmed mesons. Furthermore, the
charm quark is also not light enough for a chiral expansion
to be applicable.
In the absence of any other reliable and effective

theoretical methods, the factorization approach is still
one of the most successful ways to study two-body charm
meson decays [43,44]. However, it is well known now that
in the naive factorization approach, calculation of Wilson
coefficients of effective operators faces the problem of
γ5- and renormalization scheme dependence. These
difficulties can be overcome in the framework of the
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“generalized factorization approach” where Wilson coef-
ficients are effective and include important nonfactorizable
(NF) corrections [45,46].
In the past there was another attempt to explain hadronic

D decays using the so-called large 1=Nc (where Nc is
number of color degrees of freedom) approach [47]. It was
observed that dropping Fierz transformed terms character-
ized by 1=Nc can narrow the gap between predictions and
observations up to a satisfactory level. The calculations
based on QCD sum rules showed that Fierz terms were
certainly compensated by the NF corrections [48–50].
There exists another model-independent, so-called

“quark diagram” or “topological diagram” approach in
the literature [51–59], where all two-body nonleptonic
weak decays of heavy mesons are expressed in terms of
distinct quark diagrams, depending on the topologies of
weak interactions, including all strong interaction effects. It
is based on SUð3Þ symmetry and allows extraction of the
quark diagram amplitudes by fitting against experimental
data. However SU(3) breaking effects in charmed meson
decays have been shown to be important and need to be
carefully incorporated [60–62].
The importance of final state interactions (FSIs) in

nonleptonic charm decays had been realized and discussed
in several papers [63–66] in the early 1980s, where the
authors had been intrigued by the anomalies in the observed
branching ratios of the Cabibbo favored (CF) neutral modes
versus the charged Kπ modes, and the differing rates of the
singly Cabibbo suppressed (SCS) KþK− and πþπ− modes,
followed by measurements of rates of a few other modes
that had unexpected suppression/enhancement. Many of
these were conjectured to be due to FSI. Surprisingly, even
in the last couple of years, in many of the papers that
worried about the charm CP asymmetry problem, these old
puzzles were still considered unresolved.
Even for the case of hadronic Bmeson decays, the role of

FSIs has been examined rather carefully in the last few
years [67,68]. The mass of the charmed meson lies right in
the heart of the resonance region. Hence, resonant final
state rescattering is bound to play a bigger role in the two-
body hadronic charm decays and needs to be evaluated. Of
course dynamical calculations of these long distance effects
are not possible and hence they can only be determined
phenomenologically after comparison of the theoretical
estimates with experimental data. Unitarity constraints play
an important role in providing the theoretical estimates.
Another contribution in hadronic two-body decays that

has been debated for a long period is that of the weak
annihilation and exchange diagrams. One of Rosen’s
proposals [69] was that the W-exchange diagrams may
be large and since this appears only in D0 and not in Dþ
decays, it could account for the difference in the lifetimes of
these two mesons. Bigi and Fukugita [70] then proposed
several D and B meson decay modes that could be the
smoking gun signals of the W-exchange contributions and

yet, when the modeD0 → ϕK̄0 was observed, it was argued
[71] that it could have been generated from the decay mode
D0 → K�η, with this final state rescattering to the ϕK̄0

mode. Annihilation type contributions along with FSIs
were incorporated in the hadronic two-body vector-
pseudoscalar modes of charmed meson decays in
Ref. [72]. Studies using the quark diagram approach
of Ref. [73] had also indicated that annihilation type
contributions are needed to explain the observed data.
In this paper, we study the role of FSI in the two-body D

(D here can be any of the D0, Dþ, or Dþ
s ) meson decays.

We assume that FSI effects are dominated by resonance
states close to the mass of D mesons. In fact, there exist
isospin 0, 1, and 1=2 resonances near the D mass, that may
contribute to rescatterings among different channels in
these respective isospin states and enhance/suppress some
of the decay rates. In the next section, we give the
formalism for the calculation of the un-unitarized ampli-
tudes, using a modified factorization approach, where the
effective Wilson coefficients include NF corrections. This
is in analogy with the QCD factorization approach of
Beneke-Neubert for hadronic B meson decays [74], where
however, using the hard scattering approach, the NF
corrections are calculable in heavy quark approximation.
However, for charm, since this approximation fails, these
NF corrections are not calculable and are left as parameters.
We also indicate our parametrization of the annihilation
contributions and discuss our inputs: the decay constants
and the form factors, for which we have used a z-series
expansion approach. In Sec. III, we discuss the need to
incorporate additional long distance FSI effects and show
how this can be done with a K matrix formalism for
coupled channels. Using the observed widths, masses, and
known decay rates of the resonances to the various channels
to evaluate the diagonal elements and leaving the unknown
elements of the K matrix as parameters, the unitarized
amplitudes are calculated (as discussed in [72]) to estimate
the branching ratios of all the SCS, CF, and doubly Cabibbo
suppressed (DCS) D → PP decay modes. In Sec. IV, we
list the isospin decomposition of all the decay modes, the
parameters that need to be determined from our fits, and the
errors in theoretical inputs used. We list all the branching
ratios after our numerical χ2 fits and the values of the fitted
parameters. Finally we conclude in Sec. V.

II. THE UN-UNITARIZED AMPLITUDES

A. Weak Hamiltonian and Wilson coefficients

The study of weak decays of charmed mesons to two-
body hadronic modes necessarily requires a careful evalu-
ation of the strong interaction corrections. The weak
effective Hamiltonian may be expressed in terms of
coefficient functions, which incorporate the strong inter-
action effects above the scale μ ∼mc and the current-
current operators as
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Hw ¼ GFffiffiffi
2

p ½C1ðμÞO1ðμÞ þ C2ðμÞO2ðμÞ� þ H:c: ð1Þ

whereGF is the Fermi coupling constant, C1 and C2 are the
Wilson coefficients, and the operators are

O1 ¼ ðūαq2αÞV−Aðq̄1βcβÞV−A
O2 ¼ ðūαq2βÞV−Aðq̄1βcαÞV−A:

α and β in the above are color indices, while q1, q2 can be
either the d or the s quark. The quark diagrams dominantly
contributing to the branching ratios of D → P1P2 [59] are
the color-favored tree amplitude T, the color-suppressed
amplitude C, the W-exchange amplitude E, and the
W-annihilation amplitude A, shown in Fig. 1.
Penguin contributions in charmed meson decays are

highly suppressed as the dominant down type quark
contribution to the flavor changing neutral current c → u
transition is from the b quark which is accompanied by the
presence of the tiny product, V�

cbVub, of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix elements. Hence, the
two operators in Eq. (1) are sufficient for calculating the
amplitudes and branching ratios of the D → PP modes.
In the naive factorization approach, the matrix element of

the four-fermion operator in the heavy quark decay is
replaced by a product of two currents. The amplitudes for
the nonleptonic two-body decay modes are then the product
of a transition form factor and a decay constant. However,
NF corrections must exist; while such corrections for scales
larger than μ are taken into consideration in the effective
weak Hamiltonian, those below this scale also need to be
carefully incorporated. In the QCD factorization approach
for B meson decays [36,37,75], these NF corrections are
handled using the hard scattering approach, where the
vertex corrections and the hard spectator interactions are

added at the next to leading order in αs and its accuracy is
limited only by the corrections to the heavy quark limit.
But, in the case of charm decays, where the heavy quark
expansion is not a very good approximation, it is best to
parametrize these NF corrections and then determine them
by fitting the theoretical branching ratios with the exper-
imental data. In the diagrammatic approach of Ref. [59]
also, either the Wilson coefficients themselves or the NF
corrections appearing in the Wilson coefficients are deter-
mined from fits to data.
Hence, we write the scale dependent Wilson coefficients,

modified to include the NF corrections which are para-
metrized by χ1 and χ2 with their respective phases ϕ1 and
ϕ2 as

a1ðμÞ ¼ C1ðμÞ þ C2ðμÞ
�

1

Nc
þ αðμÞχ1eiϕ1

�
ð2Þ

a2ðμÞ ¼ C2ðμÞ þ C1ðμÞ
�

1

Nc
þ αðμÞχ2eiϕ2

�
: ð3Þ

The dominant tree and color amplitudes for D → P1P2,
where P1 is the final meson which carries the spectator
quark, while P2 represents the meson emitted from the
weak vertex (as depicted in Fig. 1), are then written as

TðCÞ ¼ GFffiffiffi
2

p VCKMa1ðμÞða2ðμÞÞfP2
ðm2

D −m2
P1
ÞFDP1

0 ðm2
P2
Þ;

ð4Þ

where fP2
is the P2 meson decay constant and FDP1

0 ðm2
P2
Þ

denotes the transition form factor for D → P1 evaluated at
m2

P2
. We follow the prescription of Ref. [76] and choose the

scale μ to be the energy release in individual decay
processes rather than fixed at mc. This scale, which is
dependent on the final state masses, allows for SU(3)
breaking, in addition to that coming from different decay
constants and form factors. This scale is taken to be
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛmDð1 − r22Þ

p
, where r22 ¼ m2

P2
=m2

D and Λ is another
free parameter. Λ, χ1, χ2, ϕ1, and ϕ2 are taken to be
universal for all the decay modes and are fitted from
experimental data.

B. Weak annihilation contributions

For a long time, W-exchange and W-annihilation con-
tributions used to be neglected due to the so-called helicity
suppression. However, observation of many decay modes
of charmed and bottom mesons, which is possible only via
the annihilation or exchange diagrams, has indicated that
these contributions could be substantial. These short dis-
tance weak annihilation effects were hence included in the
diagrammatic approach. In principle these could result
from rescattering, even in the absence of annihilation
and exchange processes. In fact, weak annihilation
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FIG. 1 (color online). The dominant quark diagram amplitudes.
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topologies were assumed to be induced by nearby reso-
nances through FSIs in Ref. [73]. The authors in [73] as
well as Ref. [77] use SU(3) to relate the couplings of the
final state mesons with the resonances. This leads to the
result that the long distance W-exchange contribution can
be induced by a tree amplitude, while W-annihilation can
be induced by a color-suppressed internal W-emission. The
resonant FSIs modify the W-exchange and W-annihilation
amplitudes but the T and C amplitudes are unaffected. We
emphasize that the assumption of SU(3) plays an important
role in these results. In a most general coupled channel
formalism, all contributions in the various channels will be
affected by the resonant FSIs, as will be shown in Sec III.
We parametrize the W-exchange and W-annihilation con-
tributions in the amplitudes by χEðAÞ and estimate them
from phenomenological fits to data. The exchange
(annihilation) amplitudes are hence written as

Eq;sðAq;sÞ ¼
GFffiffiffi
2

p VCKMC1ðμÞðC2ðμÞÞχEðAÞq;s
CF

N2
c
fDfP1

fP2
:

ð5Þ

Since the initial charmed meson is annihilated and both the
final mesons are produced from the weak vertex, after the
production of a quark-antiquark pair from a gluon, these
amplitudes are a product of the decay constants of the initial
Dmeson (fD) and that of P1ðfP1

Þ and P2ðfP2
Þ. Apart from

this, the strengths of the exchange (annihilation) amplitudes

χEðAÞq;s are assumed to be the same for all modes and the
subscripts distinguish the contributions of the pair produc-
tion of the light quark-antiquark from that of the strange
pair. Since the annihilation and exchange contributions are
necessarily nonfactorizable, they depend only on C1;2

rather than the modified coefficients a1;2.
We wish to emphasize that for the case of B mesons

decaying to two pseudoscalar mesons, it has been shown
[74] that the nonvanishing annihilation contribution at
order αs arises only for gluons emitted from the initial
state quarks; on the other hand, the resonant FSIs (to be
discussed in Sec. III) will necessarily result from gluons
emitted from final state quarks. Hence, assuming that a
similar distinction will hold for D decays as well, adding
FSIs when annihilation contributions are already added
should not amount to double counting, as pointed out
in Ref. [78].
The scale of the Wilson coefficients for the exchange

and annihilation amplitudes must depend on both the
mass ratios, r1;2 ¼ mP1;2

=mD, and is taken to be μ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛmDð1 − r21Þð1 − r22Þ

p
.

C. Nonperturbative inputs: Form factors
and decay constants

We start by specifying our convention for the different
mesons involved in our analysis:

πþ ¼ −ud̄; π− ¼ dū; π0 ¼ uū − dd̄ffiffiffi
2

p ;

K0 ¼ ds̄; K̄0 ¼ −sd̄; Kþ ¼ us̄; K− ¼ sū;

D0 ¼ cū; Dþ ¼ −cd̄; Dþ
s ¼ cs̄:

In the D → P1 transitions, the matrix element of the
vector current is written in terms of the form factors Fþ and
F0 as

hP1ðp0Þjq̄γμcjDðpÞi≡ Fþðq2Þ
�
pμ þ p0μ −m2

D −m2
P1

q2
qμ
�

þ F0ðq2Þ
m2

D −m2
P1

q2
qμ; ð6Þ

where q≡ p − p0. The matrix element for the production
of the second meson P2 is given by

hP2ðqÞjq̄1γμq2j0i ¼ ifP2
qμ: ð7Þ

Hence, in the amplitude of the nonleptonic two pseudo-
scalar decay modes of charmed mesons involving the
product of the two matrix elements specified in Eqs. (6)
and (7), only the transition form factor F0 appears.
Transition form factors can in principle be experimentally
measured from the semileptonic decays; however, in the
massless lepton limit, only the Fþðq2Þ contributes to the
semileptonic amplitude distributions. However, the semi-
leptonic information is still useful, since at zero momentum
transfer the form factors obey the kinematic constraint
F0ð0Þ ¼ Fþð0Þ. The q2 dependence of the F0 on the other
hand is accessible only with massive leptons in the
semileptonic decays or in lattice simulations. Simple
and modified pole models have been widely used to
parametrize the q2 dependence of the form factors, but
these have poor convergence properties. Recently the z-
expansion [79,80] has been introduced as a model inde-
pendent parametrization of the q2 dependence of form
factors over the entire kinematic range and has been shown
to have improved convergence properties. In this approach,
based on analyticity and unitarity, the form factors are
expressed as a series expansion in powers of zn, where z is a
nonlinear function of q2, with an overall multiplicative
function accounting for the subthreshold poles and
branch cuts,

FðtÞ ¼ 1

PðtÞϕðt; t0Þ
Xinf
k¼0

akðt0Þzðt; t0Þk: ð8Þ

The series coefficients and prefactors can only be deter-
mined from fits to lattice or experimental data. In fact, the
CLEO Collaboration has determined these coefficients for
theD → π; K; η form factors from the semileptonic decays,
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but in the massless lepton limit. Hence, for F0ðq2Þ, we use
lattice results to determine the first two coefficients.
In the Becirevic-Kaidalov (BK) ansatz [81],

F0ðq2Þ ¼
F0ð0Þ
1 − q2

βm�2
D

; ð9Þ

wherem�
D is the mass of the vector meson with flavor cd̄ or

cs̄, depending on the transition being c → d or c → s,
respectively.1 F0ð0Þ and β are parameters to be fitted to
experimental data and in fact, in Ref. [83], the Fermilab and
Lattice MILC collaborations have fitted these parameters to
CLEO-c data. The normalization fð0Þ and shape parameter
determine the physical observables describing the form
factors at large recoil and are given by

fð0Þ≡ Fþð0Þ ¼ F0ð0Þ;
1

β
≡ ðM2

H −M2
LÞ

Fþð0Þ
dF0

dq2

����
q2¼0

: ð10Þ

Using these input parameters we can determine the first two
coefficients of the series expansion in Eq. (8) for F0ðq2Þ.
Few details regarding the z-series form factor expansion

can be found in Appendix B. If the series is rapidly
converging, even two coefficients may be sufficient to
determine the q2 dependent form factor F0ðq2Þ. Equating
the normalization and slope obtained using Eq. (8) to those
obtained from the lattice parameters (fð0Þ; β), which in turn
had been obtained by fits to experimental data, we can
obtain the z-expansion series (up to linear order) for all the
form factors. The rst two coefficients of the z-expansion for
D → π, D → K and D → η form factors are given in
Table II.
In Fig. 2 we show the plots for our results forD → π and

D → K where the lattice input parameters from Ref. [83]
are used. We would like to point out that our D → π and
D → K form factor values at q2 ¼ 0 are in very good
agreement with those given in Refs. [84,85], which are the
most precise published calculations for D → πlν and
D → Klν form factors, according to Lattice Review [86].
Further, the shape of F0ðq2Þ for D → π; K that we obtain
after the z-series expansion is consistent with that of
Ref. [87]. Moreover, the fð0Þ values in Table I for
D → π and D → K are also in agreement with the
CLEO results of Ref. [88].
Regarding D → η and D → η0 form factors, since in

these transitions only the nonstrange component ηq is
involved, one expects F0ðq2Þ for D → ηq; η0q ∼D → π.
For D → η, CLEO has determined Fþð0ÞVcd ¼
0.086� 0.006� 0.001 using the semileptonic decay mode

Dþ → ηeþνe [89]. Hence we use this value to estimate
F0ð0Þ. However, for η0, while the first observation of the
decay mode Dþ → η0eþνe has been reported by CLEO in
the same paper, the form factor was not determined in this
case, and hence we approximate that the F0ð0Þ for η0 will be
the same as that for η. Further, since it has been shown [90]
that the form factors and particularly their shape are
insensitive to the spectator quark, the shapes for both η
and η0 are assumed to be the same as those for the D → π
case.
The Ds → η; η0 have been estimated with some lattice

studies using the (fð0Þ; β) values from a recent exploratory
paper by Bali et al. [91]. However, these have larger
uncertainties, since even the lowest pion mass used is still
far from the physical mass. Hence, for Ds → η; η0 we take
the form factors to be similar to that of D → K and for
Ds → K we take them to be similar to D → π. Note that in
all these cases the masses of the final mesons for each of the
respective decay process are used in obtaining their z-
expansion coefficients; the approximations are used only
for the input parameters, fð0Þ and β. Due to this

FIG. 2 (color online). The q2 dependence of the scalar form
factors. The plot on the left displays F0ðq2Þ for the D → π
transition, while that on the right is for the D → K transition.

TABLE I. Best-fit values of BK parameters for the scalar form
factors.

Decay fð0Þ β

D → π 0.64� 0.03� 0.06 1.41� 0.06� 0.07
D → K 0.73� 0.03� 0.07 1.31� 0.07� 0.13

TABLE II. z-expansion coefficients obtained after using the BK
parameters in Table I.

Decay a0 a1

D → π 0.19� 0.02 −0.41� 0.05
D → K 0.08� 0.01 −0.32� 0.03
D → η 0.06� 0.004 −0.27� 0.02

1It has been pointed out in Ref. [82] that F0, but not Fþ, can be
modeled by a single pole.
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uncertainty, we have added an additional 3% theoretical
error to these form factors.
Turning now to the decay constants, for π and K mesons,

the fπ;K are taken from the Particle Data Group (PDG) [92].
For the η and η0, following the method described in [93], it
is assumed that the decay constants in the quark flavor basis
follow the pattern of particle state mixing. The η and η0 are
expressed as linear combinations of the orthogonal flavor
states,

ηq ¼
1ffiffiffi
2

p ðuūþ dd̄Þ; and ηs ¼ ss̄: ð11Þ

The physical states η and η0 are related to these flavor
states by

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
;

where the η − η0 mixing angle denoted by ϕ represents the
sum of the ideal mixing angle and the η − η0 mixing angle
(θ) in the octet-singlet basis, ϕ ¼ θ þ tan−1

ffiffiffi
2

p
. Hence the

decay constants (form factors) fq and fs (F0q
and F0s

),
corresponding to those for ηq and ηs (D → ηq andD → ηs),
respectively, are given by

fqη ¼ fq cosϕ; fsη ¼ −fs sinϕ;
Fq
0η
¼ F0q

cosϕ; Fs
0η
¼ −F0s

sinϕ;

fqη0 ¼ fq sinϕ; fsη0 ¼ fs cosϕ;

Fq
0η0

¼ F0q
sinϕ; Fs

0η0
¼ F0s

cosϕ:

A widely used phenomenological fit for the decay
constants as well as the mixing angle ϕ is given in
Ref. [93]. This fit was based on various ratios of decay
rates having η0 in the final state with respect to that with η,
for example, ΓðJ=ψ → η0ρÞ=ΓðJ=ψ → ηρÞ, comparison of
cross-sections of scattering processes for π−p → η0n with
that of π−p → ηn etc. Recently, BABAR, with more
accurate data on two photon widths of light pseudoscalar
mesons, did a combined analysis [94] along with CLEO
data to yield a mixing angle and decay constants with

reduced uncertainties: ϕ¼37.66�0.70, fqfπ¼1.078�0.044,

and fs
fπ
¼ 1.246� 0.087, which are used in this work.

With the above inputs, the un-unitarized amplitudes for
all the two-body pseudoscalar-pseudoscalar (PP) modes
SCS, CF, and DCS may be written and are listed sub-
sequently. For the decay modes involving η and η0, to
distinguish the case in which ηq is the P2 meson of Eq. (4)
from that where ηs is, the notation used is

Cf
ηq ¼

GFffiffiffi
2

p VCKMa2ðμÞfqðm2
D −m2

P1
ÞFDP1

0 ðm2
ηÞ;

Cf
ηs ¼

GFffiffiffi
2

p VCKMa2ðμÞfsðm2
D −m2

P1
ÞFDP1

0 ðm2
ηÞ;

Cf
η0q
¼ GFffiffiffi

2
p VCKMa2ðμÞfqðm2

D −m2
P1
ÞFDP1

0 ðm2
η0 Þ;

Cf
η0s
¼ GFffiffiffi

2
p VCKMa2ðμÞfsðm2

D −m2
P1
ÞFDP1

0 ðm2
η0 Þ:

Similarly, to distinguish the cases where ηq or ηs is theP1

meson, which incidentally appear in both tree (T) and
color-suppressed (C) amplitudes (unlike for the case dis-
cussed above), we use the notation
(1) SCS decays

AðD0→ πþπ−Þ¼−VcdVudðTþEqÞ

AðD0→ π0π0Þ¼VcdVudffiffiffi
2

p ð−CþEqÞ

AðD0→ π0ηÞ¼VcdVud

2
ð−CF0

ηq þCf
ηqÞcosϕ

−VcsVusC
f
ηs

sinϕffiffiffi
2

p −VcdVudEq cosϕ

AðD0→ π0η0Þ ¼VcdVud

2
ð−CF0

η0q
þCf

η0q
Þsinϕ

þVcsVusC
f
η0s

cosϕffiffiffi
2

p −VcdVudEq sinϕ

AðD0→ ηηÞ¼VcdVudffiffiffi
2

p ðCf
ηq þEqÞcos2ϕ

þVcsVus

�
−Cf

ηs

sin2ϕ

2
ffiffiffi
2

p þ
ffiffiffi
2

p
Essin2ϕ

�

AðD0→ ηη0Þ ¼VcdVud

�
Eq

sin2ϕ
2

þðCf
ηq þCf

η0q
Þsin2ϕ

4

�

þVcsVus

�
−Cf

ηs

sin2ϕffiffiffi
2

p þCf
η0s

cos2ϕffiffiffi
2

p

−Es sin2ϕ
�

AðD0→KþK−Þ¼VcsVusðTþEqÞ
AðD0→K0K̄0Þ¼−ðVcsVusEqþVcdVudEsÞ
AðDþ→ πþπ0Þ¼−VcdVudffiffiffi

2
p ðTþCÞ

AðDþ→ πþηÞ¼VcdVudffiffiffi
2

p ðTF0
ηq þCf

ηq þ2AqÞcosϕ

−VcsVusC
f
ηs sinϕ

AðDþ→ πþη0Þ ¼VcdVudffiffiffi
2

p ðTF0

η0q
þCf

η0q
þ2AqÞsinϕ

þVcsVusC
f
η0s
cosϕ

AðDþ→KþK̄0Þ¼VcdVudAsþVcsVusT
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AðDþ
s → πþK0Þ ¼ −ðVcdVudT þ VcsVusAqÞ

AðDþ
s → π0KþÞ ¼ − 1ffiffiffi

2
p ðVcdVudC − VcsVusAqÞ

AðDþ
s → KþηÞ ¼ ðVcdVudC

f
ηq þ VcsVusAqÞ

cosϕffiffiffi
2

p

− VcsVusðTF0
ηs þ Cf

ηs þ AsÞ sinϕ

AðDþ
s → Kþη0Þ ¼ ðVcdVudC

f
η0q
þ VcsVusAqÞ

sinϕffiffiffi
2

p

þ VcsVusðTF0

η0s
þ Cf

η0s
þ AsÞ cosϕ

The D0 → ππ SCS decays obey the following triangular
isospin relation:

AðD0 → πþπ−Þ þ
ffiffiffi
2

p
AðD0 → π0π0Þ ¼

ffiffiffi
2

p
AðDþ → πþπ0Þ:

(2) CF decays

ðD0 → K−πþÞ ¼ −VcsVudðT þ EqÞ

ðD0 → K̄0π0Þ ¼ −VcsVud
ðC − EqÞffiffiffi

2
p

ðD0 → K̄0ηÞ ¼ VcsVud

�
ð−CF0

ηq − EqÞ
cosϕffiffiffi

2
p þ Es sinϕ

�

ðD0 → K̄0η0Þ ¼ VcsVud

�
ð−CF0

η0q
− EqÞ

sinϕffiffiffi
2

p − Es cosϕ
�

ðDþ → K̄0πþÞ ¼ −VcsVudðT þ CÞ
ðDþ

s → K̄0KþÞ ¼ −VcsVudðCþ AsÞ

ðDþ
s → πþηÞ ¼ VcsVudffiffiffi

2
p ðTF0

ηs sinϕ − Aq cosϕÞ

ðDþ
s → πþη0Þ ¼ VcsVudffiffiffi

2
p ð−TF0

η0s
cosϕ − Aq sinϕÞ

The D0 → Kπ CF decays obey the following triangular
isospin relation:

AðD0 → K−πþÞ þ
ffiffiffi
2

p
AðD0 → K̄0π0Þ ¼ AðDþ → K̄0πþÞ:

(3) DCS decays

ðD0 → Kþπ−Þ ¼ VcdVusðT þ EqÞ

ðD0 → K0π0Þ ¼ VcdVus
ðC − EqÞffiffiffi

2
p

ðD0 → K0ηÞ ¼ VcdVus

�
ðCF0

ηq þ EqÞ
cosϕffiffiffi

2
p − Es sinϕ

�

ðD0 → K0η0Þ ¼ VcdVus

�
ðCF0

η0q
þ EqÞ

sinϕffiffiffi
2

p þ Es cosϕ
�

ðDþ → K0πþÞ ¼ VcdVusðCþ AqÞ

ðDþ → Kþπ0Þ ¼ VcdVus
T − Aqffiffiffi

2
p

ðDþ → KþηÞ ¼ −VcdVus

�
ðTF0

ηq þ AqÞ
cosϕffiffiffi

2
p − As sinϕ

�

ðDþ → Kþη0Þ ¼ −VcdVus

�
ðTF0

η0q
þ AqÞ

sinϕffiffiffi
2

p þ As cosϕ
�

ðDþ
s → KþK0Þ ¼ VcdVusðT þ CÞ

The D0 → Kπ DCS decays obey the following quadrilat-
eral isospin relation:

AðD0 → Kþπ−Þ þ
ffiffiffi
2

p
AðD0 → K0π0Þ

¼ AðDþ → K0πþÞ þ
ffiffiffi
2

p
AðDþ → Kþπ0Þ:

CF0
ηq ðTF0

ηq Þ ¼
GFffiffiffi
2

p VCKMa2ðμÞða1ðμÞÞ

× fP2
ðm2

D −m2
ηÞFDηq

0 ðm2
P2
Þ;

CF0
ηs ðTF0

ηs Þ ¼
GFffiffiffi
2

p VCKMa2ðμÞða1ðμÞÞ

× fP2
ðm2

D −m2
ηÞFDηs

0 ðm2
P2
Þ;

CF0

η0q
ðTF0

η0q
Þ ¼ GFffiffiffi

2
p VCKMa2ðμÞða1ðμÞÞ

× fP2
ðm2

D −m2
η0 ÞF

Dη0q
0 ðm2

P2
Þ;

CF0

η0s
ðTF0

η0s
Þ ¼ GFffiffiffi

2
p VCKMa2ðμÞða1ðμÞÞ

× fP2
ðm2

D −m2
η0 ÞFDη0s

0 ðm2
P2
Þ:

III. FINAL STATE INTERACTIONS

Final state interaction effects are incorporated using
unitarity relations, where the contribution to any channel
is a result of the sum over all possible hadronic intermediate
states. Hence for all the n D → PP decays, the FSI

NONLEPTONIC DECAYS OF CHARMED MESONS INTO TWO … PHYSICAL REVIEW D 92, 014032 (2015)

014032-7



corrected amplitudes or the “unitarized” amplitudes, AU
i

with i ¼ 1;…n, are given by2

AU
i ¼

XN
k¼1

S1=2
ik Ak; ð12Þ

where S is the strong interaction matrix and k ¼
1;…n; nþ 1;…N stands for all possible states that can
rescatter into the PP states. In the heavy quark limit the
hard rescattering dominates, in which case the sum can be
interpreted to be over all intermediate states of partons and
the number of these states will hence be very large. Parton
hadron duality will then permit this estimation. These
corrections are incorporated into the hard scattering con-
tributions in the QCD factorization approach of Ref. [74]
for the case of B meson decays. For the case of charmed
meson decays, since mc is not large enough, we include
these NF corrections in the modified Wilson coefficients, in
terms of parameters χ1 and χ2. However, some residual
long distance FSIs may be left which are particularly
important for charmed meson decays, due to the nearby
resonances. This residual rescattering is considered in the
limited set of D → PP decays, to which the duality cannot
be applied, and therefore these effects may not be incorpo-
rated in the NF corrections.
The S matrix in Eq. (12) can be written in terms of a

residual matrix (Sres) for the rescattering among the
D → PP states alone and the scattering matrix which
accounts for the hard rescattering from all possible had-
ronic states into these channels, resulting in the factoriza-
tion amplitudes as

Sik¼
Xn
j¼1

ðS1ÞijðS2Þjk; where S1¼Sres and

S2¼S−1
1 S; with Afac

j ¼
XN
k¼1

ðS1=2
2 ÞjkAk; resulting in

AU
i ¼

Xn
k¼1

ðS1=2
res ÞijAfac

j : ð13Þ

Any S matrix can be written in terms of a real, symmetric K
matrix as S ¼ ð1 − iKÞ−1ð1þ iKÞ. Hence, the unitarized
amplitudes in Eq. (13) may be written as

AU
i ¼

Xn
k¼1

ðð1 − iKÞ−1ÞijAfac
j : ð14Þ

The K matrix parametrization has the advantage that the
resonances coupling two-body channels are represented by
poles in the K matrix. The summation in Eq. (14) corre-
sponds to summing the geometric series, where the final
state hadrons are produced from scattering via resonance at

different orders, starting from zero, i.e., directly from the
decaying meson without the resonance contribution, or
resonant rescattering occurring once, twice, and so on.
While such coupled FSIs have been considered in the past
in many papers [31,65,72,77,96–99], most of the papers on
charm decays further assume SU(3) to relate the parameters
of the coupling matrix. Since SU(3) is broken, we prefer to
use the measured decay rates of the resonances to various
channels to fix the K matrix parameters as far as possible
and the ones not measured are left as parameters to be
determined by fits of all the theoretical branching ratios to
the observed values.
For each of the SCS, CF, and DCS modes, states with the

same isospin are coupled together. In general the K matrix
coupling three channels will have the form

KðsÞ ¼ 1

ðm2
Res − sÞ

2
64

k1Γ11

ffiffiffiffiffiffiffiffiffi
k1k2

p
Γ12

ffiffiffiffiffiffiffiffiffi
k1k3

p
Γ13ffiffiffiffiffiffiffiffiffi

k2k1
p

Γ21 k2Γ22

ffiffiffiffiffiffiffiffiffi
k2k3

p
Γ23ffiffiffiffiffiffiffiffiffi

k3k1
p

Γ31

ffiffiffiffiffiffiffiffiffi
k3k2

p
Γ32 k3Γ33

3
75;

where mRes denotes the mass of the resonance through
which the different channels are coupled; and k1, k2, and k3
are the c.m. momenta of the three decay modes. There are
six independent parameters Γij. To reduce the independent
parameters to a manageable number, we impose the
requirement that the diagonal cofactors of KðsÞ vanish
[or equivalently, detKðsÞ ¼ 0]. This leads us to three
conditions,

Γ2
12 ¼ Γ11Γ22; Γ2

13 ¼ Γ11Γ33; and Γ2
23 ¼ Γ22Γ33: ð15Þ

The Γii’s are related to the partial decay width of the
resonance to the ith channel.
To illustrate this, we consider first the case of isospin

zero states of SCS decay modes of the D0 meson.
The isospin zero combination of the πþπ− and π0π0,
KþK− and K0K̄0, and the ηη modes, are coupled via
Eq. (14) with the f0ð1710Þ pole in the K matrix. Hence, for
this specific case of coupling of the isospin zero states, in
the K matrix, mRes ¼ 1.720 GeV, k1 ¼ 1

2
ðmD0

2 − 4m2
π0
Þ,

k2 ¼ 1
2
ðmD0

2 − 4m2
K0Þ, k3 ¼ 1

2
ðmD0

2 − 4m2
ηÞ, and we have

Γðf0 → ππÞ ¼ Γ11k1
mRes

; Γðf0 → KK̄Þ ¼ Γ22k2
mRes

;

and Γðf0 → ηηÞ ¼ Γ33k3
mRes

:

Experimentally only the two ratios of the decay rates,
Γðf0 → KK̄Þ=Γðf0 → ππÞ and Γðf0 → KK̄Þ=Γðf0 → ηηÞ,
have been determined. Hence we keep gpe ≡ Γðf0 → KK̄Þ
as a parameter, to be determined from fits of our theoretical
estimates to the observed branching ratios.
Similarly, for the I ¼ 1 case, we take the a0ð1450Þ

resonance withmRes ¼ 1.474 GeV and ΓRes ¼ 0.265 GeV,
2For part of the formalism used in this section, we closely

follow Refs. [67,95].
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to be responsible for the rescattering among the channels
KK̄, πη, and πη0, to which this resonance decays. Here
again, the decay rate Γða0 → πηÞ is not yet accurately
measured and is treated as a parameter ðhpeÞ that may be
predicted from the fits of all the branching ratios of the
D → PP modes to experimental data. Note that the KK̄,
πη, and πη0 states appear as final states not only of SCS D0

andDþ decays, but also in the CF decays of theDþ
s decays.

For all three sets of decays, the same K matrix (apart from
tiny modifications in the c.m. momenta and the mass
squared of the decaying meson) will suffice, and more
importantly with the same one unknown parameter, while
many additional observables (all the branching ratios of
these D0, Dþ, and Dþ

s ) will get added to the χ2 fit. If this
one same parameter, along with the other unknowns in our
analysis, can simultaneously explain all the observed data,
it would indicate that our naive technique of incorporating
the FSI effects is satisfactory.
We also couple the isospin 1=2 states of the Kπ, Kη, and

Kη0 channels, which are the final states in the SCS decays
of Dþ

s , CF decays of D0, and DCS decays of D0 and Dþ
mesons. Here we use the K�

0ð1950Þ resonance with
mRes ¼ 1.945 GeV. Only the branching ratio,
ΓðK�

0 → KπÞ=Γtotal, has been measured. We take the other
two decay rates, ΓðK�

0 → KηÞ and ΓðK�
0 → Kη0Þ, as

parameters (jpe1 and jpe2) that can be determined by the
overall fits of all the branching ratios to data.

IV. NUMERICAL ANALYSIS AND RESULTS

To estimate all the possible sets of coupled channels, the
isospin decompositions of all the SCS, CF, and DCS modes
are listed subsequently. Here AðUÞ denotes the bare or un-
unitarized (unitarized or FSI corrected) amplitudes, respec-

tively, for each of the decay modes, while AmodeðUÞ
i denotes

the corresponding un-unitarized (unitarized) isospin, I ¼ i
amplitudes for those modes. With the absence of reso-
nances, in particular isopin components with the right
quantum numbers in the vicinity of the charmed meson
masses, some of the isospin components of many modes
remain un-unitarized.
With all the unitarized isospin amplitudes, we construct

the corresponding unitarized decay amplitudes for all the
decay modes. The decay rates for all the D → P1P2 are
then calculated as

ΓðD → P1P2Þ ¼
pc

8πm2
D
jAðD → P1P2Þj2: ð16Þ

Here pc is the center of mass momentum of the mesons in
the final state given by

pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

D − ðmP1
þmP2

Þ2Þðm2
D − ðmP1

−mP2
Þ2Þ

q
2mD

:

The theoretical branching ratios for each of the decay
modes of the D0, Dþ, or Dþ

s mesons are then obtained by
dividing the corresponding decay rates by the total decay
widths of these mesons. We then perform a χ2 fit of these
theoretical branching ratios with the experimentally mea-
sured branching fractions, estimating all the unknown
parameters from the best fit to data.
The unknown parameters in our study are the four

parameters representing the NF corrections, χ1, χ2; and
the four parameters of their respective phases ϕ1, ϕ2:
χEq;s and
(1) SCS decays

AðUÞðD0 → πþπ−Þ≡ ffiffiffi
2

p
Aππ

2 þ
ffiffiffi
2

p
AππðUÞ

0

AðUÞðD0 → π0π0Þ≡ 2Aππ
2 −AππðUÞ

0

AðUÞðD0 → π0ηÞ≡ ffiffiffi
3

p
AπηðUÞ

1

AðUÞðD0 → π0ηÞ≡ ffiffiffi
3

p
Aπη0ðUÞ

1

AðUÞðD0 → ηηÞ≡ ffiffiffi
3

p
AηηðUÞ

0

AðUÞðD0 → ηη0Þ≡ ffiffiffi
3

p
Aηη0

0

AðUÞðD0 → KþK−Þ≡
ffiffiffi
3

2

r �
AKKðUÞ

1 þAKKðUÞ
0

�

AðUÞðD0 → K0K̄0Þ≡
ffiffiffi
3

2

r �
AKKðUÞ

1 −AKKðUÞ
0

�
AðUÞðDþ → πþπ0Þ≡ 3Aππ

2

AðUÞðDþ → KþK̄0Þ≡AKþKðUÞ
1

AðUÞðDþ → πþηÞ≡AπþηðUÞ
1

AðUÞðDþ → πþη0Þ≡Aπþη0ðUÞ
1

AðUÞðDþ
s → πþK0Þ≡ 1ffiffiffi

3
p AπK

3
2

þ
ffiffiffi
2

3

r
AπKðUÞ

1
2

AðUÞðDþ
s → π0KþÞ≡

ffiffiffi
2

3

r
AπK

3
2

− 1ffiffiffi
3

p AπKðUÞ
1
2

AðUÞðDþ
s → KþηÞ≡AKþηðUÞ

1
2

AðUÞðDþ
s → Kþη0Þ≡AKþη0ðUÞ

1
2

TABLE III. Parameter best-fit values.

Name Values Name Values Name Values

Λ 0.625645 jpe1 0.0000239368 χAq 132.685
χ1 −2.68215 jpe2 0.096456 χAs 193.447
χ2 2.23605 χEq −334.805 ϕ1 0.302258
gpe 0.0471262 χEs −81.3363 ϕ2 2.87681
hpe 0.118834
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(2) CF decays

AðUÞðD0 → K−πþÞ ¼ 1

3
AK̄π

3
2

þ 2

3
AK̄πðUÞ

1
2

AðUÞðD0 → K̄0π0Þ ¼
ffiffiffi
2

p

3

�
AK̄π

3
2

−AK̄πðUÞ
1
2

�

AðUÞðD0 → K̄0ηÞ ¼
ffiffiffi
2

3

r
AK̄ηðUÞ

1
2

AðUÞðD0 → K̄0η0Þ ¼
ffiffiffi
2

3

r
AK̄η0ðUÞ

1
2

AðUÞðDþ → K̄0πþÞ ¼ AK̄πþ
3
2

AðUÞðDþ
s → K̄0KþÞ ¼ AKK̄ðUÞ

1

AðUÞðDþ
s → πþηÞ ¼ AπþηðUÞ

1

AðUÞðDþ
s → πþη0Þ ¼ Aπþη0ðUÞ

1

(3) DCS decays

AðUÞðD0 → Kþπ−Þ ¼
ffiffiffi
2

p

3
AKπ

3
2

−
ffiffiffi
2

pffiffiffi
3

p AKπðUÞ
1
2

AðUÞðD0 → K0π0Þ ¼ 2

3
AKπ

3
2

þ 1ffiffiffi
3

p AKπðUÞ
1
2

AðUÞðD0 → K0ηÞ ¼ AKηðUÞ
1
2

AðUÞðD0 → K0η0Þ ¼ AKη0ðUÞ
1
2

AðUÞðDþ → K0πþÞ ¼
ffiffiffi
2

p

3
AKπþ

3
2

þ
ffiffiffi
2

pffiffiffi
3

p AKπþðUÞ
1
2

AðUÞðDþ → Kþπ0Þ ¼ 2

3
AKπþ

3
2

− 1ffiffiffi
3

p AKπþðUÞ
1
2

AðUÞðDþ → KþηÞ ¼ AKþηðUÞ
1
2

AðUÞðDþ → Kþη0Þ ¼ AKþη0ðUÞ
1
2

AðUÞðDþ
s → KþK0Þ ¼ 1ffiffiffi

2
p ðAKK

1 þAKK
0 Þ

χAq;s depicting the strength of the W-exchange and W-
annihilation amplitudes with distinct strengths for qq̄ and
ss̄ pair production; one unknown in each of the isospin zero
and isospin one K matrices coupling modes from decays of
D0 and Dþ mesons; two parameters in the isospin half K
matrix coupling various decay modes of Dþ

s ; and one
parameterΛ, representing the momentum of the soft degrees
of freedom in the charmed mesons, that is used to define the
scale for each of the individual decay modes, making a total
of 13 unknown parameters. On the other hand, out of all 33
decay modes considered, 28 have been measured, resulting
in sufficient observables to determine all the unknown
parameters and give predictions for five of the branching
fractions of DCS modes that are not yet measured.
Apart from the experimental errors in the observed

branching ratios, the calculated errors in our theoretical
branching ratio estimates arise from the errors in the form
factors, the η and η0 decay constants, the η − η0 mixing
angle, and the errors in the measured decay widths of the
various resonances into the different channels that are
included in our χ2 fits. Errors due to the other theoretical
inputs, like meson masses; decay constants of pion, kaon,

TABLE IV. D → PP SCS branching ratios. Columns 2 and 3 show our results with annihilation included, for the cases with and
without FSI, respectively, while column 4, which displays results without annihilation, includes FSI.

Modes With FSI Without FSI Without Ann. Experimental Value

D0 → πþπ− ð1.44� 0.027Þ × 10−3 ð4.35� 1.67Þ × 10−3 ð4.02� 1.75×Þ × 10−3 ð1.402� 0.026Þ × 10−3
D0 → π0π0 ð1.14� 0.56Þ × 10−3 ð3.66� 1.43Þ × 10−3 ð2.04� 0.79Þ × 10−3 ð8.209� 0.35Þ × 10−4
D0 → KþK− ð4.06� 0.77Þ × 10−3 ð4.27� 2.34Þ × 10−3 ð6.78� 3.08Þ × 10−3 ð3.96� 0.08Þ × 10−3
D0 → K0K̄0 ð3.42� 0.52Þ × 10−4 ð5.61� 0.00Þ × 10−4 ð2.80� 0.84Þ × 10−4 ð3.4� 0.8Þ × 10−4
D0 → π0η ð1.47� 0.90Þ × 10−3 ð6.47� 2.98 × 10−3 ð3.25� 1.51 × 10−3 ð6.8� 0.7Þ × 10−4
D0 → π0η0 ð2.17� 0.65Þ × 10−3 ð3.81� 1.43Þ × 10−3 ð1.85� 0.79Þ × 10−3 ð9.0� 1.4Þ × 10−4
D0 → ηη ð1.27� 0.27Þ × 10−3 ð1.32� 0.41Þ × 10−3 ð1.34� 0.29Þ × 10−3 ð1.67� 0.20Þ × 10−3
D0 → ηη0 ð9.53� 1.83Þ × 10−4 ð1.04� 0.27Þ × 10−3 ð5.38� 1.63Þ × 10−4 ð1.05� 0.26Þ × 10−3
Dþ → πþπ0 ð8.89� 4.51Þ × 10−4 ð8.70� 6.70Þ × 10−4 ð9.73� 3.94Þ × 10−4 ð1.19� 0.06Þ × 10−3
Dþ → KþK̄0 ð3.75� 0.63Þ × 10−3 ð1.02� 0.37Þ × 10−2 ð1.99� 0.56Þ × 10−2 ð5.66� 0.32Þ × 10−3
Dþ → πþη ð4.72� 0.21Þ × 10−3 ð2.34� 1.26Þ × 10−2 ð1.66� 0.77Þ × 10−2 ð3.53� 0.21Þ × 10−3
Dþ → πþη0 ð6.76� 2.19Þ × 10−3 ð3.00� 0.76Þ × 10−2 ð9.78� 3.35Þ × 10−3 ð4.67� 0.29Þ × 10−3
Dþ

s → πþK0 ð1.96� 0.90Þ × 10−3 ð1.46� 1.10Þ × 10−3 ð1.32� 1.01Þ × 10−3 ð2.42� 0.12Þ × 10−3
Dþ

s → π0Kþ ð8.17� 4.64Þ × 10−4 ð1.74� 1.00Þ × 10−4 ð1.01� 0.54Þ × 10−3 ð6.3� 2.1Þ × 10−4
Dþ

s → Kþη ð1.50� 0.75Þ × 10−3 ð6.40� 4.52Þ × 10−3 ð2.23� 1.82Þ × 10−3 ð1.76� 0.35Þ × 10−3
Dþ

s → Kþη0 ð7.07� 0.49Þ × 10−4 ð2.09� 0.87Þ × 10−3 ð0.57� 0.47Þ × 10−4 ð1.8� 0.6Þ × 10−3
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charmed mesons; and CKM mixing elements (involving
the first two generations) are negligibly small.
As discussed in Sec. II C, the z-series expansion has been

obtained for the form factors, keeping the first two terms of
this series. The coefficients a0 and a1 of these two terms are
functions of normalization and shape parameters fð0Þ and
β, obtained from lattice results. The errors in these lattice
parameters are used to obtain the errors in the expansion
coefficient functions and then propagated to get the errors
in the form factors. We find that the errors in the form
factors vary from ≈5% to ≈25%.
In Tables IV, V, and VI, we list the values of the

branching ratios of all the SCS, CF, and DCS D → PP
modes obtained from our analysis, after incorporating the
FSI effects (shown in the second column), as well as in the
absence of the FSI (column 3) and absence of annihilation
(column 4), along with the corresponding observed exper-
imental branching ratios (column 5) given in PDG [92]. We
also predict the branching ratios for a few DCS modes that
have not been experimentally measured yet and are given in
the second column of Table VI
After incorporating all the errors, the χ2 minimization

results in the best-fit values of all the parameters given in
Table III.

V. CONCLUSIONS

For several decades, various ratios of decay rates of
many of the D → PP modes remained a puzzle, as these
ratios were expected to be close to one in the SUð3Þ limit,
but the measured values exhibited large deviations from
unity.
We have evaluated the bare amplitudes of all the D →

PP modes using factorization; however, we add non-
factorizable corrections, weak annihilation, and exchange
contributions as parameters. In the hadron matrix elements,
the q2 dependence of the form factors involved are
evaluated using the z-expansion method and, finally,
resonant final state interaction effects are incorporated.
The parameters of the K matrix coupling the various
channels are defined using the measured decay widths of
the resonances (where available) and those unobserved are
left as parameters to be fitted from all the measured 28
D → PP branching ratios. Our best fit has a χ2=degree of
freedom of 2.25, which is an improvement over the
previous results in Refs. [59,76].

(i) It may be noted that we have added the NF
corrections to the color-suppressed and tree
amplitudes, in contrast to Ref. [76] where they have

TABLE V. D → PP CF branching ratios. Inclusion of annihilation/FSI in our branching ratio estimates shown in various columns is
the same as those specified for Table IV.

Modes With FSI Without FSI Without Ann. Experimental Value

D0 → K−πþ ð3.70� 1.33Þ × 10−2 ð8.83� 2.47Þ × 10−2 ð5.63� 1.81Þ × 10−2 ð3.88� 0.05Þ × 10−2
D0 → K̄0π0 ð1.88� 0.99Þ × 10−2 ð1.29� 0.44Þ × 10−1 ð3.30� 1.47Þ × 10−2 ð2.38� 0.08Þ × 10−2

D0 → K̄0η ð1.59� 0.48Þ × 10−2 ð0.97� 0.33Þ × 10−2 ð1.09� 0.34Þ × 10−2 ð0.958� 0.06Þ × 10−2

D0 → K̄0η0 ð2.29� 0.43Þ × 10−2 ð2.06� 0.30Þ × 10−2 ð2.45� 0.47Þ × 10−2 ð1.88� 0.1Þ × 10−2

Dþ → K̄0πþ ð3.42� 1.78Þ × 10−2 ð1.35� 1.12Þ × 10−1 ð5.25� 3.34Þ × 10−2 ð2.94� 0.14Þ × 10−2

Dþ
s → K̄0Kþ ð5.65� 1.29Þ × 10−2 ð1.70� 0.79Þ × 10−1 ð1.35� 0.53Þ × 10−1 ð2.95� 0.14Þ × 10−2

Dþ
s → πþη ð2.26� 0.82Þ × 10−2 ð0.78� 0.56Þ × 10−2 ð2.14� 0.90Þ × 10−2 ð1.69� 0.10Þ × 10−2

Dþ
s → πþη0 ð2.64� 0.78Þ × 10−2 ð3.73� 1.52Þ × 10−2 ð2.52� 0.85Þ × 10−2 ð3.94� 0.25Þ × 10−2

TABLE VI. D → PP DCS branching ratios. Inclusion of annihilation/FSI in our branching ratio estimates shown in various columns
is the same as specified for Table IV.

Modes With FSI Without FSI Without Ann. Experimental Value

D0 → Kþπ− ð1.77� 0.88Þ × 10−4 ð3.71� 1.33Þ × 10−4 ð2.48� 1.07Þ × 10−4 ð1.38� 0.028Þ × 10−4
D0 → K0π0 ð2.11� 0.26Þ × 10−4 ð3.70� 1.35Þ × 10−4 ð0.68� 0.46Þ × 10−4 � � �
D0 → K0η ð0.94� 0.45Þ × 10−4 ð0.28� 0.10Þ × 10−4 ð0.96� 0.32Þ × 10−4 � � �
D0 → K0η0 ð8.02� 3.32Þ × 10−4 ð0.59� 0.08Þ × 10−4 ð9.22� 1.61Þ × 10−4 � � �
Dþ → K0πþ ð3.27� 1.86Þ × 10−4 ð1.19� 0.55Þ × 10−3 ð3.51� 2.11Þ × 10−4 � � �
Dþ → Kþπ0 ð3.07� 1.02Þ × 10−4 ð2.15� 1.17Þ × 10−4 ð3.27� 1.39Þ × 10−4 ð1.83� 0.26Þ × 10−4
Dþ → Kþη ð0.98� 0.26Þ × 10−4 ð1.04� 0.23Þ × 10−4 ð0.89� 0.27Þ × 10−4 ð1.08� 0.17Þ × 10−4
Dþ → Kþη0 ð1.40� 0.39Þ × 10−4 ð1.82� 0.18Þ × 10−4 ð1.35� 0.39Þ × 10−4 ð1.76� 0.22 × 10−4Þ
Dþ

s → KþK0 ð7.84� 2.31Þ × 10−4 ð0.68� 0.09Þ × 10−4 ð0.72� 0.44Þ × 10−4 � � �

NONLEPTONIC DECAYS OF CHARMED MESONS INTO TWO … PHYSICAL REVIEW D 92, 014032 (2015)

014032-11



only been added to the color-suppressed amplitudes.
Of course NF corrections in the color-suppressed
contributions are well motivated; however, vertex
corrections, etc., will be present even in the tree
contributions and hence these need to be added.
Even for B decays, Ref. [74] evaluates them for both
the color-suppressed and tree amplitudes. For D
decays, since the nonfactorizable corrections are
expected to be even more important due to the
1=mc corrections being non-negligible, perhaps
incorporating them into tree and color-suppressed
contributions would result in better fits to data. In
fact, such corrections were incorporated into both
tree and color-suppressed amplitudes in Ref. [73]
and several other papers.

(ii) We have incorporated resonant FSIs in addition to
the NF corrections to the amplitudes. We clarify that
this will not result in any double counting. It is true
that nonfactorizable contributions include final state
interactions. In general these FSIs should include all
possible states that can rescatter into the PP states
being considered. However, when contributions
from all hadronic states at large enough energy
(short distance part) are summed over, one should be
able to work in terms of the quark and gluon degrees
of freedom (using duality). However, in addition
there can be soft (long distance) leftover, residual
scattering among a limited set of PP states. This
final state interaction at the hadronic level is elastic
in the sense of probability conservation among the
limited subset of states and incorporates only this
residual scattering, not all possible FSIs. This
scattering among the limited PP modes cannot be
treated in the factorization amplitudes by duality and
hence there should be no double counting. More-
over, the Wilson coefficients which incorporate the
nonfactorizable pieces are expected to be universal.
On the other hand, the resonant final state inter-
actions coupling different channels in various iso-
spin states cannot be universal but have to be
channel dependent. Hence, this needs to be incorpo-
rated separately.

(iii) We are able to get reasonable fits to almost all the
observed branching ratios. In particular, our branch-
ing fractions forD → KK,D → ππ modes that have
been a longstanding puzzle are in agreement with the
corresponding measured values.

(iv) For constructing the FSI K matrix, if SU(3) couplings
are used, then due to the symmetry of these matrices,
diagonalization results in one or more eigenvalues
being zero. As a result, in this case it turns out that FSI
modifies only the annihilation and exchange contri-
butions, while tree and color-suppressed amplitudes
remain unaffected. However if SU(3) is not used, but
the Kmatrix is constructed frommeasured rates of the

resonances to different channels, and one leaves
those not observed as parameters (as is done in this
work), then it is the net un-unitarized amplitudes in
different isospin states that get enhanced or sup-
pressed, and not just the annihilation/exchange con-
tributions alone.

(v) In Tables IV, V, and VI, we have added columns
comparing the theoretical branching ratios for all
the PP modes considered, for cases with and with-
out the coupled channel FSI. It can be clearly
seen that the fits to data are indeed much better
with FSI.

(vi) We have evaluated the cosine of the strong
phase difference between the unitarized ampli-
tudes for D0 → K−πþ and D0 → Kþπ− and obtain
cos δKπ ¼ 0.94� 0.027. This result is consistent
with the recently measured BESIII result, cos δKπ ¼
1.02� 0.11� 0.06� 0.01 [100].

(vii) The mode D0 → K0K̄0 does not have any tree or
color-suppressed contributions, but can come only
from W-exchange. In fact, there are two exchange
contributions, one appearing with a dd̄ and the
other with an ss̄, which under exact SUð3Þ sym-
metry would cancel each other, resulting in a null
amplitude. However, since our parameters for these
two contributions are distinct, our bare amplitude
for this mode is small but nonvanishing. There have
been speculations [73,77] that this mode can arise
just from final state interactions, even in the
absence of a weak exchange contribution.
However, from Table IV it is clear that without
the exchange contribution we are unable to gen-
erate a large enough rate: both final state interaction
and the exchange contribution are necessary
for consistency with the measured branching
fraction.

(viii) We have also evaluated the four ratios of amplitudes
that had been specified in a recent paper [101].
In the SU(3) limit these are all expected to be unity.
Our theoretical estimates for these ratios are given
below:

R1≡ jAðD0→Kþπ−Þj
jAðD0→πþK−jtan2θc

¼1.27�0.32;

R2≡ jAðD0→KþK−Þj
jAðD0→πþπ−j ¼1.27�0.42;

R3≡ jAðD0→KþK−ÞjþjAðD0→πþπ−j
jAðD0→πþK−jtanθcþjAðD0→Kþπ−Þjtan−1θc

¼1.19�0.28;

R4≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAðD0→KþK−Þ∥AðD0→πþπ−j
jAðD0→πþK−∥AðD0→Kþπ−Þj

s

¼1.19�0.26:
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Furthermore, the following combination of these
ratios is expected to be vanishing up to fourth order
in U-spin breaking,

ΔR≡ R3 − R4 þ
1

8
½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 − 1

p − 1Þ2

− ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2 − 1

p − 1Þ2�:

Using our unitarized amplitudes, we find the central
value of ΔR to be indeed very tiny, however, with a
large error:

ΔR ¼ −0.000013� 0.006:

Our theoretical errors (in form factors, K-matrix
parameters, etc.) are propagated to evaluate the
errors in the ratios R1, R2, R3, R4 and finally in ΔR.

(ix) We would like to mention that in many modes
involving η and η0, we have additional terms in our
amplitude due to our distinction of the different form
factors, compared to, for example, those that appear
in Ref. [59]. A naive look at the color-suppressed
diagrams for D → π0ηðη0Þ will indicate that the
contributions are from the case where the spectator
is part of the π0, and that where it constitutes the
ηðη0Þ must cancel. However, in terms of the specific
decay constants and form factors, one is proportional

to −fπFDηq
0 ðm2

πÞ, while the other is proportional to
fηqF

Dπ
0 ðm2

ηÞ, which are unequal and hence the net
result is non-vanishing.

(x) While the Particle Data Group [92] does not include
a world average for Γðf0ð1710Þ → KK̄Þ, it does list
two values for the ratio Γðf0ð1710Þ→KK̄Þ

Γtotal
: 0.36� 0.12

(Ref. [102]) and 0.38þ0.09−0.19 (Ref. [103]); our fit value
of gpeð≡Γðf0ð1710Þ → KK̄ÞÞ corresponds to 0.35
for the branching ratio, which is consistent with
these values.

(xi) Our theoretical errors are rather large and could be
reduced in the future with more precise form factors
available either from measurement of semileptonic
D, Ds modes at BES III (where if even the lepton
mass could be incorporated, e.g., by looking at
modes with muon in the final state, then the q2

dependent F0 could be known) or with improved
lattice studies, especially for D → η0, Ds → K,
and Ds → η; η0.

(xii) Accurate measurements of the decay widths of the
resonances (used for the final state interactions) to
many of the coupled channels can reduce the
theoretical uncertainties and possibly allow for
better fits to data. For example, our fits seem to
indicate a rather large value for hpe or the width of
a0ð1450Þ → π0η. This seems to result in larger
branching fractions for many of the isospin one

modes. Future measurement of this width can help
reduce this uncertainty and perhaps result in better
fits to data for these modes.

(xiii) Out of the 28 observedPPmodes, we are unable to fit
7 of the modes well. Many of these modes involve η
or η0 in the final state. Including a gluonium compo-
nent in the η, η0 states may possibly be one way of
improving these fits. This, along with improved form
factor measurements and observation of decay rates
of the resonances (playing a role in final state
interactions) to these decay modes, as mentioned
in the last two points above, could go a long way
toward improving our fits. One glaring misfit is the
mode Dþ → KþK̄0. This mode does couple to
πþη; πþη0 modes and hence may possibly improve,
along with the improvements in the other modes.
Finally, perhaps a more sophisticated statistical
analysismay also play a role in improving our results,
which we hope to carry out in the future [104].
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APPENDIX A: THE WILSON COEFFICIENTS

The Wilson coefficients used in the evaluation of all the
bare amplitudes have been calculated at the final state
hadronic scale. This allows for an additional SUð3Þ break-
ing effect and they have been incorporated using the
procedure outlined in Ref. [76]. The Wilson coefficients
at lower scale are calculated in Ref. [105]. The essential
steps are the following.

(i) In the first step, the Wilson coefficients CiðmWÞ at
weak scale are calculated by requiring the equality
of the effective theory with five active flavors
q ¼ u; d; s; c; b onto the full theory.

(ii) Next, the coefficients undergo the evolution from the
scale mW to μ through the equation

CðμÞ ¼ U5ðμ; mWÞCðmWÞ: ðA1Þ

(iii) In the next step, coefficients are calculated at the
scale of the b quark
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CðmbÞ → ZðmbÞ: ðA2Þ

(iv) Now, the Wilson coefficients can be evaluated at the
required scale (μc or μhadron) through the equation

CðμÞ ¼ U4ðμ; mbÞZðmbÞ: ðA3Þ
In the above steps, U5 and U4 are the 2 × 2 and
7 × 7 evolution matrices for five and four active
flavors, respectively. The ZðmbÞ is given in the
Eqs. (A.7) to (A.10) of Ref. [105].

The explicit expressions of theWilson coefficients obtained
after following the above steps are given in the Ref. [76].
They are

C1ðμÞ ¼ −0.2334α1.444 þ 0.0459α0.7778

þ 1.313α0.4444 − 0.3041α−0.2222;
C2ðμÞ ¼ 0.2334α1.444 þ 0.0459α0.7778

− 1.313α0.4444 þ 0.3041α−0.2222;

in terms of the running coupling constant α:

α ¼ αsðμÞ ¼
4π

β0 lnðμ2=Λ2

MS
Þ
�
1 − β1 ln lnðμ2=Λ2

MS
Þ

β20 lnðμ2=Λ2

MS
Þ
	
;

with the coefficients

β0 ¼
33 − 2f

3
; β1 ¼ 102 − 38

3
Nf:

We take active flavor number Nf ¼ 3, and the QCD
scale ΛMS ¼ ΛMS ¼ 375 MeV. Again, note that the scale
dependent strong coupling constant αsðμÞ is evaluated at
the final state hadronic scales for each individual decay, to
take care of the SU(3) breaking.

APPENDIX B: SERIES EXPANSION METHOD
FOR FORM FACTORS

Using the analytic properties of Fðq2Þ, a transformation
of variables is made which maps the cut on the q2 plane
onto a unit circle jzj < 1, where

zðt;t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ; t ¼ q2;

where

t� ¼ ðmD �mP1
Þ2 and t0 ¼ tþ

�
1 −

�
1 − t−

tþ

�
1=2

�
:

This transformation allows the form factors to be given by
an expansion about q2 ¼ t0, given as

FðtÞ ¼ 1

PðtÞϕðt; t0Þ
Xinf
k¼0

akðt0Þzðt; t0Þk;

given also as Eq. (8) in the text. The function PðtÞ in
the above is 1 for D → π form factors. For Ds → η and
D → K form factors, PðtÞ ¼ zðt;M2

D�
s0
Þ, where MD�

s0
is the

nearest 0þ resonance mass. The outer function ϕ is given
by [106]

ϕðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3tþt−
32πχ0

s �
zðq2; 0Þ
−q2

�
2
�
zðq2; t0Þ
t0 − q2

�−1=2

×

�
zðq2; t−Þ
t− − q2

�−1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
ðtþ − t0Þ1=4

;

where χ0 has been calculated [106] using OPE and is
given by

χ0 ¼
1þ 0.751αsðmcÞ

8π2
:

For simplicity, we ignore the condensate contribution
which is of the order Oðm−3

c Þ and Oðm−4
c Þ. The strong

coupling at charm scale is computed with the package
RunDec [107].
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