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We make a detailed eikonal fit to current data on the total and elastic scattering cross sections, the ratios ρ
of the real to the imaginary parts of the forward elastic scattering amplitudes, and the logarithmic slopes B
of the differential cross sections dσ=dt at t ¼ 0, for proton-proton and antiproton-proton scattering at
center-of-mass energies W from 5 GeV to 57 TeV. The fit allows us to investigate the structure of the
eikonal amplitudes in detail, including the impact-parameter structure of the energy-independent edge in
the scattering amplitude shown to exist by Block et al., [Phys. Rev. D 91, 011501(R) (2015)]. We show that
the edge region has an essentially fixed shape with a peak at approximately the “black disk” radius

Rtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot=2π

p
of the scattering amplitude, a constant width tedge ≈ 1 fm, and migrates to larger impact

parameters with increasing energy proportionally to Rtot. We comment on possible physical mechanisms
which could lead to the edge. We show that the eikonal results for the cross sections and ρ values are
described to high accuracy by analytic expressions of the forms used in earlier analyses by Block and
Halzen, and extend the result to the elastic-scattering slope parameter B. These expressions provide simple
extrapolations of the results to much higher energies where the cross sections approach the black disk limit
with σelas, σinel → σtot=2 and B → σtot=8π. Finally, we calculate the survival probabilities for large rapidity
gaps in the scattering.
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I. INTRODUCTION

In a recent paper [1] Block et al. established that the
proton-proton scattering amplitude has an edge in impact
parameter space with a width that remains essentially
constant over many orders of magnitude in the center-of-
mass energy W. This result was derived using the general
forms of the scattering amplitudes in impact parameter
space for strongly absorptive scattering, and the very
accurate Block-Halzen fit to the proton-proton (pp) and
antiproton (p̄p) total and inelastic cross sections and ratios
ρ of the real to imaginary parts of the forward elastic
scattering amplitudes for 6 ≤ W ≤ 1800 GeV [2]. That fit
incorporated the asymptotic ln2s limit of the growth of the
cross sections at large s ¼ W2, the constraints on the phase
of the scattering amplitude imposed by analyticity and

crossing symmetry, and constraints on its magnitude and
slope at 4 GeV implied by consistency with low-energy
data. It successfully predicted the cross sections sub-
sequently measured in the multi-TeV range at the Large
Hadron Collider (LHC) and in cosmic ray experi-
ments [3,4].
The results in [1] did not depend on a particular fit to the

scattering amplitudes, but only on the general forms of the
amplitudes in impact parameter space. In the present paper,
we use a detailed eikonal description of the scattering to
fit the pp and p̄p data on σtot, σelas, ρ, and on B, the
logarithmic derivative of dσ=dt at t ¼ 0. The fit includes a
number of new measurements at higher energies. While the
results we obtain for these quantities are essentially
equivalent to those obtained earlier, the detailed fit allows
us to investigate the structure of the eikonal amplitudes
including, in particular, the structure of the edge in impact
parameter space.
In the following sections, we first establish our con-

ventions and give expressions for the cross sections, ρ, and
B in terms of the eikonal function (Sec. II). We use a

*mblock@northwestern.edu
†Present address: 415Pearl Court, Aspen,Colorado81611,USA.

ldurand@hep.wisc.edu
‡pdha@towson.edu
§francis.halzen@icecube.wisc.edu

PHYSICAL REVIEW D 92, 014030 (2015)

1550-7998=2015=92(1)=014030(15) 014030-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.014030
http://dx.doi.org/10.1103/PhysRevD.92.014030
http://dx.doi.org/10.1103/PhysRevD.92.014030
http://dx.doi.org/10.1103/PhysRevD.92.014030


general parametrization of the eikonal function which,
importantly, incorporates the power-law growth ∝ sϵ found
in QCD-based minijet [5] and Reggeon [6,7] models, and
the exponential cutoff in impact parameter suggested by the
proton form factor. This results in the asymptotic approach
of the scattering amplitudes to the black disk limit in which
σtot ∝ ln2s, σelas, σinel → σtot=2, B → σtot=8π, and ρ → 0.
We present the results of our fit to the pp and p̄p data in

Sec. III. We then use the results to investigate the structure
of the eikonal amplitudes (Sec. IVA), including the relative
importance of different contributions to the eikonal func-
tion and the (slow) approach of the scattering to asymptotic
behavior dominated by gluon-related processes.
We show in Sec. IV B that the description of the total and

elastic cross sections and ρ values obtained in the eikonal
model can be fitted to high accuracy by analytic expres-
sions of the form used in the Block-Halzen fits to the data
[2–4], justifying their assumptions. The resulting expres-
sions for these quantities can be extrapolated reliably to
higher energies. We also extend this analysis to B, and give
results that may be useful in other contexts such as the
analysis of cosmic ray cross sections. We prefer these
extrapolations to those using the eikonal model for reasons
we discuss.
We then investigate the structure of the edge region in the

scattering amplitude (Sec. IV C). We find that the edge
maintains a nearly constant shape in impact parameter
space, with a width which remains essentially constant at
∼1 fm up to the highest energies studied to date, and
presumably to much higher asymptotic energies. We com-
ment on some possible explanations of the edge and its
form at large impact parameters in Sec. IV D; this is a
problem that needs further study.
We note in Sec. IV D that the component of the cross

section associated with the edge gives the Pumplin bound
[8] on single-particle diffraction dissociation in pp or p̄p
collisions, and suggest that experiments to test the bound
would be useful. Finally, in Sec. IV F, we discuss and
calculate the survival probabilities for large rapidity gaps in
the scattering. The details of our eikonal model are
discussed in the Appendix.

II. CONVENTIONS

In the following, we will be concerned with proton-
proton (pp) and proton-antiproton (pp̄) scattering at high
energies. We will neglect the (presumably small) effects of
the nucleon spins, and describe the scattering amplitude
and cross sections in an impact parameter or eikonal
representation; this is valid at small angles when many
partial waves contribute to the scattering and the (unitary)
partial wave series can be converted to an integral over
the impact parameter. We will write the resulting spin-
independent eikonal scattering amplitude and differential
elastic scattering amplitude as

fðs; tÞ ¼ i
Z

∞

0

dbbð1 − eiχðb;sÞÞJ0ðb
ffiffiffiffiffi
−t

p Þ; ð1Þ

dσ
dt

ðs; tÞ ¼ πjfðs; tÞj2: ð2Þ

Here s ¼ W2 ¼ 4ðp2 þm2Þ is the square of the total energy
in the center of mass (c.m.) system, p is the c.m. momentum
of either incident particle, b ¼ j=p where j is the partial-
wave angular momentum, and t ¼ −2p2ð1 − cos θÞ is the
invariant 4-momentum transfer for elastic scattering at the
angle θ. We will define the eikonal function χðb; sÞ as
χ ¼ χR þ iχI; note that some other papers use different
conventions, e.g., [1,9].
With these conventions, the elastic, total, and inelastic

cross sections are

σelas ¼ 2π

Z
∞

0

dbbj1 − eiχ j2

¼ 2π

Z
∞

0

dbbð1 − 2 cos χRe−χI þ e−2χIÞ; ð3Þ

σtotðsÞ ¼ 4πImfðs; 0Þ ¼ 4π

Z
∞

0

dbbð1 − cos χRe−χI Þ; ð4Þ

σinelðsÞ ¼ σtot − σelas ¼ 2π

Z
∞

0

dbbð1 − e−2χIÞ: ð5Þ

The ratio ρ of the real to the imaginary part of the
forward scattering amplitude and the logarithmic derivative
B of the differential elastic scattering cross section at t ¼ 0
are also frequently measured and will be used in our
analysis. Here

ρ ¼ Refðs; 0Þ=Imfðs; 0Þ

¼ −
Z

∞

0

dbbe−χI sin χR=
Z

∞

0

dbbð1 − cos χRe−χIÞ; ð6Þ

B ¼ d
dt

�
ln
dσ
dt

ðs; tÞ
�
t¼0

ð7Þ

¼1

2

�Z
∞

0

dbb3sinχRe−χI
Z

∞

0

dbbsinχRe−χI

þ
Z

∞

0

dbb3ð1−cosχRe−χIÞ
Z

∞

0

dbbð1−cosχRe−χIÞ
�

=
��Z

∞

0

dbbsinχRe−χI
�

2

þ
�Z

∞

0

dbbð1−cosχRe−χIÞ
�

2
�
:

ð8Þ
An accurate approximation for B when the real part of the
scattering amplitude is small is to set χR ¼ 0. Then
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B ≈
1

2

Z
∞

0

dbb3ð1 − e−χIÞ=
Z

∞

0

dbbð1 − e−χIÞ: ð9Þ

We have used the exact expression in Eq. (8) in fitting the
experimental data, but note that the approximate expression
would have been adequate.

III. FIT TO HIGH ENERGY PROTON-PROTON
AND ANTIPROTON-PROTON

SCATTERING DATA

The model we have used in fitting the high energy pp
and pp̄ cross sections is a modification of the “Aspen
model” of Block et al. [9,10] which was motivated by the
structure of the eikonal function found in QCD minijet
models for the scattering. We will follow the notation used
in those references even though the precise identification of
the terms made there cannot really be maintained in a more
general setting. We write the eikonal functions in terms of
crossing-even and crossing-odd components, with

χpp̄ðb;WÞ ¼ ½χEðb;WÞ þ χOðb;WÞ�=2; ð10Þ
χppðb;WÞ ¼ ½χEðb;WÞ − χOðb;WÞ�=2: ð11Þ

The even and odd functions are defined as

χEðb;WÞ ¼ i½σqqðWe−iπ=4ÞAðb; μqqÞ
þ σqgðWe−iπ=4ÞAðb; μqgÞ
þ σggðWe−iπ=4ÞAðb; μggÞ�; ð12Þ

χOðb;WÞ ¼ −C5Σgg

�
m0

W
eiπ=4

�
2−2α1

Aðb; μoddÞ; ð13Þ

where the phases of the functions in Eqs. (12) and (13) are
determined by the constraints imposed by analyticity and
crossing symmetry [9,11].
In these expressions, the factors Aðb; μÞ are overlap

functions for the colliding hadrons and the “cross sections”
σij are intended to describe the interactions between the
corresponding components i and j of the two particles
chosen from the matter (q) or gluon (g) fields. The details of
the model are given in the Appendix.
Our parametrization of χ is general and very flexible,

including a leading power-law dependence sϵ, additional
logarithmic and constant terms, and falling Regge-like terms
in s. Our objective is to get a good fit to all the pp and p̄p
data up to the highest energies where measurement exists,
and to then use the results to study the eikonal structure of the
scattering amplitudes with immediate emphasis on the edge
region [1]. In contrast to our relatively free parametrization of
χ, other recent parametrizations such as those in [5–7] are
based on specific dynamical models, and those papers
emphasize the testing of thosemodels through fits to the data.
We have used our parametrization and the expressions

above to fit the combined data on pp and p̄p total cross

sections for W ≥ 5.3 GeV and the elastic scattering cross
sections, ρ, and B for energies W ≥ 10 GeV. The fit was
further constrained as described in [9] by fixing the values
of σtot;pp and σtot;p̄p at W ¼ 4 GeV to match the results
obtained from the extensive low-energy data. This is the
same energy range with the same constraints as used in the
Block-Halzen fits based on analytic amplitudes with a ln2 s
high energy behavior [2,9]. However, we include the newer
data at very high energies from the Large Hadron Collider
(LHC) [12–16] and the Auger [17] and HiRes [18]
Collaborations.
The fits were performed using the sieve algorithm [19] to

eliminate 13 outlying points among 179 total datum points.
Nine parameters were used in the fit leaving 157 degrees of
freedom, a total χ2 of 173.0, and a raw χ2=d:o:f: ¼ 1.10.
This must be renormalized by the sieve factor R ≈ 1.1 to
Rχ2=d:o:f: ¼ 1.21 to account for the elimination of the
outliers [19]. The total χ2 would increase by 113.6 if we
included the outliers, so the change would be substantial.
For comparison, the χ2=d:o:f: given by the fit is just 1.15
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FIG. 1 (color online). Top panel: Fits to σtot;pp (blue dots and
solid line) and σtot;p̄p (red squares and dashed line). Only data
above 5 GeV were used in the final fit, with the cross sections
constrained to fit compilations of low-energy data at 4 GeV [9].
Bottom panel: Fits to σelas;pp (blue dots and solid line) and σelas;p̄p
(red squares and dashed line). The fit used only data
above 10 GeV.
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for the pp and p̄p total cross sections and ρ values alone;
much of the increase in the final result comes from the fit to
the rather scattered values of B. We note that all datum
points including the outliers omitted in the final fit are
shown in the figures comparing the fits with data.
The results for the fits to the total and elastic scattering

cross sections are shown in Fig. 1. The fits to the ρ values
and the logarithmic slopes B of the forward differential
elastic scattering cross sections dσ=dt, Eq. (7), are shown in
Fig. 2. The highest energy data for ρ are from the LHC at
1,800 GeV. The value predicted for the LHC atW ¼ 7 TeV
is ρ ¼ 0.133. The data for B include the TOTEM results
[15,16] from the LHC at W ¼ 7 TeV.
The measured and predicted differential cross sections

dσ=dt are shown in Fig. 3 atW ¼ 1800 and 7000 GeV. Our
descriptions of the cross sections at small jtj are good,
corresponding to our fits to the B parameters, and the
locations of the diffraction minima are reproduced properly.
We are not concerned about the failure of our simple
eikonal model to reproduce the differential cross sections in
detail at large values of jtj since the scattering amplitudes in

this region are very sensitive to the cancellations which
result from the oscillations of the Bessel function in Eq. (1),
with the resulting scattering amplitudes of order
∼10−2 × fðs; 0Þ. As an illustration, we show the integrands
for Imfðs; tÞ for

ffiffiffi
s

p ¼ W ¼ 1 TeV and jtj ¼ 0.5 GeV2

and 1 GeV2 in Fig. 4. The existence of large cancellations
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FIG. 2 (color online). Top panel: Fits to the ratios ρ of the real to
the imaginary parts of the forward scattering amplitudes for pp
(blue dots and solid line) and p̄p (red squares and dashed line)
scattering. The horizontal dashed line is at ρ ¼ 0. Bottom panel:
Fits to the logarithmic slopes of the elastic differential scattering
cross sections dσ=dt for pp (blue dots and solid line) and p̄p (red
squares and dashed line) scattering.
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FIG. 3 (color online). Top: The differential cross section dσ=dt
from the E710 experiment [20,21] at W ¼ 1800 GeV. Bottom:
dσ=dt from the TOTEM experiment [22] at W ¼ 7000 GeV.
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and the resulting sensitivity of the integrals to small details
of the eikonal function not modeled here are evident. We
emphasize, however, that the cross sections, ρ, and B are
much less sensitive to such details.

IV. STRUCTURE OF THE EIKONAL
AMPLITUDES AND THE EDGE IN THE
pp AND p̄p SCATTERING AMPLITUDES

A. Eikonal structure

It will be important for later interpretation to understand
the relative importance of the various contributions to the
eikonal function and cross sections. Since χR is small, χI
determines the cross sections to good approximation. In the
top panel of Fig. 5 we therefore compare the imaginary
parts of the energy-dependent factors in χI . The most
important contribution at high energies (e.g., W ≳ 1 TeV)
is clearly that from gluon-gluon scattering, parametrized in

our model in a form suggested by the rapid growth of gg
scattering in perturbative QCD and the corresponding
minijet models for the rise in σtot with energy.
The other important contribution at high energies is that

labeled σqq. This term cannot be separated in the fit from
σqg, and is not to be interpreted strictly in terms of quark-
quark scattering in the sense of the parton model. The qq
scattering in that model in fact becomes small at lower
energies, while the combined contributions of σqq and σqg
increase as parametrized. The low-energy behavior pre-
sumably arises from “soft” processes such as the scattering
of valence quarks evident, for example, in the approximate
2=3 ratio of the πp and pp cross sections, and to Regge
exchange terms.
The crossing-odd contribution χO vanishes rapidly with

increasing energy. Finally, the mixed quark-gluon term,
parametrized in a form suggested by minijet models [10], is
strongly mixed and correlated with the other terms in the
fitting, and should not be interpreted directly in terms of qg
scattering.
The eikonal factors and the complete integrands in the

expressions for σtot, σinel, and σelas in Eqs. (3)–(5) are shown
for pp scattering at a progression of energies in Fig. 6. The
quantities η and cR used in the labels in this figure are
η ¼ e−χI and cR ¼ cos χR; similarly, sR ¼ sin χR.
We note several important features of the curves shown.

First, the eikonal factors ð1−cRηÞ for σtot and ð1−2cRηþη2Þ
for σelas lie well below the asymptotic “black disk” limit 1
at small values of the impact parameter b for energies
W ≲ 5 TeV as shown in the left-hand column in Fig. 6. The
scattering is far from asymptotic, and the approach to an
asymptotic distribution flat at thevalue 1 out to a sharp cutoff
radius ∼R is extremely slow. The inelastic integrand
approaches asymptoticlike behavior more rapidly, with
the eikonal factor 1 − η2 ≈ 1 becoming flat at 1 at small
b, at a sharper cutoff, at lower energies.
The actual integrands including the geometric factor b

are shown in the right-hand column in Fig. 6. This factor
pushes the relevant impact parameters toward larger b and
introduces the peaked behavior shown. The main integrals
involved in the calculation of the logarithmic slope param-
eter B ¼ d½ln ðdσ=dtÞ�=dtjt¼0, Eq. (8) or (9), involve an
extra factor b2 in the numerator, with the result that the
main contributions to the integral are pushed to larger
values of b and become increasingly sensitive to the tail of
the eikonal distribution for σelas.
The integrand for ρ, the ratio of the real to the imaginary

parts of the forward elastic scattering amplitude, Eq. (6),
involves a factor η ¼ e−χI sin χR in the numerator. Since the
transparency factor η vanishes strongly at small b at high
energies, the result of strong inelastic absorption, the main
contributions to ρ are pushed toward higher values of b,
beyond the peak in the integrand for σelas, and are again
more sensitive to the tail of the distribution than the elastic
scattering cross section itself. In addition, the phase of the
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FIG. 5 (color online). Top: Comparison of the imaginary parts
of the different energy-dependent factors in the eikonal function:
σqq (solid red curve); σqg (dot-dashed blue curve barely visible
near zero amplitude); σgg (long-dashed purple curve); dotted
(black) curve, the odd term. Bottom: Comparison of the cross
sections calculated with (solid blue curve) and without (dashed
red curve) the inclusion of the gluon-gluon (gg) term in the
eikonal function. The cross section for pure gluon scattering is
shown as the long dashed purple curve.
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scattering amplitude, hence the ratio of χR to χI , is
determined at high energies by the form assumed for χ
coupled with the constraints imposed by the analyticity of
the scattering amplitude [9,11]; χR is not freely variable. As
a result, there is a tension between B and ρ when fitting
data: both are sensitive to the tail of the distribution and the
two parameters are therefore coupled with respect to
changes in that distribution. The fit to the current data
discussed above incorporates the constraints imposed by
both B and ρ.

B. Connection to the description in terms
of real analytic amplitudes

Despite the seeming complication of our fit to the data in
terms of the eikonal function, the results we obtain for σtot
and ρ for pp and p̄p scattering can be described very well
with an expression of the simple form used by Block and
Halzen [2,9] in their earlier fit to the corresponding data up
to W ¼ 1800 GeV. That fit gave successful predictions of
the more recent, higher energy data [3,4].
The Block-Halzen analysis assumed a ln2 s bound on the

growth of the cross sections at high energy, imposed the
constraints implied by the analyticity of the scattering

amplitudes, and was constrained to connect smoothly to the
low-energy data. It was based on the use of analytic
amplitudes of the form [9]

σ�ðνÞ ¼ c0 þ c1 ln

�
ν

m

�
þ c2ln2

�
ν

m

�

þ β0
�
ν

m

�
μ−1

� δ

�
ν

m

�
α−1

; ð14Þ

ρ� ¼ 1

σ�

�
π

2
c1 þ πc2 ln

�
ν

m

�
− β0 cot

�
πμ

2

��
ν

m

�
μ−1

þ 4π

ν
fþð0Þ � δ tan

�
πα

2

��
ν

m

�
α−1

�
; ð15Þ

where the upper and lower signs are for pp and p̄p
scattering respectively. Here ν is the laboratory energy of
the incident particle, with 2mν ¼ s − 2m2 ¼ W2 − 2m2

where m is the proton mass.
Their fit used the then-extant data on σtot and ρ in the

range 6 ≤ W ≤ 1800 GeV plus analyticity constraints on
the values and slopes of the cross sections at W ¼ 4 GeV
which followed from finite-energy sum rules applied to the
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FIG. 6 (color online). Plots of the eikonal factors (left-hand column) and those factors multiplied by the geometric factor b in the
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data at lower energies. The fit was excellent and led to
successful predictions of the results for the cross sections
later measured at the LHC and in cosmic ray experiments
[3,4]. A later analysis of the inelastic scattering data using
an expression of the same form as Eq. (14) was also
successful and gave evidence of an approach to the black
disk limit at ultrahigh energies [3], with σinel → σtot=2.
We have checked that the use of the Block-Halzen

expressions to fit “data” derived from our results gives
curves for σtot and σelas that are almost indistinguishable
from the curves in Fig. 1. Both fits describe the data quite
well, and we conclude that they are consistent.
The expressions in Eq. (14) and Eq. (15) simplify to a

more familiar form for W2 ≫ m2, with ν=m → W2=2m2 ¼
s=2m2. The corrections to the logarithmic terms are
negligibly small for W in the region of the fit. The
corrections to the power-law terms are a fraction of a
millibarn for W ¼ 4 GeV, negligible for W ≳ 6 GeV, and
can be absorbed overall in slight adjustments of the powers
and coefficients of those terms where they are relevant. As a
result, the argument ν in the formulas for σ�ðνÞ and ρ�ðνÞ
can be converted directly to s=2m2, or with some rear-
rangement of terms and coefficients, to W=m, without loss
of accuracy in the region used in our fit and that of Block
and Halzen. A similar expansion quadratic in lnðs=m2Þ for
σelas follows from the results in [3]. The coefficient of
ln2ðs=m2Þ in σinel was found in [3] to be one-half that found
for σtot as required for an asymptotic black disk limit for the
scattering amplitude.
A quadratic in ln s was also used by Schegelsky and

Ryskin [23] to fit the data on B. Their result for the
coefficient of ln2 s was consistent with the Block-Halzen fit
to the cross sections and ρ alone and the expectation for
black disk scattering that B → R2

tot=4 ¼ σtot=8π for s → ∞.
Similarly, our results for Bpp can be written to an

accuracy of a few parts in 1000 in the same form as

BppðWÞ ¼ 7.229þ 1.0862 lnðW=m0Þ
þ 0.02209ln2ðW=m0Þ
þ 3.719ðm2

0=W
2Þ1=2 GeV−2 ð16Þ

for 6 GeV ≤ W ≤ 1010 GeV, where m0 ¼ 0.6 GeV is our
scale factor andW ¼ ffiffiffi

s
p

. This result is potentially useful in
the conversion of cosmic ray cross sections for proton-air
scattering to pp cross sections.
While our eikonal fit to the complete data set gives

results for the cross sections and ρ that are essentially
equivalent numerically to those of Block and Halzen over
the energy range currently accessible, it is not immediately
clear analytically from the rather complicated eikonal
expressions why the simple expressions in Eqs. (14) and
(15)—or their reduced high-energy forms—should work so
well. However, the asymptotic ln2 s growth of the cross
sections in Eq. (14) and the approach to the black disk limit

of the scattering follow directly from the expected power-
law growth of the eikonal function with s coupled with
the exponential cutoff in the overlap functions Aðb; λÞ,
Eq. (A3), for λb ≫ 1, an argument familiar in discussions
of the Froissart bound. The first leads to strong growth of
χIðb;WÞ with χI ≫ 1 and e−χI ≪ 1 at large s and small b,
and a corresponding saturation of the scattering amplitudes
for σtot, σinel, and σelas at the value 1 as seen in the left-hand
column in Fig. 6. This saturation persists out to values of b
such the exponential decrease in Aðb; λÞ pushes χI to values
below 1 beyond which the scattering amplitudes vanish
exponentially. The rough condition χIðb;WÞ≲ 1=2 deter-
mines the effective cutoff radius in b which, given the
exponential behavior of Aðb; λÞ, can grow only as ln s.
Simple arguments using Eqs. (3)–(5) and (8) or (9) then

show that σelas and σinel tend to σtot=2 for s sufficiently
large, while B → σtot=8π, with all proportional to ln2 s plus
logarithmic and lower-order corrections associated with the
edge region in the amplitudes, the region around the peaks
in the integrands shown in the right-hand column of Fig. 6.
These arguments provide a justification for the Block-
Halzen form for the cross sections at sufficiently high
energies; detailed checks using our eikonal fit show that the
simple quadratic expressions are accurate at present-day
energies. Finally, one can show from Eq. (6) and the
constraint on the phase of the scattering amplitude imposed
by analyticity and unitarity [9,11] that ρ → 0 at very high
energies.
We emphasize that the eikonal fit allows us to calculate

important quantities such as B and the differential scatter-
ing cross sections dσ=dt that are not accessible through a
Block-Halzen type analysis without further input. Our
analysis of the eikonal results on B shows that it, like
the cross sections, can be described to high accuracy by a
quadratic in ln s plus low-energy Regge-like terms, thus
providing the necessary input. Given the uncertainty in the
rate of the power-law growth of the eikonal function, and
the uncertainty in its form at large b discussed in Sec. IV D,
we believe that fits to the data using the quasiuniversal
high-energy expressions in Eqs. (14) and (15), the corre-
sponding result for σinel in [3], and the expansion above for
B, are likely to give a more reliable way at this point of
extrapolating the cross sections to ultrahigh energies.

C. The edge of the pp and p̄p scattering amplitudes

Block et al. [1] recently established that the proton-proton
scattering amplitude in impact parameter space has an edge
region the width of which is essentially constant over many
orders of magnitude in the center-of-mass energy W. This
result followed from the usual form for the scattering
amplitude combined with the assumption that the scattering
is strongly absorptive. In particular, it was shown in [1] that
this edge could be isolated using the properties of the
transparency function ηðb; sÞ≡ exp ½−χIðb; sÞ�. This func-
tion is very small at small impact parameters where the
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absorption is strong, and then rises to unity—complete
transparency and no scattering—at large impact parameters.
This observation was exploited in [1] by noting that

σtot − 2σelas ¼ 2σinel − σtot ð17Þ

¼ 4π

Z
∞

0

dbbηðcos χR − ηÞ ð18Þ

≈ 4π

Z
∞

0

dbbηð1 − ηÞ ð19Þ

for small real parts of the scattering amplitude, a condition
satisfied in the present fit. The integrands in these expres-
sions have the property that they are large only in the
transition region between strong absorption and no
scattering.
Since σtot, σelas, and σinel are measured quantities,

experiment gives a direct measurement of the edge integral
in Eq. (17). To obtain its extrapolation to very high
energies, Block et al. [1] used the very accurate Block-
Halzen fit [2,9] to the pp and p̄p total cross sections and ρ
values for 1800 ≥ W ≥ 6 GeV, and its extension to σinel
[3]. This fit, which incorporated the asymptotic ln2 s limit
on the growth of the total cross sections for large s ¼ W2

and the constraints imposed by the analyticity of the
scattering amplitudes and the lower energy data, success-
fully predicted the recent LHC and cosmic ray results [3,4].
The constancy of the edge width followed directly from the
use of those results in Eq. (17), and did not depend on the
detailed impact parameter distribution in Eq. (19).
In the present eikonal fit to the pp and p̄p data, the edge

integrand bηðcos χR − ηÞ ≈ bηð1 − ηÞ is peaked at values of
the impact parameter somewhat beyond the peak in the
integrand for σtot as shown in Fig. 7 and well into the tail
region in the eikonal distribution for σtot as can be seen by a
comparison to Fig. 6, top left. Not surprisingly, this is just
the region that determines the effective black disk radius
Rtot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot=2π

p
of the scattering amplitude. As seen in the

comparison of the actual pp scattering amplitude with the
black disk amplitude with the same value of σtot in Fig. 7,
the “missing” contributions to the black disk amplitude for
b < Rtot are supplied by the tail of the distribution with

b > Rtot, with Rtot corresponding very closely to the peak in
the edge integrand.
The value of the edge integral should be approximately

the height of the peaked integrand times its width tedge at
half maximum. We define tedge as the edge width. Since
ηð1 − ηÞ has a maximum value of 1=4 and b is approx-
imately equal to Rtot at the peak,

σtot − 2σelas ≈ πRtottedge; ð20Þ

or

tedge ≈ ðσtot − 2σelasÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πσtot=2

p
: ð21Þ

The edge width tedge was evaluated in [1] using the
Block-Halzen fit to the pp and p̄p total cross sections and ρ
values [9] and its extension to the inelastic cross sec-
tions [3]. It was found to be remarkably constant at tedge ≈
1 fm above about 10 GeV. The result obtained here using
our fit to the pp and p̄p data is essentially the same; this is
shown in Fig. 8.
The reason for this result can be seen in Fig. 9 where we

plot the edge integrand normalized to Rtot. The resulting
distributions have approximately fixed shapes and areas as
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FIG. 7 (color online). Comparisons of the integrands bð1 − cos χRe−χI Þ for σtot (solid red curve), the “black disk” integrands for disk
radius Rtot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot=2π

p
(long-dashed black curve), and the edge integrands bðcos χR − e−χI Þe−χI (short-dashed blue curves) at energies

W ¼ 1; 5, and 50 TeV, left to right. The vertical and horizontal scales give the integrand and b in fm.
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FIG. 8 (color online). Plots of the pp edge width tedge
calculated using the present eikonal fit to the pp and p̄p data
(solid blue curve) and the black disk radius Rtot ¼
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σtot=2π

p
(dashed red curve) as functions of the center-of-mass energy W.
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functions of W, and migrate slowly to larger values of b
with increasing energy. We emphasize that these properties
are determined up to 7 TeV by our fit to data on σtot and σinel
or σelas. The fits to σtot extend to W ∼ 70 TeV. The results
shown in Fig. 8 at higher energies give our predictions
based on the present eikonal model; the results are con-
sistent with those of Block et al. [1] which are independent
of a detailed eikonal description of the scattering.
As seen in Fig. 8, tedge and Rtot cross in magnitude for

W ≈ 2 TeV, with Rtot larger and increasing at higher
energies. The eikonal amplitude for σtot is also beginning
to saturate at 1 at small b in this region. The crossover point
therefore gives a reasonable estimate of the energy at which
the scattering amplitude begins to show aspects of asymp-
totic behavior, with the edge region becoming less impor-
tant than the central region. We note that the crossover
region is where the gluon contributions to the cross section
become dominant as is evident in Fig. 5.

D. Origin of the edge

The two key results discussed above are (1) the loga-
rithmic growth with energy of the effective radius of the
strongly absorptive black disk region in the scattering
amplitude and the resulting ln2 s growth of σtot, and
(2) the existence of an edge region with constant
width tedge.
There are several possible explanations for the origin and

constancy of the edge in the pp and p̄p scattering
amplitudes. A classic explanation would attribute the edge
to pionic fluctuations around the proton or antiproton, with
the pionic fluctuations then interacting in the collision. This
would give an edge region on the scale of 1=mπ ≈ 1.4 fm,
but does not explain how the overall radial scale of the
scattering amplitude would increase, or how strongly the
fluctuations would couple to the expanded proton in this
picture.

The most likely combined explanation for both effects in
our view is connected to the rapid increase in the strength of
the gluon fields in the interacting hadrons with increasing
energy, and the resulting saturation of the exponentially
bounded gluon confinement volumes of the two particles.
This leads to a growing likelihood of interaction in a pp or
p̄p collision and gluon dominance of the scattering, with
the radius of the region of strong absorption growing as
ln s. Specific models based on parton collisions [5] and
Reggeon field theory [6,7] have this character.
This picture should hold in any hadronic scattering at

energies sufficiently high that the quark effects prominent
at low energies can be neglected. Since the gluon confine-
ment volume is presumably fixed, all hadronic cross
sections should then have a universal constant × ln2s
behavior at high energies, with a common value of the
multiplicative constant. This behavior is consistent with the
observed behavior of all cross sections which are known at
high energies [24].
The scale of the gluon confinement volume is set in our

model by 1=μgg. The increasing strength of the gluon fields
is represented in QCD-based minijet-type models by the
growth of the gluon distribution functions fg with decreas-
ing Bjorken x values or increasing energy of the
gluon-gluon collision. This leads to stronger gluon-gluon
scattering in the collision, typically increasing as a power of
s, corresponding to growth of χI , and gluon dominance of
high-energy scattering.
Our eikonal model and that of Fagundes et al. [5] have

this general character. The power-law growth of σgg with s,
combined with the exponential cutoff in the overlap
function Aðb; μggÞ at large impact parameters, is sufficient
to ensure an asymptotic ln s growth of Rtot and ln2 s growth
of the cross sections at very high energies independent of
any appeal to the Froissart bound [25,26] on the cross
sections [27]. The dominance of the gluons at high
energies is evident in Fig. 5. In the black disk limit,
σelas; σinel → σtot=2, the leading ln2 s terms in the cross
sections cancel in Eq. (17). The asymptotic parametriza-
tions in Eq. (14) and the equivalents for σelas and σinel
combined with the logarithmic growth of Rtot then indicate
that tedge should be constant, or nearly so, at high energies
as is observed.
The width of the edge is also related to 1=μgg in our

model: the factor η in the edge integrand ηð1 − ηÞ, Eq. (17)
increases from 0 to 1 over an interval in b proportional to
1=μgg centered around Rtot, while the factor ð1 − ηÞ falls
from 1 to 0 over a similar interval. This results in the edge
integrands shown in Fig. 9 with the width of the peaks,
hence tedge, proportional to 1=μgg.
A different, but potentially related, mechanism was

proposal by Rosner [28], who described the edge in terms
of the breaking of flux strings connecting quarks or 33̄
gluon configurations in the two hadrons. His estimate of the
edge width, based on the energy needed to break such QCD
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FIG. 9 (color online). Plots of the normalized edge integrands
bðcos χR − e−χI Þe−χI =Rtot for, left to right, W ¼ 30 GeV (red),
500 GeV (green), 5000 GeV (brown), 5 × 104 GeV (blue),
106 GeV (purple), and 108 GeV (black).
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strings in other processes, is of the right general size. We
attribute the scattering mainly to interactions of the gluons
or gluon fields in the overlapping nucleons in the collision.
Some components of those fields may be mixed between
the nucleons in the scattering, leading to the stretching of
flux tubes between the nucleons as they separate and
extending the effective range of the interaction through
string breaking as Rosner proposed. The growth in radius
of the main interaction region, however, arises from the
increasing saturation of the gluon confinement volume as
sketched above.
Since gluon dominance should appear at high energies in

all hadron-hadron scattering, we expect all hadron-hadron
total cross sections to approach a universal ln2 s growth
with a common coefficient at very high energies as noted
above. All hadron scattering amplitudes should also have
an edge region with an approximately constant width
proportional to 1=μgg: the leading terms in the cross section
difference in Eq. (21) and its analog for other hadrons
cancel in the difference given their universal behavior at
high energies, and the subleading terms are presumably
logarithmic in s as is the factor in the denominator.
The asymptotic mass scale and the corresponding

behavior of the eikonal function at large impact parameters
are clearly of considerable interest. The model we have
used assumes that χðb; sÞ can be written as a sum of terms
in which the energy dependence factors out of the overlap
functions Aðb; λÞ where the latter, exploiting ideas origi-
nally formulated by Wu and Yang [29], are given as
convolutions of density distributions similar to those
associated with the proton charge and magnetic moment
form factors. The resulting overlap functions are small at
large impact parameters, so the integrand for the scattering
amplitude fðs; tÞ is proportional to σggðsÞ × μ2ggðμggbÞ3×
K3ðμggbÞ at large b for energies where gluon scattering is
dominant.
This is inconsistent on the surface with the result

expected from the dispersion relation in t for fðs; tÞ,
schematically

fðs; tÞ ¼
Z

∞

t0

dt0
aðs; t0Þ
t0 − t

: ð22Þ

The partial wave amplitude for angular momentum j
is just

fjðsÞ ¼
1

2p2

Z
∞

t0

dzaðs; t0ÞQj

�
t0

2p2
þ 1

�
: ð23Þ

Using the standard approximation QjðzÞ≈
K0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2ðz − 1Þ

p
Þ, very good for j large and ðz − 1Þ small,

and introducing the impact parameter b ¼ j=p, we get the
impact parameter representation

fjðsÞ → fðs; bÞ ¼ 1

2p2

Z
∞

t0

dt0aðs; t0ÞK0ðb
ffiffiffi
t0

p
Þ: ð24Þ

The functions x3K3ðxÞ and K0ðxÞ behave quite differ-
ently for x large, and Eq. (24) involves an integral over t0
while the gg eikonal function involves only the fixed scale
μgg. There is consequently some uncertainty as to how well
the asymptotic behavior of the scattering amplitude is
described at large b in the present model. Seen a different
way, the weight function aðs; t0Þ for the gg term is propor-
tional to δðt0 − μ2ggÞ=ðt0 − tÞ4, the result obtained from a
product of dipole form factors consistent with the proton
electric form factor.
This remains an interesting problem which deserves

further study.

E. The edge and diffraction dissociation

An interesting connection between the edge and dif-
fraction dissociation follows from an old analysis of the
latter by Pumplin [8], who used an argument based on
unitarity and the properties of scattering eigenstates to
show that the b-dependent partial cross sections for the
dissociation of an incident particle on a nucleus were
bounded above by ð1=2ÞσtotðbÞ − σelasðbÞ where the cross
sections refer to particle-nucleus scattering. In the present
case of strongly absorptive pp or p̄p scattering, this
argument leads to an upper bound on the single-particle
dissociation cross section for either incident particle,

σSD ≤ ðσtot − 2σelasÞ=2 ð25Þ

¼ 2π

Z
∞

0

dbbηð1 − ηÞ; ð26Þ

or a total dissociation cross section σdiss ≤ σtot − 2σelas when
both possibilities are included. The partial cross sections—
the sum of squares of the dissociation amplitudes—are
similarly bounded by the integrand in Eq. (26),
σSDðbÞ ≤ ηð1 − ηÞ.
The expression in Eq. (26) is just the edge integral, so the

Pumplin bound relates σSD to the area associated with the
rim of width tedge in the pp or p̄p scattering amplitude.
Since tedge is essentially constant as seen in Fig. 8 and the

edge integrand is centered on Rtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot=2π

p
, the bound

on σSD grows proportionally to
ffiffiffiffiffiffiffi
σtot

p
and will increase

logarithmically at large s:

σSD ≤
s→∞

constant × ln s; ð27Þ

a result which follows from the established ln2 s growth of
σtot for s → ∞.
Because Eq. (27) only gives an upper bound on the

growth of σSD with energy, and there is no comparable
energy-dependent lower bound, it is not clear that the real
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dissociation cross section will actually grow at this rate;
however, that seems likely given the growth of other
hadronic cross sections. The possibility of this behavior
was noted in [30] for a specific model of diffraction
dissociation, but some earlier models predicted a decreas-
ing dissociation cross section.
Given the observed constancy of the edge width and the

bound in Eq. (25), we find that the ratio of the dissociation
cross section to the total cross section must decrease at least
logarithmically at high energies, σSD=σtot ≤ constant ×
1=Rtot ∝ 1= ln s → 0 for s → ∞.
As emphasized in [30], many studies of particular

mechanisms for diffractive dissociation neglect absorptive
effects. These are clearly crucial in Eq. (26): η is very small
at high energies out to impact parameters b near Rtot. Any
reasonable model of diffractive dissociation must take this
into account.
We have calculated the bound on the single particle

dissociation cross section using the expression in Eq. (26)
and the eikonal factor ηðb; sÞ found in our fit to the
combined pp and p̄p data. We show the result and the
CDF [31] measurements of diffractive dissociation in this
process in Fig. 10.
As expected, the measured cross section for diffractive

dissociation lies considerably below the calculated inclusive
value: the upper limit on σSD is only reached under special
conditions [8]. Furthermore, most experiments concentrate
on the differential cross sectiond2σSD=dtdM2

x in order to test
specific models. The kinematic regions in which this can be
measured and distinguished experimentally from other
inelastic processes are quite limited. It is typical to require,
for example, a very large ratio of the final center-of-mass
momentum p0 of the surviving particle to its initial momen-
tum p, p0=p≳ 0.85 in the CDF experiments [31], and
further conditions on the detectability and mass of the

dissociated system. There appear, in fact, to be no univer-
sally accepted experimental criteria for extracting this cross
section, with the results typically depending on how the
distributions in the momentum transfer t and M2

X are
modeled. The CDF results integrated over the allowed
regions give cross sections which do increase with energy
roughly as predicted by the bound as shown in Fig. 10.
Finally, to get an idea of the expected dependence of the

scattering on the momentum transfer, we have calculated
the analog of the elastic scattering amplitude fðs; tÞ,
Eq. (1), for the exclusive process p̄þ p → p̄þ X using
the bound ηð1 − ηÞ on the b-dependent amplitude noted
above,

fSDðs; qÞ ¼
Z

∞

0

dbbηð1 − ηÞJ0ðqbÞ: ð28Þ

Here q2 ¼ 2pp0ð1 − cos θÞ ¼ −t − ðM2
X −m2Þ=2þ � � �,

W ≫ M2
X;m

2, where θ is the angle through which the
surviving particle is scattered and MX is the mass of the
system X [32]. We do not specify the dependence of
the dissociation process on MX, but think of fSD as giving
the characteristic b dependence of the mass-dependent
amplitudes averaged over masses. The slope BSD of the
corresponding cross section at θ ¼ 0 is defined for purely
absorptive scattering (χR ¼ 0) as

BSD¼ d ln jfSDj2=dq2

¼ð1=2Þ
Z

∞

0

dbb3ηð1−ηÞ=
Z

∞

0

dbbηð1−ηÞ: ð29Þ
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FIG. 10 (color online). The curve gives the upper bound on the
inclusive cross section for single-particle diffractive dissociation
p̄þ p → p̄þ X calculated using σSD ≤ ðσtot − 2σelasÞ=2 and our
eikonal fit to the pp and p̄p cross section data from 5 GeV to
70 TeV. The data shown for σSD are from CDF [31].
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FIG. 11 (color online). The model differential dissociation
cross sections calculated as the squares of the amplitudes fSD
in Eq. (28) for W ¼ 546 GeV (black dashed curve), 1800 GeV
(solid blue curve), and 7000 GeV (dot-dashed red curve). The
results illustrate the q2 and W dependence expected for disso-
ciation amplitudes which saturate the edge distribution in impact
parameter space, but are not predictions for the actual MX-
dependent cross sections.
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The results we obtain for jfSDj2 are shown at several
energies in Fig. 11.
We find that the cross section corresponding to the

smooth peripheral edge distribution in Eq. (26) develops
diffraction zeros at a given energy W at smaller values
of q2 than the elastic cross section and that the forward
slope parameter is larger, BSD > Belas. For example, at
W¼1000GeV, BSD¼23.9GeV−2 while Belas¼16.0
GeV−2. At 100 GeV, BSD ¼ 18.0 GeV−2 while Belas ¼
13.3 GeV−2. We emphasize that these results assume that
the specific mechanism in question for p̄þ p → p̄þ X is
represented in impact parameter space by a distribution ∝
ηð1 − ηÞ which covers most of the region allowed by
Eq. (26) at the given energy.
In the opposite extreme in which the mechanism for the

dissociative production of a particular system X is repre-
sented by a narrow distribution around an impact parameter
b0 in the allowed region, fSD ∝ J0ðqb0Þ, and BSD ¼ b20=2.
For b0 near the peak of the edge distribution,
b0 ≈ Rtot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot=2π

p
, the slope parameter is somewhat

smaller than Belas, 13.9 GeV−2 instead of 16 GeV−2 at
W ¼ 1000 GeV, and 9.3 GeV−2 versus 13.3 GeV−2 at
W ¼ 100 GeV. This picture is general because of the
compact nature of the dissociation distribution in
Eq. (26). Any model for, or measurement of, diffraction
dissociation must give a slope parameter in the range
spanned by these limiting cases, most likely slightly larger
than R2

tot=2 because the extra factor of b2 in the numerator
of Eq. (29) weights that distribution toward larger impact
parameters than that in Eq. (26) which is centered at ≈Rtot.
Finally, we emphasize that it would be of considerable

interest to measure the total single-dissociation cross
section σSD, for example for p̄þ p → p̄þ X, without
strong restrictions on p0 and MX and only the requirement
that the final state contain an isolated p̄ near the forward
direction at a fairly low momentum transfer q, opposite a
multiparticle system. This would determine how close the
bound on σSD is to saturation.

F. Survival of rapidity gaps

The search for new physics in pp or p̄p collisions can be
simplified when the new process occurs in a large rapidity
gap and so is not accompanied by unrelated secondary
particles in that region. An example discussed by Block and
Halzen [33] would be Higgs boson production through W
boson fusion, WW → H, where the W’s are emitted by
quarks in the colliding hadrons.
We take the inclusive differential cross section for this

process in impact parameter space as

dσ
d2b

¼ σWW→HAðb; μqqÞ ð30Þ

where Aðb; μqqÞ describes the spatial overlap of the quarks
distributions as defined in Eqs. (A3) and (A4).
Aðb; μqqÞ is normalized so that integration over d2b with

no further input would just give σWW→H as calculated in the
parton model. However, further inelastic processes can
occur in the hadronic collision giving secondary particles
other than those associated with the remnants of the
incident particles, and eliminating the rapidity gap. The
probability that no such inelastic process occurs is e−2χI ,
and the cross section including this survival probability is
therefore

dσ
d2b

¼ σWW→HAðb; μqqÞe−2χIðb;sÞ: ð31Þ

The factor Aðb; μqqÞe−2χIðb;sÞ is just the differential survival
partiality for the gap. The construction generalizes to other
processes.
Defining this following [33] as dðjSj2Þ=d2b, the total

survival probability for the gap is

hjSj2i ¼
Z

d2bAðb; μqqÞe−2χiðb;sÞ: ð32Þ

These survival probabilities were calculated in [33] for the
eikonal model discussed there. We have recalculated the
survival probabilities using the eikonal model developed
here. The results, given in Table I, are very similar. The
same calculation is easily done for gluon-initiated
processes.

V. SUMMARY

In this paper, we presented the results of a detailed
analysis of the current data on pp and p̄p scattering in the
eikonal formalism, parametrizing the eikonal function in a
form suggested, but not restricted, by the structure found in
minijet models for the scattering. The fit to the combined
data is excellent. Our results for the total and elastic cross
sections and ρ values agree very well with the earlier fits of
Block and Halzen [2–4,9] based on analytic amplitudes
with a ln2 s growth at high energies.

TABLE I. The gap survival probabilities hjSj2i in percent
for pp and p̄p collisions as functions of the center-of-mass
energy W.

W (GeV) pp (%) p̄p (%)

63 38.7� 0.6 38.4� 0.6
546 28.6� 0.5 28.6� 0.5
630 27.8� 0.5 27.8� 0.5
1,800 22.2� 0.5 22.2� 0.5
14.000 13.1� 0.3 13.1� 0.3
40,000 9.8� 0.2 9.8� 0.2
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We showed that our model, which includes a gluonic
contribution to the eikonal function that grows as a power
of s ¼ W2, leads naturally to cross sections, ρ values, and
slope parameters B which can be described very accurately
at high energies by quadratic expressions in ln s. We can
therefore extend the earlier Block-Halzen analysis of the
energy dependence of the total cross sections and ρ values
to include the elastic and inelastic scattering cross sections
and the logarithmic slope B of the forward elastic scattering
cross section, all measured quantities.
Our detailed model allowed us to analyze the impact-

parameter structure of the various scattering amplitudes in
detail, including the relative importance of various con-
tributions to the amplitudes, and the approach to asymptotic
behavior at high energies where gluonic processes become
dominant. We commented on uncertainties in the asymp-
totic behavior of the eikonal function which affect the
asymptotic behavior of the cross sections and merit
further study.
We used our model to examine the structure of the edge

of the pp and p̄p scattering amplitudes recently identified
by Block et al. [1] in some detail. The width of this edge
region is nearly energy independent at ∼1 fm, a property
clearly evident in our results. We commented on some
possible dynamical origins for the edge.
We also used the model to investigate the Pumplin bound

[8] on the cross section for single particle diffractive
dissociation which is given directly in terms of the edge
cross section. The constancy of tedge and the ln2 s growth of
σtot at high energies show that the bound—and possibly
σSD—increase only as ln s, while the ratio σSD=σtot must
decrease at least as 1= ln s.
Finally, we used the model to update earlier results [33]

on the survival probability of large rapidity gaps in pp and
p̄p scattering, a matter of interest in the search for rare
processes in the scattering.
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APPENDIX: THE MODIFIED ASPEN MODEL

The model used here in fitting the pp and pp̄ cross
sections is a modification of the “Aspen model” of

Block et al. [9,10]. That model was based on the structure
of the eikonal function found in QCD minijet models for
the scattering in which the interactions between hadrons are
described in terms of the interactions of their constituent
quarks and gluons with allowance for “soft” interactions at
low momentum transfers. While we will follow the notation
used in [10], the identification of the terms made there as
describing quark-quark (qq), quark-gluon (qg), or gluon-
gluon (gg) interactions becomes blurred in the general
setting, especially for the qq and qg terms.
We will write the eikonal functions in terms of crossing-

even and crossing-odd components as

χEðb;WÞ ¼ i½σqqðwÞAðb; μqqÞ þ σqgðwÞAðb; μqgÞ
þ σggðwÞAðb; μggÞ�; ðA1Þ

χOðb;WÞ ¼ −ΣggC5

�
m0

w

�
2−2α1

Aðb; μoddÞ; ðA2Þ

where one needs to make the replacement w → We−iπ=4 in
the final results to obtain the correct asymptotic phase
required by analyticity and crossing symmetry [9,11]. Here
we will simply write the functions on the right-hand sides
of Eq. (A1) and Eq. (A2) as functions of w, with the
replacement to be made in the final results. The constant
Σgg ¼ 9πα2s=m2

0 sets the scale in Eq. (A2) and later
equations.
The overlap factors Aðb; λÞ in these expressions

are defined in terms of the relevant distributions in the
proton by

Aij ¼
Z

d2bρiðb0Þρjðb − b0Þ: ðA3Þ

Assuming that the distributions ρi have approximately the
same form as that determined from the proton electric form
factor, the overlap functions become

Aðb; λÞ ¼ λ2

96π
ðλbÞ3K3ðλbÞ;

Z
∞

0

d2bAðb; λÞ ¼ 1

ðA4Þ

for appropriate choices of the λ parameters.
The gluon-gluon term in Eq. (A1), dominant at very high

energies, was parametrized in [10] using a very simplified
description of gg scattering in low-order QCD. The result
was an expression which involved a leading power of s=m2

0,
logarithms of that quantity, and a constant term, plus terms
involving inverse powers of s=m2

0. Given the uncertainties
in the model, including a rather arbitrary choice of the
leading power, we will simply parametrize σgg directly in
terms of a power and leading logarithm in s=m2

0 with an
additive constant chosen so that the gg term gives a
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negligible contribution to the eikonal function at low
energies as in low-order QCD.
The qg and qq terms have a less singular structure in

QCD, and model results derived using scaling parametri-
zation of the quark structure function fq do not separate
cleanly from the expected contributions from soft processes
or the gg terms. We simply follow the parametrizations used
in [10] allowing, however, the powers in the Regge-like
low-energy terms to vary from the 1=

ffiffiffi
s

p ¼ 1=W behavior
assumed there.
The “cross sections” σij in Eq. (A1) are then

σqqðwÞ ¼ Σgg½C0 þ C1ðm0=wÞ2−2α2 �; ðA5Þ

σqgðwÞ ¼ ΣggC2 lnðw2=m2
0Þ; ðA6Þ

σggðwÞ ¼ Σggf0.0713þ C3 lnðW=W0Þ
þ C4½ðW=m0Þβ − ðW0=m0Þβ�g ðA7Þ

The expression in Eq. (A7) gives an excellent fit to the more
complicated and restricted form for σgg derived in [10] at
higher energies where this term is important, and contrib-
utes less than 1% of the total eikonal function at b ¼ 0 at
the low-energy matching point W ¼ W0 ¼ 4 GeV in
agreement with the results there.
Our fit to the pp and p̄p scattering cross sections, the

ratios ρ of the real to the imaginary part of the forward
elastic scattering amplitudes, and the logarithmic deriva-
tives B of the forward differential cross sections dσ=dt used

the six coefficients C0; C1; C2; C3; C4; C5 and the param-
eters α1, α2, and β. The remaining parameters μgg; μqq and
m0 were fixed as in [10] with the energy scale
m0 ¼ 0.6 GeV, and the μ’s chosen by hand in the range
determined by the proton charge form factor, μgg ¼
0.705 GeV and μqq ¼ 0.89 GeV. We did not vary these
parameters in making the fit. We note also that the overall
factor Σgg ¼ 9πα2s=m2

0 which appears in the cross sections
in Eq. (A2) and Eqs. (A5)–(A5) can be absorbed into the
coefficients Ci; it was separated out in [3,9] to provide a
connection with minijet models for the eikonal function χ
where such factors appear naturally.
A summary of the parameters with the results of the fit is

given in Table II.
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