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Lattice QCD simulations provide a promising way to disentangle different interpretations of
hadronic resonances, which might be of particular relevance to understand the nature of the so-called
XYZ particles. Recent studies have shown that in addition to the well-established naive quark model
picture, the axial-vector meson f1ð1285Þ can also be understood as a dynamically generated state built
upon the KK� interaction. In this work, we calculate the energy levels of the KK� system in the
f1ð1285Þ channel in finite volume using the chiral unitary approach. We propose to calculate the loop
function in the dimensional regularization scheme, which is equivalent to the hybrid approach adopted
in previous studies. We also study the inverse problem of extracting the bound state information from
synthetic lattice QCD data and comment on the difference between our approach and the Lüscher
method.

DOI: 10.1103/PhysRevD.92.014029 PACS numbers: 12.39.Fe, 12.38.Gc, 13.75.Lb, 14.40.Be

I. INTRODUCTION

The f1ð1285Þ is a IGðJPCÞ ¼ 0þð1þþÞ axial-vector state
with mass m ¼ 1281.9� 0.5 MeV and width Γ ¼ 24.2�
1.1 MeV [1]. In the naive quark model, this state is
assigned as a 2Sþ1LJ ¼ 3P1 state. In recent years, however,
it has been suggested to be a dynamically generated state
made from the KK� interaction, together with its axial-
vector counterparts [2,3]. Such a picture has been exten-
sively tested in the past decade [4–14]. All these studies
yield consistent results that the ground-state axial-vector
mesons can be understood as dynamically generated states
or at least contain large pseudoscalar meson-vector meson
components.
Lattice QCD (LQCD) simulations can be applied to

study the properties of hadrons from first principles
using quark and gluon degrees of freedom. Although
studies of ground-state hadrons, which do not decay
via strong interactions, have been well established and
have turned out to be quite successful (see, e.g.,
Refs. [15,16]), studies of resonances are more chal-
lenging, since they do not correspond to discrete energy
levels on the lattice, and considerable additional efforts
are needed to extract physical information from LQCD
simulations. The Lüscher method is the de facto
standard one in the case of single channel two-body
elastic scattering [17,18]. In this framework, the dis-
crete energy levels obtained in LQCD simulations are

related to the scattering phase shifts in infinite space-
time.1 In Ref. [26], the authors have developed a new
effective approach to connect the LQCD discrete energy
levels with the physical phase shifts (energies) by
keeping the full relativistic two-body propagator, from
which the Lüscher formulation can be derived. This
new approach has been applied to study finite volume
effects in the meson-baryon interaction in the Jülich
model [27]; the KD, ηDs interaction [28,29]; the pion-
kaon scattering [30,31]; the DN, πΣc interaction [32];
the πρ interaction [11]; the ππ interaction [33]; and the
K̄N interaction [34].
In the present work, we apply this approach to study the

KK� interaction in the f1ð1285Þ channel. The f1ð1285Þ is
peculiar in the chiral unitary approach since it is made from
the single channel KK� interaction and is located below the
KK� threshold. As a result, it appears as a bound state in
the dynamical picture. Its experimental width can be
obtained from considering other coupled channels (see,
e.g., Ref. [13]) without affecting its nature being domi-
nantly a KK� bound state. Inclusion of high-order kernels
in the chiral unitary approach is found to have negligible
effects on this picture [12].

*lisheng.geng@buaa.edu.cn

1Although in the present work we only need to tackle a single
channel problem, it should be noted that the Lüscher method has
been generalized to the case of multichannel scattering [19–22].
A thorough study of the coupled πK and ηK channels has
recently been done in Refs. [23,24] and for the coupled ππ and
KK̄ channels in Ref. [25].
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II. THEORETICAL FRAMEWORK

A. Continuum

In the chiral unitary approach of Ref. [3], the f1ð1285Þ
is made of a single channel 1ffiffi

2
p ðjK̄�Ki þ jK�K̄iÞ. The

relevant V-matrix is

VðsÞ ¼ −
ϵ · ϵ0

8f2
ð−3Þ

�
3s − ðM2 þm2 þM02 þm02Þ

−
1

s
ðM2 −m2ÞðM02 −m02Þ

�
; ð1Þ

where f is the pseudoscalar decay constant, s the invariant
mass squared, ϵðϵ0Þ stands for the polarization four-vector
of the incoming (outgoing)K�. The massesM ðM0Þ,m ðm0Þ
correspond to the initial (final) K� and K, respectively. The
potential V is unitarized via the following Bethe-Salpeter
equation [3]:

T ¼ ½1þ VĜ�−1ð−VÞ~ϵ · ~ϵ0; ð2Þ

where Ĝ ¼ Gð1þ 1
3
q2

M2Þ and q is given by

q ¼ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðM þmÞ2�½s − ðM −mÞ2�

q
: ð3Þ

The scalar loop function G has the following form:

Gð ffiffiffi
s

p Þ ¼ i
Z

d4q
ð2πÞ4

1

ðP − qÞ2 −M2 þ iϵ
1

q2 −m2 þ iϵ
;

ð4Þ

with P the total incident momentum, which in the center-
of-mass frame is ð ffiffiffi

s
p

; 0; 0; 0Þ.
The loop function G is divergent and needs to be

regularized. This can be done either in the dimensional
regularization scheme or in the cutoff scheme. In the
former, the loop function reads

GDð ffiffiffi
s

p Þ ¼ 1

16π2

�
aðμÞ þ ln

M2

μ2
þm2 −M2 þ s

2s
ln

m2

M2

þ qffiffiffi
s

p ½lnðs − ðM2 −m2Þ þ 2q
ffiffiffi
s

p Þ

þ lnðsþ ðM2 −m2Þ þ 2q
ffiffiffi
s

p Þ
− lnð−sþ ðM2 −m2Þ þ 2q

ffiffiffi
s

p Þ

− lnð−s − ðM2 −m2Þ þ 2q
ffiffiffi
s

p Þ�
�
: ð5Þ

In our work, the regularization parameters are chosen to be
aðμÞ ¼ −1.85 and μ ¼ 900 MeV [3].

B. Finite volume

To study the f1ð1285Þ meson in finite volume, one
replaces T of Eq. (2) by ~T, obtained using the same equation
with the same potential and replacing the G-function in
Eq. (2) by its counterpart defined in a finite box of size L.
The function G in finite volume, ~G, can be calculated again
either in the dimensional regularization scheme, the cutoff
scheme [26], or a combination of both—the hybrid approach
[28]. To remove small unphysical discontinuities in the
cutoff scheme, a smooth cutoff has been implemented in
Ref. [26]. In the hybrid approach [28], an average of the
results obtained with several sharp cutoffs is taken. This can
save computational time when very large cutoff values are
used.
In principle in finite volume, one mixes partial waves due

to the cubic, rather than spherical, symmetry of the finite
boxes chosen in the lattice simulations. The problem has
been thoroughly studied in Ref. [18] and it is particularly
relevant when one performs lattice simulations for particles
in a moving frame [22,35–44]. The formulation for moving
frames along the lines of Ref. [26] is also done in Ref. [35].
In the present paper we only study systems with the two
particles at rest interacting with S-waves. We shall discuss
the mixing in detail in Sec. IV, but we anticipate that for the
levels that we consider in the inverse analysis, only the
single channel with L ¼ 0 is relevant.
In this work, we propose to calculate ~G in the dimen-

sional regularization scheme. Introducing the so-called
finite-volume correction, δG, ~G can be written as

~G ¼ GD þ δG; ð6Þ
For the loop function of Eq. (4), δG has the following
form [45]:

δG≡ GðLÞ −Gð∞Þ ¼ −
1

4

Z
1

0

dxδ3=2ðM2ðsÞÞ; ð7Þ

where

M2ðsÞ ¼ ðx2 − xÞsþ xM2 þ ð1 − xÞm2 − iϵ: ð8Þ

Depending on the value of
ffiffiffi
s

p ¼
ffiffiffiffiffiffi
P2

p
, ~G needs to be

treated differently. In the case of
ffiffiffi
s

p
> M þm, δrðM2ðsÞÞ

can be written as a sum of the following three parts [46,47]:

δrðM2ðsÞÞ ¼ gr1 − gr2 þ gr3; ð9Þ

where the gr1;2;3 are defined as

gr1 ¼
1

L3

X
~q

�
1

½4π2~n2L2 þM2ðsÞ�r −
1

½4π2~n2L2 þM2ðm2
ssÞ�r

þ rðx2 − xÞðs −m2
ssÞ

½4π2~n2L2 þM2ðm2
ssÞ�rþ1

�
; ð10Þ
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gr2 ¼
Z þ∞

0

q2dq
2π2

�
1

½~q2 þM2ðsÞ�r −
1

½~q2 þM2ðm2
ssÞ�r

þ rðx2 − xÞðs −m2
ssÞ

½~q2 þM2ðm2
ssÞ�rþ1

�
; ð11Þ

gr3 ¼ δrðM2ðm2
ssÞÞ − rðx2 − xÞðs −m2

ssÞδrþ1ðM2ðm2
ssÞÞ:
ð12Þ

The separation scale mss needs to satisfy mss < M þm ¼
MK� þmK . In the case of

ffiffiffi
s

p
< M þm, δrðM2Þ has a

much simpler form [45]:

δrðM2ðsÞÞ ¼ 2−1=2−rð
ffiffiffiffiffiffiffiffi
M2

p
Þ3−2r

π3=2ΓðrÞ
X
~n≠0

�
L

ffiffiffiffiffiffiffiffi
M2

p
j~nj

�
−3=2þr

× K3=2−r

�
L

ffiffiffiffiffiffiffiffi
M2

p
j~nj

�
; ð13Þ

where KnðzÞ is the modified Bessel function of the second
kind, and

X
~n≠0

≡ X∞
nx¼−∞

X∞
ny¼−∞

X∞
nz¼−∞

ð1 − δðj~nj; 0ÞÞ; ð14Þ

with ~n ¼ ðnx; ny; nzÞ. It should be mentioned that the
discrete summations in Eqs. (10), (13) are only taken up
to a certain number, jnjmax ¼ L

2a, where L and a are the
lattice size and lattice spacing, respectively. Nowadays,
most LQCD simulations adopt a L=a in the range of 16–32.
In the hybrid approach, the finite volume effect is

calculated in the following way:

δG ¼ lim
qmax→∞

�
1

L3

Xqmax

qi

IðqiÞ −
Z

q<qmax d3q
ð2πÞ3 IðqÞ

�
; ð15Þ

where the function IðqÞ is

IðqÞ ¼ 1

2ωð~qÞω0ð~qÞ
ωð~qÞ þ ω0ð~qÞ

E2 − ðωð~qÞ þ ω0ð~qÞÞ2 þ iϵ
; ð16Þ

with ~q ¼ 2π
L ~n (~n ∈ Z3), ωð~qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~q2

p
, ω0ð~qÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ ~q2
p

, and E ¼ ffiffiffi
s

p
.

In the Lüscher method, the function IðqÞ of Eq. (16) is
reduced to [26]

IðqÞ ¼ 1

2E
1

p2 − q2 þ iϵ
; ð17Þ

where p ¼ λ1=2ðE2;M2; m2Þ=2E.
In the present paper we are also treating the K� as a stable

particle, while in fact it has a width of around 45 MeV. In an
unquenched calculation if one uses interpolators of K�K̄ one
would reach the decay channels and one would have to deal
with the three-body channels of KK̄π. The formalism to deal

with three-body systems in finite volume is also available in
Refs. [48–50]. For two-body systems with one unstable
particle, one can use a formalism in which the self-energy of
the unstable particle is discretized in the moving frame [11].
We shall not do this here, although when more refined lattice
calculations are available it would be interesting to tackle this
problem. There are reasons not to do that at the present time.
One of them is that many of the present lattice simulations
use large pion masses where the decay channels would be
blocked, but even there they can assess the existence of a
bound state of KK̄� nature. The second reason is that in
present lattice simulations, even using unquenched calcu-
lations, levels tied to channels that couple to certain quantum
numbers do not show up unless explicit interpolators for this
particular channel are explicitly used as interpolators. This
was the case on the ϕρ system looking for the a1ð1260Þ
resonance in Refs. [51,52] and in theKD system in Ref. [29],
where the levels associated to the coupled channel ηDs also
did not show up in the simulation. The reason for this fact
seems to be that the coupled channels not considered would
show up in the time evolution at times where noise appears
in the simulations, preventing any signal from being seen.
The argument has stronger weight for the decay channels of
resonances with a small width, like the present one with
Γ ¼ 24 MeV. Obviously, there would be problems in the
interpretation of the levels if these depend on the interpo-
lators used, but the idea is to use interpolators with maximum
overlap with the actual states, and there the effective field
theories that we are using are of much help since they are
telling the nature of the states under consideration. Then we
suggest using interpolators that accommodate this structure,
and in the present case these would be KK̄� interpolators.
It is true that the consideration of the decay channels of the

particles involved in a problem leads to changes in the
spectrum [11,46,53] and that to get the proper spectrum
multihadron interpolators should be used [54], but also, as
mentioned in Ref. [54], one can and must restrict oneself to
lower energies if the interpolators accounting for the inelastic
spectrum are not used. Concerning the present case we can
use the analogy of this work, wherewe haveKK̄� and the K̄�
can decay to K̄π, and the case of Ref. [11], where one had ρπ
and theρ could decay toππ. In spite of the largewidth of the ρ,
the first level was very similar in the analysiswith a stable ρ or
a decaying ρ. The second level changed a bit more in both
approaches, but it is reasonable to expect that with a smaller
width of theK�, the differences would bemuch smaller. This,
and other reasons that we will discus in Sec. IV concerning
partial wave mixing, advise us to make use of only the first
two levels that we shall discuss in the next section.

III. RESULTS AND DISCUSSIONS

A. The energy levels

The left panel of Fig. 1 shows the energy levels as
functions of the cubic box size L obtained in the dimensional

S-WAVE KK� INTERACTIONS IN A FINITE … PHYSICAL REVIEW D 92, 014029 (2015)

014029-3



regularization scheme. For the sake of comparison, we show
as well the energy levels obtained in the hybrid method with
qmax ¼ 4000 MeV. With the scale of Fig. 1, the two curves
are hardly distinguishable. However, as noticed in all
previous works, there are some unphysical discontinuities
in the hybrid approach, which disappear with an average of
the results obtained with several sharp cutoffs [28] or with a
smooth cutoff [26]. This can be better appreciated from
Fig. 2, which shows that the dimensional regularization
scheme exhibits no sign of fluctuation, where small fluctua-
tions can still be seen at a cutoff value of about 7000 MeV in
the cutoff (hybrid) approach.2 In the following, unless
otherwise noticed, we work with the dimensional regulari-
zation method.
The energy levels obtained in the Lüscher approach are

shown on the right panel of Fig. 1 as functions of the cubic
box size L, in comparison with those obtained in the
dimensional regularization scheme. It is clear that at least
for the two lower energy levels, the Lüscher results show

stronger fluctuations than those of the dimensional regulari-
zation approach (also than those of the hybrid approach).
Furthermore, it is shown in Ref. [31] that the deduced phase
shifts from the Lüscher method can deviate by about 20
percent from the effective approach of Ref. [28] at the energy
region where the resonance dominates, at least for the πK
interaction in the K� channel (see Fig. 12 of Ref. [31]).
As discussed in Ref. [26], the new terms incorporated in

Ref. [26] with respect to the Lüscher approach are
exponentially suppressed and one would wonder whether
other exponentially suppressed contributions from t and u
channels, neglected in both approaches, are not equally
relevant. In this sense, explicit calculations of these effects
done for mesons in the scalar sector [55], or the vector
sector [56], show them to be negligible for lattice sizes
bigger than L ¼ 1.5 m−1

π .
The a1ð1260Þ and b1ð1235Þ states have recently been

studied inNf ¼ 2 lattice QCD [52], where in addition to qq̄
interpolators, meson-meson interpolators were also taken
into account. Compared with the a1ð1260Þ and b1ð1235Þ,
the f1ð1285Þ is more suited to test the dynamical nature of
the axial-vector mesons because of the following reasons.
First, it is a single channel problem. Second, it is a bound
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FIG. 1 (color online). Energy levels of the KK� system with ~G obtained from the dimensional regularization scheme in comparison
with those obtained in the hybrid approach (left) and the Lüscher approach (right) with qmax ¼ 4000 MeV. The lattice size L is given in
units of 1=mπ , where mπ is the physical pion mass.
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2In the dimensional regularization scheme, for the sake of
comparison, qmax has been related to jnjmax via qmax ¼ 2π

L jnjmax.
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state. Therefore it appears as a discrete energy level even in
LQCD simulations. Third, it is built from the interaction of
two strange mesons, which makes it less susceptible to
chiral extrapolations.
The ground-state pseudoscalar mesons and vector mes-

ons have been studied in a number of nf ¼ 2þ 1 LQCD
simulations [57–61]. Some of the gauge configurations are
available on the International Lattice Data Grid, e.g., the
PACS-CS configurations [58], which in principle makes a
study of the f1ð1285Þ straightforward. In Table I, we show
the masses of the f1ð1285Þ calculated in our framework,
defined as the energies where ~T has a pole below the KK�
threshold, with the K, K� masses, and the lattice size L of
the PACS-CS configuration [58] (note, however, that these
masses are calculated there with only qq̄ interpolators). It is
interesting to note that the f1ð1285Þ remains as a bound
state at these unphysical situations and the binding energy
increases as the masses of its components increase.
In Fig. 3, we show the mass of the f1ð1285Þ as a function

of the lattice size L at six different combinations of light
and strange quark masses, corresponding to those of the
PACS-CS configurations. It is clear that the results already
approach their continuum limits at a lattice size of two to
three times 1=mπ .

B. The inverse problem

In this section we tackle the inverse problem of
extracting an effective potential from discrete energy levels
of LQCD. Close to the KK� threshold, one can assume a
potential of the following form:

V ¼ aþ b½s − ðMK� þmKÞ2�: ð18Þ
The two parameters a and b can be determined by fitting to
the lattice energies.
We assume that the first and second energy levels shown

in Fig. 1 are “LQCD” data. We take three energies from the
first level and three more from the second one, and assign
them an error of 10 MeV. The corresponding values of L
are 2.0m−1

π ; 3.0m−1
π ; 4.0m−1

π . Performing a least-squares fit,
we obtain a χ2min ≈ 1 × 10−5 and the following two values:

a ¼ −157� 29; b ¼ ð−1.4� 1.1Þ × 10−4 MeV−2

ð19Þ

With the potential of Eq. (18), by solving the corresponding
Bethe-Salpeter equation, one finds a bound state at
M ¼ 1286� 37 MeV, whose central value coincides with
the original value we started with. It should be noted that
although the bound state approaches its continuum limit as
L increases, the potential approach has the advantage that it
can connect the LQCD energy levels at moderate L or small
L with the binding energies in the continuum in a quite
accurate and model-independent way (for a relevant and
extensive discussion, see, e.g., Ref. [62]).
Of course, for the case at hand, one does not need to go

through the inverse process to obtain the f1ð1285Þ because
it appears as a bound state. Nevertheless, this procedure
allows us to obtain an effective potential in a more or less
model-independent way.
Following the approach of Refs. [63–65], one can

quantify the relative contributions of the meson-meson
component in the f1ð1205Þ wave function. The coupling
constant of a resonance to its component channel can be
calculated as follows:

g2 ¼ lim
s→s0

ðs − s0ÞT ¼ lim
s→s0

s − s0
V−1 −G

¼ 1
∂V−1

s − ∂G
∂s

				
s¼s0

;

ð20Þ

TABLE I. Masses,M, and binding energies, B, of the f1ð1285Þ at unphysical quark masses and in finite volume. TheK andK� masses
are those obtained by the PACS-CS nf ¼ 2þ 1 simulations [58]. In the last row, the numbers in the parentheses are the uncertainties
coming from those of the K� and K added in quadrature. All the energies are in units of MeV while the lattice size L is in units of fm.

Inputs Conf1 Conf2 Conf3 Conf4 Conf5 Conf6 Physical

mK 554(8) 594(9) 582(9) 635(9) 713(10) 789(11) 495.0
MK� 939(17) 984(16) 963(16) 1015(15) 1078(17) 1156(17) 893.1
L 2.90(4) 2.90(4) 2.90(4) 2.90(4) 2.90(4) 2.90(4) ∞
M 1367 1442 1412 1506 1635 1785 1286
B 126(19) 136(18) 133(18) 144(17) 156(20) 160(20) 102.1
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FIG. 3 (color online). Mass of the f1ð1285Þ as a function of the
lattice size L at six combinations of light and strange quark
masses, from lower to upper corresponding to Conf1 to Conf6 of
Table I, respectively.
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where s0 is the pole position. From the above equation, one
can obtain the identity,

−g2
∂G
∂s þ g2

∂V−1

∂s ¼ 1: ð21Þ

The first term gives the contribution of the composite
component being dynamically generated, while the second
term gives the rest (e.g., genuine qq̄ or missing meson-
meson channels). For the f1ð1285Þ, we find that −g2 ∂G

∂s ¼
0.50, which implies that the meson-meson component
accounts for about half of the f1ð1285Þ wave function.
Given the fact that the f1ð1285Þ is located about 100 MeV
below the KK� threshold, this value does not seem that
small.

IV. D-WAVES FOR KK̄� WITH CHIRAL
LAGRANGIANS

In dealing with the KK̄� system with finite volumes one
has to look at spin projections and partial wave mixing.
There has been much work done along these lines recently.
By using qq̄ interpolators [66–69], new methods and
suitable interpolators have been developed to project on
the desired spin states. More relevant to our problem, using
the Lüscher formalism for scattering of two particles,
several papers have dealt with this problem. A detailed
study for the case of 0−, 1=2þ interacting particles is done
in Ref. [70], which is generalized in Ref. [71] to moving
frames. The case of 1=2þ, 1=2þ interacting particles is
studied in Ref. [72]3 and applied to the deuteron case in
Ref. [75]. A formal extension to the scattering of particles
with arbitrary spin is done in Ref. [76]. For a first study of
coupled-channel effects in LQCD simulations, see, e.g.,
Refs. [23,24].
In the present case, we are concerned about the scattering

of 0− and 1− particles in the rest frame of the particles. If we
only took into account S-wave interaction between the 0−

and 1− particles, it can be shown that on the cubic lattice
and for total momentum ~P ¼ 0 the S-wave only mixes with
the G-wave. However, in infinite volume, the f1ð1285Þ
can decay into a pair of 1− and 0− particles via theD-wave.
In this case, mixing of L ¼ 0 and L ¼ 2 can occur. In order
to assess the relevance of this component in the problem
that we study we go back to the theory that generates
the interaction of these particles using chiral dynamics.
The chiral Lagrangian for this interaction is given in
Ref. [77] by

LVVPP ¼ −
1

4f2
Trð½Vμ; ∂νVμ�½P; ∂νP�Þ; ð22Þ

which leads to the potential

~V ∼ ðp1 þ p3Þðp2 þ p4Þϵμϵμ; ð23Þ

where p1, p2, p3, p4 correspond to the two incoming and
two outgoing momenta in KK̄� → KK̄�, and ϵμ is the
polarization of the vector. It is clear that this potential has
no D-waves. However, D-waves are automatically gener-
ated where this Lagrangian is reinterpreted by means of
the local hidden gauge approach [78–80] and is generated
by the exchange of a light vector meson (ρ meson for the
KK̄� interaction). In this case one has the explicit ρ
propagator and the potential becomes

~V ∼
ðp1 þ p3Þ · ðp2 þ p4Þϵμϵμ

−ð ~p1 − ~p3Þ2 −m2
ρ

; ð24Þ

which this time develops aD-wave. It is easy to see that the
ratio of the D-wave to S-wave is (using j ~p1 − ~p3j < mρ for
the derivation)

~V2

~V0

≈
2

3

~p4

m2
ρ

1

E1E2 þ ~p2=2
ð25Þ

with ~p the CM momentum.
Now we look at the energy levels of Fig. 1 that we have

used for the simulation. We actually took the first two levels
for Lmπ > 2 in the inverse analysis. Then we consider the
levels 2, 3, 4 that have energies in the continuum and we
find the ratios for Lmπ ¼ 2

~V2

~V0

¼ 0.002 for level 2; ð26Þ

¼ 0.079 for level 3; ð27Þ

¼ 0.208 for level 4: ð28Þ

The numbers would be further reduced by Clebsh-Gordan
coefficients of L ¼ 2 and S ¼ 1 to give J ¼ 1, which are
unity for L ¼ 0. For bigger values of L, these energies are
smaller and these ratios also decrease. For instance for
Lmπ ¼ 3 and level 4 we would find ~V2= ~V0 ≈ 0.059.
The discussions conducted here are useful, because

since we have only used the levels 1 and 2 for Lmπ ≥ 2,
then we always have a ratio of ~V2= ~V0 smaller than two per
thousand, and we can safely ignore the mixing. However,
we also see that if we were to use the level 4 in our analysis
and for values of Lmπ < 2 we would have mixture of the
order of 25% which would require us to explicitly consider
the mixing for a proper interpretation of the results.
The D-wave decay of the f1ð1285Þ could in principle

induce more complicated mixing patterns. For spin-0 and
spin-1 scattering, which is the present case, it can be shown
that the J ¼ 1 D-wave of the f1ð1285Þ does not mix with

3See Refs. [73,74] for the generalized Lüscher formula in
multichannel meson(baryon)-baryon scattering formulated in
both non-relativistic quantum mechanics and quantum field
theory.
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any of the various P- and F-waves. However, it mixes with
the J ¼ 3 D-wave. Indeed, at energies much higher than
considered here, J ¼ 3 resonances have been found that
decay into KK�, such as the ϕ3ð1850Þ [1].
However, for the purpose of a rough error estimate, we

can assume that the J ¼ 3D-wave is of a similar size as the
D-wave induced by Eq. (24), such that the uncertainties
quoted in Eqs. (26)–(28) might be larger by a factor of 2.
If lattice data become more precise, a coupled-channel
calculation including the S-wave and the two D-waves
will be necessary. At nonzero total momentum, which is
not considered here, the mixing can become more com-
plicated [71].

V. SUMMARY

We have studied the KK� interaction in the f1ð1285Þ
channel in finite volume with the chiral unitary approach.
The relativistic loop function was calculated in the dimen-
sional regularization scheme and compared with the hybrid
approach developed previously. It was shown that although
both approaches yield the same results if treated properly,
the dimensional regularization scheme is numerically more
stable. In addition, we found that the Lüscher method
fluctuates more strongly with the variation of the cutoff, but
agrees with the hybrid method qualitatively.
In anticipation of future lattice QCD studies, we have

calculated the position of the f1ð1285Þ at six different
combinations of light and strange quark masses as a
function of the lattice size L. If confirmed, this could

provide another test of the f1ð1285Þ being a dynamically
generated state. Indeed, the KK� meson-meson component
is found to account for one half of its wave function.
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