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I obtain the complex pole squared mass of the Z boson at full two-loop order in the Standard Model in
the pure MS renormalization scheme. The input parameters are the running gauge couplings, the top-quark
Yukawa coupling, the Higgs self-coupling, and the vacuum expectation value that minimizes the Landau
gauge effective potential. The effects of nonzero Goldstone boson mass are resummed. Within a reasonable
range of renormalization scale choices, the scale dependence of the computed pole mass is found to be
comparable to the current experimental uncertainty, but the true theoretical error is likely somewhat larger.
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I. INTRODUCTION

One of the cornerstone physical observables of the
Standard Model is the Z-boson mass. The experimental
value that is usually quoted is obtained using a Breit-
Wigner parametrization with a variable width, and is given
in Ref. [1] from a fit to LEP data as

Mexp
Z ¼ 91.1876� 0.0021 GeV: ð1:1Þ

This is related [2–4] to the real part of the complex pole
squared mass sZpole ¼ M2

Z − iΓZMZ (with ΓZ a constant
width) according to

MZ ¼ Mexp
Z ð1 − Γ2

Z=2M
2
Z þ � � �Þ ð1:2Þ

¼ 91.1535� 0.0021 GeV: ð1:3Þ

In general, the complex pole squared mass is a physical
observable [5–10], independent of the choice of renorm-
alization scheme and scale and the choice of gauge fixing.
In this paper, I report a calculation, at full two-loop order,

of the complex pole squared mass parameters MZ and ΓZ,
using the pure MS scheme. The input parameters in this
scheme are the running renormalized quantities

g; g0; g3; yt; λ; v; ð1:4Þ

where the first three are the Standard Model gauge
couplings, yt is the top-quark Yukawa coupling, λ is the
Higgs self-coupling, and the vacuum expectation value
(VEV) v is defined here to be the minimum of the full
radiatively corrected effective potential in the Landau
gauge. The normalizations used here for λ and v are fixed
by writing the tree-level Higgs potential as

VðΦ;Φ†Þ ¼ m2Φ†Φþ λðΦ†ΦÞ2; ð1:5Þ

where the canonically normalized doublet Higgs field has
VEV hΦi ¼ v=

ffiffiffi
2

p
, and m2 is a negative Higgs squared

mass parameter. The minimization condition that relates v
to m2 (allowing the latter to be eliminated) is presently
known at full two-loop order [11] augmented by all three-
loop contributions at leading orders in both g3 and yt [12].
Goldstone boson mass effects are resummed in this relation
using [13,14]; this effect is usually numerically small but is
conceptually important, and in any case leads to simpler
formulas.
Other definitions of the Higgs VEV can be found in the

literature. One alternative (for example, see Refs. [15–17])
is to instead define the VEV as the minimum of the tree-
level potential, so vtree ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
. This has the disad-

vantage that one must include tadpole diagrams explicitly.
Also, one is then expanding around a point that differs
from the true radiatively corrected vacuum, so perturbation
theory converges less quickly, at least formally and for
generic choices of the renormalization scale. Indeed, in
the large yt limit, the loop expansion parameter is
Ncy4t =ð16π2λÞ rather than the usual Ncy2t =16π2. [For more
details, see for example Refs. [13,18], and the discussion
surrounding Eq. (2.34) below.] The reason for the λ in the
denominator is that the tadpole diagrams have a Higgs
propagator at zero momentum, which is just the reciprocal
of the Higgs squared mass.
Another alternative (see for example Ref. [19]) is to

define the VEV so that the sum of tadpole graphs in
Feynman gauge vanishes. However, the Landau gauge
effective potential is easier to compute to higher orders,
and avoids renormalization of the gauge-fixing parameter,
making it arguably a more convenient choice as a standard.
The pure MS scheme is an alternative to on-shell and

hybrid schemes, which have been used for many precision
studies of the Z mass and the electroweak sector. For a
selection of some important related results in that approach,
see Refs. [20–41], and for reviews see Refs. [1,42].
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II. COMPLEX POLE MASS OF THE Z BOSON
AT TWO-LOOP ORDER

To obtain the Z-boson pole squared mass, one begins
with the symmetric 2 × 2 matrix of neutral gauge boson
transverse self-energy functions, for V; V 0 ¼ γ; Z:

ΠVV 0 ðsÞ ¼ 1

16π2
Πð1Þ

VV 0 ðsÞ þ 1

ð16π2Þ2Π
ð2Þ
VV 0 ðsÞ þ � � � ð2:1Þ

where s ¼ −p2, with pμ the external momentum, using a
metric with Euclidean or (−, þ, þ, þ) signature. These
are obtained by calculating, in the theory in d ¼ 4 − 2ϵ
dimensions with bare parameters, the sum of one-
particle-irreducible two-point Feynman diagrams for Πμν

VV 0,
followed by projecting with ðημν − pμpν=p2Þ=ðd − 1Þ.
The pole squared mass is then the solution of

sZpole ¼ ZB þ ΠZZðsZpoleÞ þ ½ΠγZðsZpoleÞ�2=½sZpole − ΠγγðsZpoleÞ�:
ð2:2Þ

Here,

ZB ¼ ðg2B þ g02B Þv2B=4 ð2:3Þ

is the bare, tree-level, squared mass of the Z boson. Solving
Eq. (2.2) iteratively, one obtains to two-loop order

sZpole ¼ ZB þ 1

16π2
Πð1Þ

ZZðZBÞ

þ 1

ð16π2Þ2 fΠ
ð2Þ
ZZðZBÞ þ Πð1Þ0

ZZ ðZBÞΠð1Þ
ZZðZBÞ

þ ½Πð1Þ
γZ ðZBÞ�2=ZBg: ð2:4Þ

Instead of computing separate counterterm diagrams, the
calculation described here was done in terms of only bare
quantities gB, g0B, g3B, ytB, λB, vB,m

2
B, and then translated to

renormalized running MS quantities g, g0, g3, yt, λ, v at the
end. Tadpole diagrams need not be calculated, because they
automatically sum to zero, due to the defining condition that
the VEV is the minimum of the effective potential. Using the
minimization condition for the Landau gauge effective
potential given in Ref. [13], the parameter m2 and the
Goldstone boson squared mass are eliminated. These pro-
cedures are the same as described in Refs. [18,43], and so
most details will not be repeated here. An exception is that
the two-loop translation of the Uð1ÞY gauge couplings from
bare to renormalized couplings is needed, to go along
with Eqs. (2.5)–(2.24) of Ref. [43] and Eqs. (2.3)–(2.10)
of Ref. [18]:

gB0 ¼ μϵ
�
g0 þ 1

16π2
cg

0
1;1

ϵ
þ 1

ð16π2Þ2
�
cg

0
2;2

ϵ2
þ cg

0
2;1

ϵ

�
þ � � �

�

ð2:5Þ

where

cg
0
1;1 ¼

41

12
g03; ð2:6Þ

cg
0
2;1 ¼ g03

�
11

3
g23 þ

9

8
g2 þ 199

72
g02 −

17

24
y2t

�
; ð2:7Þ

cg
0
2;2 ¼

1681

96
g05; ð2:8Þ

and μ is the regularization scale, related to the renormaliza-
tion scale Q by μ2 ¼ Q2eγE=4π. As in Refs. [18,43], the
results are reduced, using the Tarasov recurrence relations
[44], to a set of one-loop basis integrals A; B and two-loop
basis integrals I; S; T; T̄; U;M, following the notations and
conventions of Refs. [45,46]. The program TSIL [46] can be
used to automatically and efficiently evaluate these basis
integrals numerically. Where possible, TSIL takes advantage
of analytical results in terms of polylogarithms, which were
given in Refs. [45–53]. In many cases, analytical results
for the basis integrals are not available, so TSIL employs
a Runge-Kutta solution of differential equations in the
external momentum invariant [45], similar to that suggested
in Ref. [54].
The final result for the two-loop Z-boson complex pole

mass can be written as

sZpole ¼ M2
Z − iΓZMZ ¼ Z þ 1

16π2
Δð1Þ

Z

þ 1

ð16π2Þ2 ½Δ
ð2Þ;QCD
Z þ Δð2Þ;non-QCD

Z �: ð2:9Þ

In the following,

Z ¼ ðg2 þ g02Þv2=4; ð2:10Þ

W ¼ g2v2=4; ð2:11Þ

t ¼ y2t v2=2; ð2:12Þ

h ¼ 2λv2 ð2:13Þ

are the tree-level MS squared masses of the Z boson, W
boson, top quark, and Higgs boson, respectively, and the
couplings of the quarks and leptons to the Z boson are

af ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
½Tf

3 −Qfg02=ðg2 þ g02Þ�; ð2:14Þ

for f ¼ uL; uR; dL; dR; eL; eR; νL, where
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TuL
3 ¼ TνL

3 ¼ −TdL
3 ¼ −TeL

3 ¼ 1=2; ð2:15Þ

TuR
3 ¼ TdR

3 ¼ TeR
3 ¼ 0; ð2:16Þ

QuL ¼ QuR ¼ 2=3; ð2:17Þ

QdL ¼ QdR ¼ −1=3; ð2:18Þ

QeL ¼ QeR ¼ −1; ð2:19Þ

QνL ¼ 0: ð2:20Þ

Also, Nc ¼ 3, and

nQ ¼ nu ¼ nd ¼ nL ¼ ne ¼ 3 ð2:21Þ

are the numbers of flavors of two-component quarks and
leptons of each gauge transformation type, ðuL; dLÞ, uR,
dR, ðνL; eLÞ, and eR, respectively. The quantities Nc, nQ,
nu, nd, nL and ne are kept general in the following as a way
of tagging different fermion contributions, although they
are all equal to 3 in the Standard Model.
The one-loop contribution is then

Δð1Þ
Z ¼ Ncða2uL þ a2uRÞf1ðtÞ þ Nc2auLauRf2ðtÞ þ ½NcðnQ − 1Þa2uL

þ Ncðnu − 1Þa2uR þ NcnQa2dL þ Ncnda2dR þ nLða2eL þ a2νLÞ þ nea2eR �f1ð0Þ

þ g2
�
ð4W − ZÞ

�
W
Z
þ 5

3
þ Z
12W

�
BðW;WÞ þ

�
4W
Z

−
4

3
−

Z
6W

�
AðWÞ

þ
�
4hZ − 12Z2 − h2

12W

�
Bðh; ZÞ þ

�
h − 2Z
12W

�
AðZÞ þ

�
3Z − h
12W

�
AðhÞ

þ 4W2

Z
−
4W
3

þ 5Z
9

þ hZ
6W

þ Z2

18W

�
; ð2:22Þ

where the fermion one-loop integral functions are

f1ðtÞ ¼
2

3
ðt − ZÞBðt; tÞ − 4

3
AðtÞ þ 2

9
Z −

4

3
t; ð2:23Þ

f1ð0Þ ¼ −
2

3
ZBð0; 0Þ þ 2

9
Z; ð2:24Þ

f2ðtÞ ¼ −2tBðt; tÞ: ð2:25Þ
The basis integrals Bð0; 0Þ, Bðt; tÞ, Bðh; ZÞ, and BðW;WÞ,
and other integral functions below, are always evaluated

at the external momentum invariant s ¼ Z and renorm-
alization scale Q. The bottom-quark, tau-lepton, and
other fermion masses have been neglected for simplicity,
because even at one-loop order they make a difference
of less than 1 MeV in the real Z pole mass. However,
they can easily be restored in the one-loop part by
following the example of the top-quark terms in the
obvious way.
The two-loop QCD contribution can also be written in

terms of the basis integral functions in a few lines:

Δð2Þ;QCD
Z ¼ g23

�
N2

c − 1

4

�
½ða2uL þ a2uRÞF1ðtÞ þ 2auLauRF2ðtÞ

þ ½ðnQ − 1Þa2uL þ ðnu − 1Þa2uR þ nQa2dL þ nda2dR �F1ð0Þ�; ð2:26Þ

where:

F1ðtÞ ¼
8

3
ðZ − tÞð2t − ZÞMðt; t; t; t; 0Þ þ 16

3
ðZ − tÞT̄ð0; t; tÞ

þ 1

3Zð4t − ZÞ ½ð24t
2Z − 24t3 þ 20tZ2 − 8Z3ÞBðt; tÞ2

þ ð32Z2 − 32tZ − 48t2ÞAðtÞBðt; tÞ þ ð56Z − 24tþ 16Z2=tÞAðtÞ2
− 4ðt − ZÞð12t2 − 30tZ þ 7Z2ÞBðt; tÞ þ ð296tZ − 48t2 − 104Z2ÞAðtÞ
− 24t3 þ 220t2Z − 141tZ2 þ 23Z3�; ð2:27Þ
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F1ð0Þ ¼ −
8

3
Z2Mð0; 0; 0; 0; 0Þ − 4ZBð0; 0Þ − 31

3
Z; ð2:28Þ

F2ðtÞ ¼ 8tð2t − ZÞMðt; t; t; t; 0Þ þ 16tT̄ð0; t; tÞ

þ 1

Zð4t − ZÞ ½ð8t
3 þ 4tZ2ÞBðt; tÞ2 þ ð16t2 þ 80tZÞAðtÞBðt; tÞ

þ ð8tþ 64ZÞAðtÞ2 þ ð16t3 − 200t2Z þ 36tZ2ÞBðt; tÞ
þ ð16t2 − 104tZÞAðtÞ þ 8t3 − 140t2Z þ 43tZ2�: ð2:29Þ

The two-loop non-QCD contribution to the Z-boson pole squared mass has the form

Δð2Þ;non-QCD
Z ¼

X
i

cð2Þi Ið2Þi þ
X
j≤k

cð1;1Þj;k Ið1Þj Ið1Þk þ
X
j

cð1Þj Ið1Þj þ cð0Þ: ð2:30Þ

where the list of one-loop basis integrals is

Ið1Þ ¼ fAðhÞ; AðtÞ; AðWÞ; AðZÞ; Bð0; 0Þ; Bðt; tÞ; Bðh; ZÞ; BðW;WÞg; ð2:31Þ
and the list of necessary two-loop basis integrals is

Ið2Þ ¼ fIð0; 0; hÞ; Ið0; 0; tÞ; Ið0; 0;WÞ; Ið0; 0; ZÞ; Ið0; h;WÞ; Ið0; h; ZÞ;
Ið0; t;WÞ; Ið0;W; ZÞ; Iðh; h; hÞ; Iðh; t; tÞ; Iðh;W;WÞ; Iðh; Z; ZÞ;
Iðt; t; ZÞ; IðW;W; ZÞ;Mð0; 0; 0; 0; 0Þ;Mð0; 0; 0; 0;WÞ;Mð0; 0; 0; 0; ZÞ;
Mð0; t; 0; t;WÞ;Mð0;W; 0;W; 0Þ;Mð0;W; 0;W; tÞ;Mðh; h; Z; Z; hÞ;
Mðh; t; Z; t; tÞ;Mðh;W; Z;W;WÞ;Mðh; Z; Z; h; ZÞ;Mðt; t; t; t; 0Þ;
Mðt; t; t; t; hÞ;Mðt; t; t; t; ZÞ;Mðt;W; t;W; 0Þ;MðW;W;W;W; 0Þ;
MðW;W;W;W; hÞ;MðW;W;W;W; ZÞ; Sð0; 0; hÞ; Sð0; 0;WÞ; Sð0; t;WÞ;
Sðh; h; ZÞ; Sðh; t; tÞ; Sðh;W;WÞ; Sðt; t; ZÞ; SðW;W; ZÞ; SðZ; Z; ZÞ;
Tðh; 0; 0Þ; Tðh; h; ZÞ; Tðh; t; tÞ; Tðh;W;WÞ; Tðt; 0;WÞ; Tðt; h; tÞ;
Tðt; t; ZÞ; TðW; 0; 0Þ; TðW; 0; tÞ; TðW; h;WÞ; TðW;W; ZÞ; TðZ; 0; 0Þ;
T̄ð0; t; tÞ; T̄ð0;W;WÞ; Uðh; Z; 0; 0Þ; Uðh; Z; h; ZÞ; Uðh; Z; t; tÞ;
Uðh; Z;W;WÞ; Uðt; t; 0;WÞ; Uðt; t; h; tÞ; Uðt; t; t; ZÞ; UðW;W; 0; 0Þ;
UðW;W; 0; tÞ; UðW;W; h;WÞ; UðW;W;W; ZÞ; UðZ; h; h; hÞ;
UðZ; h; t; tÞ; UðZ; h;W;WÞ; UðZ; h; Z; ZÞg: ð2:32Þ

The coefficients cð2Þi , cð1;1Þj;k , cð1Þj , and cð0Þ are quite lengthy,
so they will not be listed in print here. Instead, they are
listed in electronic form in Supplemental Material [55],
called coefficients.txt. They are ratios of poly-
nomials of Z, W, t, h, and v. As usual, these coefficients
are not unique, because of special identities that relate
different basis integrals in cases where the masses are not
generic.
For each of the five-propagator M integrals for which

analytical results are not available, the main TSIL Runge-
Kutta evaluation function TSIL_Evaluate simultane-
ously computes all of the subordinate integrals S, T, U

obtained by removing one or more propagator lines.
Therefore, only 11 calls of TSIL_Evaluate are required
(in addition to the relatively fast evaluation of the integrals
that are known in terms of polylogarithms), and in total the
numerical computation takes well under 1 second on
modern computer hardware.
I performed a number of stringent analytical checks on

the calculation, similar to those described for the calcu-
lations of the Higgs and W-boson pole masses in [18,43].
First, sZpole is free of poles in ϵ. The cancellation of these
poles relies on agreement between the divergent parts of
the loop integrals performed here and the counterterm
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coefficients which can be obtained from the two-loop scalar
anomalous dimension and β functions from Refs. [56–59].
Second, poles and logs of the Goldstone boson squared
mass G ¼ m2 þ λ2v2 were checked to cancel after the
resummation described in [13,14]. Third, I checked the
cancellations between contributions from unphysical vector
propagator components with poles at 0 squared mass and
the corresponding Landau gauge Goldstone boson propa-
gators. This ensures the absence of unphysical imaginary
parts of the complex pole squared mass. Note that ΓZ ¼ 0
in the case Nc ¼ nL ¼ ne ¼ 0. Next, I checked the absence
of singularities in various formal limits (none of which are
close to being realized in the actual parameters of the
Standard Model), in which one or more of the following
quantities vanish: Z, W, t, h, t −W, 4t − Z, 4W − h, and
4Z − h. This is despite the fact that many of the individual
two-loop coefficients do have singularities in one or more
of those cases; nontrivial relations between basis integrals
are responsible for the smooth limits of the total. Finally,
I checked analytically that the complex pole squared mass
is renormalization-group scale invariant up to and including
all terms of two-loop order, using

Q
d
dQ

sZpole ¼
�
Q

∂
∂Q − γv

∂
∂vþ

X
X

βX
∂
∂X

�
sZpole ¼ 0;

ð2:33Þ

where γ is the Higgs anomalous dimension, and
X ¼ fg; g0; g3; yt; λg. In the conventions used here, the
derivatives of the one-loop basis integrals with respect to
squared masses are listed in Eqs. (A.5) and (A.6) of
Ref. [43], while the derivatives of the one-loop and two-
loop basis integrals with respect to the renormalization
scale Q can be found in Eqs. (4.7)–(4.13) of Ref. [45]. The
beta functions and scalar anomalous dimension are listed in
Refs. [11,56–59]. In the next section, a numerical check of
the Q invariance will be shown.
In Refs. [15,16], a calculation of the Z-boson pole mass

in the pure MS scheme has already been given. However,
unlike the present paper, they expanded around the tree-
level definition of the VEV, as discussed in the Introduction
above. This means that even at one-loop order, the results
take different forms. The expression for the one-loop pole

squared mass contribution Δð1Þ
Z =16π2 given in Eq. (2.22)

above appears to differ from the result of Eq. (B.4) of
Ref. [15] and Eq. (B.3) of Ref. [16] by an amount

Z
16π2v2h

½−8NctAðtÞ þ 3hAðhÞ þ 12WAðWÞ
þ 8W2 þ 6ZAðZÞ þ 4Z2�; ð2:34Þ

in the notation of the present paper. There is of course no
contradiction; this merely reflects the difference between
the tree-level contributions, which are ðg2 þ g02Þv2=4 in

this paper and ðg2 þ g02Þv2tree=4 in Refs. [15,16]. Note in
particular the presence of 1=h ∝ 1=λ in Eq. (2.34); at loop
order l, the use of the tree-level VEV results in terms
proportional to 1=λl. In contrast, there are no λ → 0
singularities in the present paper. A detailed comparison
would be much more difficult at two-loop order, as
Refs. [15,16] also relied on doing high-order expansions
in Z=h and Z=t and 1=4 − sin2 θW .

III. NUMERICAL RESULTS

Consider a benchmark set of Standard Model MS
parameters defined at the input renormalization scale
Q ¼ Mt ¼ 173.34 GeV:

gðMtÞ ¼ 0.647550; ð3:1Þ

g0ðMtÞ ¼ 0.358521; ð3:2Þ

ytðMtÞ ¼ 0.93690; ð3:3Þ

g3ðMtÞ ¼ 1.1666; ð3:4Þ

vðMtÞ ¼ 246.647 GeV; ð3:5Þ

λðMtÞ ¼ 0.12597: ð3:6Þ

The gauge couplings g and g0 are taken to agree with
Ref. [19], while yt and g3 are from Eqs. (57) and (60) of
version 4 of Ref. [60]. The VEV vðMtÞ and the Higgs self-
coupling were then chosen so that MZ agrees with the
central value of Eq. (1.3), when computed at Q ¼ MZ, and
Mh agrees with the current experimental central value [61]
of Mh ¼ 125.09 GeV, when computed at Q ¼ 160 GeV
using the program SMH [62] as described in Ref. [43]. With
this set of input parameters, one also obtains m2ðMtÞ ¼
−ð92.890 GeVÞ2 from minimization of the Higgs potential
using SMH at Q ¼ Mt. In this way, the experimental
measurements of MZ and Mh can be used to obtain the
Higgs potential parameters. The choice of Q ¼ 160 GeV
for computing Mh was explained in Ref. [43]; at this scale
the effects of top-quark loops in the neglected electroweak
three-loop parts should be not too large. The lower choice
of Q ¼ MZ for computing MZ is somewhat arbitrary. One
also obtains a W-boson pole mass of MW ¼ 80.329 GeV,
when computed at Q ¼ MW , using the calculation
described in [18]. This translates into a Breit-Wigner mass
of Mexp

W ¼ 80.356 GeV, using the analog of Eq. (1.2)
above. (Somewhat coincidentally, this agrees with the
value found in Ref. [19] to within 1 MeV, although that
calculation uses a different scheme.)
The dependences of the computed pole mass parameters

MZ and ΓZ on the choice of Q are shown in Figs. 1 and 2,
in various approximations. These graphs are made by
running the input parameters g, g0, yt, g3, λ, and v, using
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their three-loop beta functions [63,64], from the input scale
Mt to the scale Q on the horizontal axis, where sZpole is
computed. In an idealized case that sZpole is computed to
sufficiently high order in perturbation theory, MZ and ΓZ
would be independent ofQ. Therefore theQ-independence
is a check on the calculation. I find that the calculated two-
loop value of MZ varies by only about �2 MeV from its
median value, over the range 70 GeV < Q < 200 GeV.
Below Q ¼ 70 GeV, the scale dependence is much
stronger. The scale dependence is smallest for Q near
100 GeV, where the computed MZ has its minimum, but
this does not necessarily mean that this is the best
renormalization scale; only a higher-order calculation
can reduce the theoretical uncertainty.
With regard to the width ΓZ, the scale dependence of the

full two-loop result is again about �2 MeV from the
median value over the same range 70 GeV < Q <
200 GeV. Note that here, including only the QCD part
of the two-loop contribution does not actually reduce the
scale dependence much compared to the one-loop result.
This is because most of the Q dependence in the width
arises from the runnings of the VEV and the electroweak
couplings of the Z boson to the fermions into which it
decays, and these are independent of QCD at the leading
(one-loop) order. The result for ΓZ is consistent with, and
slightly lower than the central value of, the experimental

range [1] ΓZ ¼ 2.4952� 0.0023 GeV. Of course, there are
much better ways to calculate ΓZ, because the imaginary
part of the two-loop complex pole mass really corresponds
to only a one-loop calculation of the Z width. (Moreover,
the inclusion of bottom-quark mass effects, neglected
above for simplicity, has a larger effect on ΓZ than on
MZ, and will decrease the former by an amount of order
2 MeV due to kinematics. There is a significant uncertainty
in estimating this reduction in the imaginary part of the Z
complex pole mass, because of the large difference between
the pole and running bottom quark masses.)
It is important to keep in mind that the renormalization

scale dependence only provides a lower bound on the
theoretical error. Another way of investigating the robust-
ness of the calculation is to take the running top-quark
squared mass t in the one-loop part of Eq. (2.22) and
perform an expansion around an arbitrary value T that can
be considered to differ from t by an amount that is
parametrically of one-loop order. An obvious choice is
to take T to be the (real part of the) top-quark pole squared
mass. It makes sense to do this in particular for the one-loop
contribution, because the top-quark mass appears only in
propagators at this order, not as a vertex Yukawa coupling.
By expanding, one finds

f1ðtÞ ¼ f1ðTÞ þ ðt − TÞ½ð4T − 2ZÞBðT; TÞ
− 4AðTÞ − 12T þ 4Z�=ð4T − ZÞ þ � � � ; ð3:7Þ

f2ðtÞ ¼ f2ðTÞ þ ðt − TÞ½ð2Z − 12TÞBðT; TÞ
− 4AðTÞ þ 4T�=ð4T − ZÞ þ � � � : ð3:8Þ
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FIG. 1 (color online). The computed pole mass MZ of the Z
boson, defined by sZpole ¼ M2

Z − iΓZMZ, as a function of the
renormalization scale Q at which it is computed, in various
approximations. The dotted (green) line is the tree-level result Z,
the short-dashed (red) line is the one-loop result, the long-dashed
(blue) line is the result from the one-loop and two-loop QCD
contribution, while the solid (black) line is the full two-loop order
result. The input parameters g; g0; yt; g3; λ, and v at the renorm-
alization scale Q are obtained by three-loop renormalization
group running, starting from Eqs. (3.1)–(3.6). Note that the usual
Breit-Wigner mass Mexp

Z is 0.0341 GeV larger than the MZ
shown here.
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FIG. 2 (color online). The computed width ΓZ of the Z boson,
defined in terms of the complex pole squared mass
sZpole ¼ M2

Z − iΓZMZ, as in Figure 1. The short-dashed (red) line
is the one-loop result, the long-dashed (blue) line is the result
from the one-loop and two-loop QCD contribution, and the solid
(black) line is the full two-loop order result.
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I have checked that if these expansions were continued to
include order ðt − TÞ3, then the results for the Z pole
squared mass would be nearly indistinguishable from the
original result obtained directly from the unexpanded f1ðtÞ
and f2ðtÞ. However, by instead keeping the expansion only
at first order in ðt − TÞ as shown, one obtains an alternative
consistent two-loop order result for the Z pole squared
mass, since t − T is to be treated as formally of one-loop
order. This alternative consistent two-loop order result is
numerically different, with the difference giving an indi-
cation of the magnitude of the error made in terminating
perturbation theory at two-loop order. The result of using
Eqs. (3.7) and (3.8) compared to the original unexpanded
f1ðtÞ and f2ðtÞ is shown in Fig. 3. We see that the alternate

consistent two-loop result, shown as the dashed line, has a
significantly worse scale dependence, especially at larger
Q. This suggests that the scale dependence of MZ found in
the original calculation (the solid line) is actually acciden-
tally small, and probably underestimates the theoretical
error. A very similar behavior was found for the W boson
mass in Ref. [18].

IV. OUTLOOK

In this paper I have provided a full two-loop calculation
of the Z boson complex pole square mass in the pure MS
scheme, to go along with similar results for the W boson
[18] and the Higgs boson [43] using the same renormal-
ization scheme and the same definition of the VEV. These
calculations are an alternative to the on-shell scheme results
that have been widely used for precision studies in the
Standard Model, in which MZ instead plays the role of an
input parameter.
The ultimate goal should be to obtain results in which the

theoretical error is very small compared to present and
projected experimental errors. The previous section shows
that this is certainly not obtained using just the full two-
loop calculation, as the scale dependence is comparable to
the experimental errors, and the theoretical error is prob-
ably somewhat larger. There is no compelling evidence or
argument that the subset of three-loop contributions that are
QCD and top-Yukawa enhanced will be enough to ensure
the dominance of experimental errors over theoretical
errors. At two-loop order, one can see from the benchmark
example of Fig. 1 that the QCD contribution has a much
larger scale dependence, but not a much larger magnitude,
than the non-QCD contributions, except for smaller choices
of the renormalization scale Q where the top-enhanced
QCD corrections are big. The same thing was noted in the
comparable results for the W boson in [18]. It is therefore
reasonable to conclude that complete three-loop calcula-
tions will be necessary, providing a worthy challenge for
future work.
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