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Within the framework of nonrelativisitic QCD factorization formalism, we present the next-to-leading-
order relativistic corrections to ϒ exclusive decay into ηc plus J=ψ . The double charmonia can be produced
through several immediate channels, i.e., ϒ → g�g�g� → ηc þ J=ψ , ϒ → g�g�γ� → ηc þ J=ψ , and
ϒ → γ� → ηc þ J=ψ . The amplitudes of these three channels are obtained accurate up to Oðα3sv2Þ,
Oðαα2sv2Þ, andOðαα2sv2Þ, respectively, where v indicates the typical heavy quark velocity in bottomonium
and/or charmonium rest frame. The decay rates are also presented. We find that the next-to-leading-order
relativistic corrections to the short-distance coefficients as well as the decay rates are both significant and
negative, especially for the corrections from bottomonium. More seriously, the decay rates are even brought
into negative by including the relativistic corrections, which indicates the poor convergence for the velocity
expansion in this kind of process. Detailed analysis is given in the paper.
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I. INTRODUCTION

Nonrelativistic QCD (NRQCD) [1] is a powerful and
successful effective field theory in describing the quarko-
nium production and decay. The processes of bottomonium
exclusive decay into double charmonia are interesting
channels to investigate quarkonium, which have been
extensively studied both in theory and experiment [2,3].
The ηb decay into double J=ψ was studied in Refs. [4–8],
and the radiative and relativistic corrections to this process
were investigated subsequently in [9–11]. The P-wave
bottomonium exclusive decay into double charmonia
was also studied in Refs. [12,13]. The relativistic correc-
tions to these processes were obtained in Refs. [11,14],
and the radiative corrections to χbJ → J=ψJ=ψ were
calculated recently [15]. For the case of ϒ, the ϒ →
ηcJ=ψ and ϒ → J=ψχcJ were separately studied in
Ref. [16] and Ref. [17].
Comparing with other bottomonium exclusive decay

processes mentioned above, ϒ → ηcJ=ψ has some distinc-
tive features. First, there is no tree-level pure QCD
Feynman diagram. Second, this process is further sup-
pressed by a helicity selection rule due to mb ≫ mc. As a
consequence, one may expect that the decay rate is
relatively small [16]. Nevertheless, it is still meaningful
to investigate this process based on the following reasons.
First, there is little study of the relativistic corrections to
the quarkonium decay and production processes with the
vanishing tree-level Feynman diagram, so it is theoretically
interesting to study the relativistic corrections and the
convergence of the velocity expansion for these processes.

Second, it has been known for a long time that the
relativistic corrections to J=ψ → LH and J=ψ → 3γ are
both significant and negative [18], which even surpasses
the contributions at leading order. The study in Ref. [19]
indicated that theOðαsv2Þ corrections to J=ψ → 3γ are also
huge; meanwhile, the study in Refs. [20,21] indicates that
the relativistic corrections toϒ → g�gg → cc̄gg are extraor-
dinarily large, despite the small Oðv2Þ NRQCD matrix
element for ϒ. The common feature for these processes is
that ϒ first annihilates into three gluons (photons). For the
process ϒ → ηcJ=ψ , the main contributions come from
the immediate channel ϒ → g�g�g� → ηcJ=ψ [16]. As a
consequence, it is compelling to know whether large
relativistic corrections are also appearing in ϒ → g�g�g�.
Third, there has been a longstanding “ρ − π” puzzle in
quarkonium decay [22,23]. The structure of Feynman
diagrams for ψ → ρπ is rather similar to ϒ → ηcJ=ψ , so
one may wonder whether the puzzle originates from the
relativistic corrections for J=ψ. Based on these reasons, we
will investigate the relativistic corrections to ϒ → ηcJ=ψ
from both the charmonia and the bottomonium.
Up to the next-to-leading order in velocity expansion,

there are three channels which contribute, ϒ → g�g�g� →
ηcJ=ψ , ϒ → g�g�γ� → ηcJ=ψ , and ϒ → γ� → ηcJ=ψ . The
leading-order (LO) amplitudes for the three channels in
powers of αs and α scale as α3s , αα2s , and ααs, respectively.
Though the second channel is suppressed by a factor α=αs
relative to the first channel, there is a fragmentation
enhancement (γ� → J=ψ) in ϒ → g�g�γ� → ηcJ=ψ ; as a
result, we also consider this channel with J=ψ produced by
a photon in our calculation. Moreover, since ϒ → γ� →
ηcJ=ψ is of a similar Feynman diagram structure as
eþe− → ηcJ=ψ , the radiative corrections to which were*F.Feng@outlook.com
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found to be large [24,25], the calculation in this channel
will be accurate up to Oðαα2sv2Þ. 1

The rest of the paper is organized as follows. In Sec. II,
we describe the NRQCD formula for ϒ exclusive decay
into double charmonia and present the kinematic descrip-
tions and required techniques. The short-distance coeffi-
cients (SDCs) are obtained in detail in Sec. III. Section IV is
devoted to numerical predictions. Discussions and sum-
mary are also presented in this section.

II. NRQCD FORMULA AND KINEMATIC
DESCRIPTIONS

According to Lorentz invariance, we are able to factorize
ϒ exclusive decay into double S-wave charmonia as

A≡ hηcJ=ψðϵ2Þjϒðϵ1Þi ¼ iϵμναβϵ1μϵ�2νP1αP2βA; ð1Þ

where ϵ tensor indicates the Levi-Civita symbol, ϵ1 and ϵ2
represent the polarization vectors of the initial state ϒ and
final state J=ψ , P1, and P2 denote the momenta of ηc
and J=ψ , respectively.
As mentioned in Ref. [11], the exclusive decay of a

bottomonium into double charmonia involves the annihi-
lation of a bb̄ pair followed by the creation of two pairs of
cc̄. One may guess that the generalization of the NRQCD
factorization for the electromagnetic decay or light-
hadronic decay into this exclusive mode is possible. So
according to the NRQCD factorization formalism, the
Lorentz scalar A can be factorized as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mηc2mJ=ψ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hOiηchOiJ=ψhOiϒ

q
c0ð1þ c2;1hv2iϒ

þ c2;2hv2iηc þ c2;3hv2iJ=ψ þOðv4ÞÞ; ð2Þ

where c0 and c2 correspond to the SDCs, which can be
calculated perturbatively in power of αs. For simplicity, we
define shortcuts for the matrix elements

hOiϒ ¼ jh0jχ†σ · ϵ�1ψ jϒðϵ1Þij2; ð3aÞ

hOiηc ¼ jhηcjψ†χj0ij2; ð3bÞ

hOiJ=ψ ¼ jhJ=ψðϵ2Þjψ†σ · ϵ2χj0ij2; ð3cÞ

and

hv2iϒ ¼ h0jχ†σ · ϵ�1ð− i
2
D
↔
Þ2ψ jϒðϵ1Þi

m2
bh0jχ†σ · ϵ�1ψ jϒðϵ1Þi

; ð4aÞ

hv2iηc ¼
hηcjψ†ð− i

2
D
↔Þ2χj0i

m2
chηcjψ†χj0i ; ð4bÞ

hv2iJ=ψ ¼ hJ=ψðϵ2Þjψ†σ · ϵ2ð− i
2
D
↔
Þ2χj0i

m2
chJ=ψðϵ2Þjψ†σ · ϵ2χj0i

: ð4cÞ

In Eq. (2), the bottomonium is normalized nonrelativistically
on both sides; in contrast, the charmonia are normalized
relativistically on the left-hand side, but nonrelativistically
on the right-hand side. The explicit factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mηc2mJ=ψ

p
is

responsible for the discrepancy.
The SDCs are free of nonperturbative effects and can be

obtained through the matching technique. To calculate the
SDCs, we are allowed to substitute the quarkonium states to
free heavy quark pairs of the same quantum numbers as the
corresponding hadrons. Now A and the matrix elements in
(2) can be calculated perturbatively; therefore, the SDCs are
readily derived. The spin-singlet and -triplet states of a free
heavy quark pair can be extracted by employing the spin
projectors in Ref. [27]:

Π3ðp0; p̄0Þ ¼
1

8
ffiffiffiffiffiffiffiffi
2Nc

p
Eðq0Þ2½Eðq0Þ þmb�

ðp0 þmbÞ

× ½P0 þ 2Eðq0Þ�ϵ1ðp̄0 −mbÞ; ð5aÞ

Π̄1ðp1; p̄1Þ ¼
1

4
ffiffiffiffiffiffiffiffi
2Nc

p
Eðq1Þ½Eðq1Þ þmc�

ðp̄1 −mcÞγ5
× ½P1 þ 2Eðq1Þ�ðp1 þmcÞ; ð5bÞ

Π̄3ðp2; p̄2Þ ¼ −
1

4
ffiffiffiffiffiffiffiffi
2Nc

p
Eðq2Þ½Eðq2Þ þmc�

ðp̄2 −mcÞ

× ϵ�2½P2 þ 2Eðq2Þ�ðp2 þmcÞ; ð5cÞ

where a color-singlet factor 1ffiffiffiffi
Nc

p is included, and EðqiÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2i

p
withm ¼ mb for i ¼ 0 andm ¼ mc for i ¼ 1; 2.

In (5), we take Pi and qi to be the total momenta and half of
the relative momenta of the quark pairs in the quarkonia,
where i ¼ 0 denotesϒ, i ¼ 1 denotes ηc, and i ¼ 2 denotes
J=ψ . Therefore, the momenta of the corresponding quarks
pi and antiquarks p̄i in the hadrons are expressed as

pi ¼
1

2
Pi þ qi; ð6aÞ

p̄i ¼
1

2
Pi − qi: ð6bÞ

Pi and qi are chosen to be orthogonal: Pi · qi ¼ 0.
To obtain the next-to-leading-order (NLO) relativistic

corrections for S-wave quarkonia, we can expand the
amplitude in powers of qi, keep the quadratic terms, and
make the following substitution

1We do not consider the pure QED contributions in
ϒ → γ� → ηcJ=ψ , due to the fact the pure QED contributions
are less than a third of other contributions [26], and what is more,
ϒ → γ� → ηcJ=ψ contributes merely a small fraction in ϒ →
ηcJ=ψ decay [16].
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qμi q
ν
i →

�
−gμν þ Pμ

i P
ν
i

4EðqiÞ
�

q2i
d − 1

; ð7Þ

where d is the dimension of spacetime. In addition,
the contributions from EðqiÞ can be readily derived by
expanding

EðqiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2i

q
¼ mþ q2i

2m
þO

�
q4i
m4

�
; ð8Þ

where m ¼ mb for i ¼ 0 and m ¼ mc for i ¼ 1; 2.

III. THE RELATIVISTIC CORRECTIONS
TO THE SDCS

In this section, we calculate the SDCs of ϒ → ηcJ=ψ
accurate up to NLO relativistic corrections following the
techniques described in last section. There are three
channels which contribute, ϒ → g�g�g� → ηcJ=ψ , ϒ →
g�g�γ� → ηcJ=ψ , and ϒ → γ� → ηcJ=ψ . In the subsequent
three subsections, we will calculate the SDCs of the three
channels separately.

A. ϒ → g�g�g� → ηcJ=ψ

The typical Feynman diagram is illustrated in Fig. 1(a),
which is drawn by using JAXODRAW [28]. According to
the Feynman rules, we write down the amplitude of
bb̄ðp0; p̄0Þ → g�g�g� → cc̄ðp1; p̄1Þ þ cc̄ðp2; p̄2Þ. The cor-
responding spin states for the heavy quark pairs are readily
obtained using (5), and the relativistic corrections are
calculated by employing (7) and (8). In our calculation,
we use the MATHEMATICA package FEYNARTS [29] to
generate the Feynman diagrams and Feynman amplitude,
FEYNCALC [30] as well as FEYNCALCFORMLINK [31] to
implement the algebras of Dirac trace and Lorentz indices
contraction, and FIRE [32,33] and self-written programs
[34] to make the tensor reduction. After some tedious work,
we finally get the amplitude; accordingly, the SDCs are
obtained by removing the tensor and vectors in (1) and
producing the matching factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2Nc

1

2Nc4Eðq1Þ2
1

2Nc4Eðq2Þ2
s

: ð9Þ

Since there are EðqiÞ in (9), we should further expand them
by using (8).
The SDCs are finally obtained analytically. As we will

see in the next section, the channel ϒ → g�g�g� → ηcJ=ψ
dominates ϒ decay into ηc þ J=ψ ; hence, it is both
necessary and valuable for us to present the explicit
expressions for these SDCs in the Appendix. Our LO
SDCs agree with those in [16]. The numerical predictions
will be given in the following section.

B. ϒ → g�g�γ� → ηcJ=ψ

The Feynman diagram is illustrated in Fig. 1(b). For this
channel, the J=ψ is produced through the fragmentation of
a photon. At leading order in αs, the channel can be splitted
into ϒ → ηcγ

� and γ� → J=ψ . As discussed in Ref. [35], to
reduce the theoretical uncertainty, the authors apply the
vector-meson-dominance method [36] to calculate the
fragmentation of the γ� to J=ψ in studying the process
eþe− → γ� → ηcγ

� → ηcJ=ψ . Similarly, here we adopt the
same treatment as that in Ref. [35]. To this end, we first
calculate the amplitude of the subprocess ϒ → ηcγ

�, then
multiply the amplitude with a factor

gJ=ψ
ffiffiffiffiffiffiffiffi
4πα

p

m2
J=ψ

; ð10Þ

where the effective coupling gJ=ψ reads [36]

gJ=ψ ¼
�
3m3

J=ψ

4πα2
Γ½J=ψ → eþe−�

�
1=2

; ð11Þ

where Γ½J=ψ → eþe−� signifies the decay rate of the
process J=ψ → eþe−.
To get the SDCs, we apply the same techniques as in the

last subsection. Finally, we obtain the analytic expressions
for the amplitude, and immediately also for the SDCs.
Unfortunately, the expressions of these SDCs are much
cumbersome, therefore we do not attempt to present them
in this paper, and merely yield the numerical predictions in
the next section.

C. ϒ → γ� → ηcJ=ψ

The Feynman diagrams are illustrated in Fig. 2. To the
accuracy considered in the current work, the amplitude
of this channel can be separated into two subprocesses, ϒ →
γ� and γ� → ηcJ=ψ . The NLO relativistic and radiative
corrections to both subprocesses have been investigated.
For ϒ → γ�, the amplitude accurate up to Oðαsv2Þ

reads [37] 2

(b)(a)

FIG. 1. The typical Feynman diagrams for ϒ → ηcJ=ψ, where
(a) and (b) correspond to the channels ϒ → g�g�g� → ηcJ=ψ and
ϒ → g�g�γ� → ηcJ=ψ , respectively.

2It can also be read from Ref. [38] by taking mc ¼ mb.
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Aðϒ → γ�Þ
¼ ATreeðϒ → γ�Þ

×

�
1 −

2αsCF

π
þ
�
−
1

6
þ αsCF

4π

�
8

9
þ 8

3
ln

μ2f
m2

b

��
hv2iϒ

�
;

ð12Þ
where μf represents the factorization scale. For γ� → ηcJ=ψ,
the amplitude with the photon energy the same as that at B
factories has been evaluated accurate up to Oðαsv2Þ cor-
rections in [39,40]. In our process, since the virtual photon is
produced through ϒ annihilation, it is reasonable for us to
take the invariant mass of γ� to be the mass ofϒ. After some
effort, we are able to obtain the expression of the amplitude
for the channel γ� → ηcJ=ψ accurate up to Oðαsv2Þ
corrections, and immediately yield the amplitude for ϒ →
γ� → ηcJ=ψ with the help of (12). Our result for γ� →
ηcJ=ψ with the same energy as B factories agrees with
Refs. [39,40], where the subprocess γ� → ηcJ=ψ has been
deeply investigated in [39,40]. For details, we refer the
authors to Refs. [39,40]. In the following section, we will
present the numerical predictions.

IV. NUMERICAL PREDICTIONS
AND DISCUSSIONS

In this section, we select input parameters and utilize the
obtained analytic expressions to make numerical predic-
tions for the SDCs as well as the decay rates.

A. Choosing the input parameters

To get the decay rates, we should calculate the squared
amplitude and the phase space factor. The squared ampli-
tude is directly derived by multiplying the amplitude in (1)
with its complex conjugate. Sum over the polarizations for
the final state J=ψ and average the spin states for the initial
state ϒ, we get

1

3

X
spin

jAj2 ¼ 2

3
½ðP1 · P2Þ2 − P2

1P
2
2� × jAj2; ð13Þ

where, to maintain the gauge invariance, one must take
P2
1 ¼ 4E2ðq1Þ, P2

2 ¼ 4E2ðq2Þ and P1 · P2 ¼ 2½E2ðq0Þ−
E2ðq1Þ − E2ðq2Þ�. On the other hand, the phase space
factor does not affect the gauge invariance; therefore, we
use the physical masses of the quarkonia there [37],

1

8πm2
ϒ
λðm2

ϒ; m
2
J=ψ ; m

2
ηcÞ1=2; ð14Þ

where λ is defined via λða; b; cÞ≡ a2 þ b2 þ c2 − 2ab−
2ac − 2bc.
We now specify our choices of the parameters in our

computation. We take the heavy quark pole masses asmc ¼
1.4 GeV and mb ¼ 4.6 GeV. The masses of quarkonia are
taken from Ref. [22]:

mϒð1SÞ ¼ 9.46030; mϒð2SÞ ¼ 10.02326;

mϒð3SÞ ¼ 10.3552 GeV; ð15aÞ

mηcð1SÞ ¼ 2.9836; mηcð2SÞ ¼ 3.6394;

mJ=ψ ¼ 3.096916 GeV: ð15bÞ

The matrix elements for J=ψ are taken from Ref. [41],

hOiJ=ψ ¼ 0.446 GeV3; hv2iJ=ψ ¼ 0.223; ð16Þ

which are fitted through the decay J=ψ → eþe− accurate
through the relative order v2, and the matrix elements of ηc
are taken from Ref. [42],

hOiηcð1SÞ ¼ 0.398 GeV3; hv2iηcð1SÞ ¼ 0.232; ð17aÞ

hOiηcð2SÞ ¼ 0.202 GeV3; hv2iηcð2SÞ ¼ 0.255; ð17bÞ

which are fitted through the decay ηcð1SÞ → 2γ, ηcð1SÞ →
LH, and ηcð2SÞ → LH. In (16) and (17), we have used the
vacuum saturation approximation [1] to relate the produc-
tion matrix elements with the decay ones.
In addition, we should also choose the values of the

matrix elements for ϒ, which have been fitted in
Refs. [20,43]. Here, we cite the values in Ref. [43],

hOiϒð1SÞ ¼ 3.069 GeV3; hv2iϒð1SÞ ¼ −0.009; ð18aÞ

hOiϒð2SÞ ¼ 1.623 GeV3; hv2iϒð2SÞ ¼ 0.09; ð18bÞ

hOiϒð3SÞ ¼ 1.279 GeV3; hv2iϒð3SÞ ¼ 0.155; ð18cÞ

which are fitted through the decay ϒ → eþe−.
In the channel ϒ → g�g�γ� → ηcJ=ψ , we also need the

decay rate for J=ψ → eþe−, which is taken from the

(a) (b) (c)

FIG. 2. The typical Feynman diagrams for ϒ → γ� → ηcJ=ψ. (a) Corresponds to the tree-level diagram, (b) and (c) correspond to the
diagrams of the NLO radiative corrections from the initial state and final states, respectively.
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Ref. [22] as Γ½J=ψ → eþe−� ¼ 5.55 keV. Since the fine
structure constant runs slightly with the energy scale, we
uniformly take α ¼ 1

137
. Finally, we choose the renormal-

ization and factorization scales to be μR ¼ μf ¼ mb, and
the strong coupling constant αsðmbÞ ¼ 0.22 [16].

B. Numerical predictions for the SDCs

In this subsection, we present the SDCs numerically by
using the parameters selected in the previous subsection.
As mentioned, there are three channels which contribute to
the SDCs; hence, we add superscripts in the SDCs to make
the distinction, i.e., cðiÞ, where i ¼ 1; 2; 3 corresponds
to the channels ϒ → g�g�g� → ηcJ=ψ , ϒ → g�g�γ� →
ηcJ=ψ , and ϒ → γ� → ηcJ=ψ , respectively. Substituting
the parameters into the analytic expressions of the SDCs,
we obtain for ϒð1SÞ → g�g�g� → ηcð1SÞJ=ψ,

cð1Þ0 ¼ ð−2.16 × 10−5 − 8.90 × 10−5iÞα3s GeV−7; ð19aÞ

cð1Þ2;1 ¼ ð−5.64 − 1.83iÞ; cð1Þ2;2 ¼ ð−1.14 − 0.90iÞ;
cð1Þ2;3 ¼ ð−0.99 − 0.27iÞ; ð19bÞ

for ϒð1SÞ → g�g�γ� → ηcð1SÞJ=ψ,

cð2Þ0 ¼ ð1.90 × 10−4 þ 7.79 × 10−5iÞαα2s GeV−7; ð20aÞ

cð2Þ2;1 ¼ ð−3.34 − 0.62iÞ; cð2Þ2;2 ¼ ð−0.73þ 0.31iÞ;
cð2Þ2;3 ¼ ð0.19þ 0.02iÞ; ð20bÞ

and for ϒð1SÞ → γ� → ηcð1SÞJ=ψ,

cð3Þ0 ¼ ð4.14 × 10−5 þ 6.78 × 10−5αs

− 7.08 × 10−5αsiÞααs GeV−7; ð21aÞ

cð3Þ2;1 ¼ ð−0.17 − 0.05αsÞ;
cð3Þ2;2 ¼ ð0.52 − 1.60αs þ 2.50αsiÞ; ð21bÞ

cð3Þ2;3 ¼ ð0.35 − 0.89αs þ 1.76αsiÞ: ð21cÞ

To see the dependence on α and αs, we retain these two
constants in the SDCs explicitly. From (19)–(21), we notice
some characteristics. First, ϒ → g�g�g� → ηcJ=ψ is the
dominant channel for the SDCs and therefore also for the
decay rates. Second, the SDCs of the three channels are of
quite different phase, in addition, the phases of various
relativistic corrections are also distinguishing. The last
is not the least, the relativistic corrections from ϒ are
extraordinarily large, so one may expect that this correc-
tions will also contribute a lot to the decay rates even
though the corresponding matrix element is rather small.

C. Numerical predictions for the decay rates

Combining the squared amplitude (13) with the phase
space factor (14), we are able to evaluate the numerical
predictions for the decay rates of various processes. All the
decay rates are listed in Table I.
In the table, we give the LO decay rates ΓLO as well as

the contributions from the relativistic corrections. To see it
clearly, we separately list the relativistic corrections from
different sources; i.e., ΓðiÞ

NLO with i ¼ 0; 1; 2 originates from
ϒ, ηc, and J=ψ , respectively. From the table, we find that
almost all the relativistic corrections are both significant
and negative, except for Γð0Þ

NLO in ϒð1SÞ decay due to a
tiny and negative matrix element given in (18). Both the
relativistic corrections from ηc and J=ψ are negative, which
is quite different with that in ηc associated with J=ψ
production at B factories [44]. The discrepancy may be
accounted for by distinct Feynman diagram structure.
Another distinctive feature in the table is that the

relativistic corrections from ϒð2S; 3SÞ are extraordinarily
large, which even outnumber the corrections from char-
monia, though the NLO NRQCD matrix elements are
smaller than these for charmonia. We may learn a lesson
from this kind of process and the example ϒ → cc̄gg in
Refs. [20,21]. Despite a rather small NRQCD matrix
element hv2iϒ, it is not always reasonable to discard the
relativistic corrections from ϒ, which actually have not
been considered carefully in most references. Moreover, it
is also important and valuable to further determine the
corresponding NRQCD matrix elements for ϒ through
independent approaches.

TABLE I. The LO and NLO relativistic corrections to decay rates of ϒ → ηcJ=ψ :ΓLO represents the decay rate at leading order in
velocity expansion; ΓðiÞ

NLO with i ¼ 0; 1; 2 represent the relativistic corrections from ϒ, ηc, and J=ψ , respectively; ΓNLO represents the
total relativistic corrections.

Processes ΓLO (eV) Γð0Þ
NLO (eV) Γð1Þ

NLO (eV) Γð2Þ
NLO (eV) ΓNLO

ΓLO

ϒð1SÞ → ηcð1SÞJ=ψ 0.41 0.03 −0.28 −0.22 −115%
ϒð1SÞ → ηcð2SÞJ=ψ 0.23 0.02 −0.17 −0.13 −122%
ϒð2SÞ → ηcð1SÞJ=ψ 0.22 −0.18 −0.15 −0.12 −204%
ϒð2SÞ → ηcð2SÞJ=ψ 0.13 −0.11 −0.10 −0.07 −211%
ϒð3SÞ → ηcð1SÞJ=ψ 0.18 −0.25 −0.12 −0.10 −263%
ϒð3SÞ → ηcð2SÞJ=ψ 0.10 −0.15 −0.08 −0.06 −270%
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As mentioned in the introduction, ϒ → ηcJ=ψ is of a
similar Feynman diagram structure as ψ → ρπ. We may
expect there are also a relative large relativistic corrections
for ψ in ψ → ρπ. Nevertheless, due to both large (even
huge) and negative corrections, the “ρ − π” puzzle is
unlikely to be explained purely by the relativistic correc-
tions, or at least by the NLO corrections.
By combining all the corrections, we show the ratios of

the decay rates of the relativistic corrections to that at
leading order in the Table I. Our results indicate that the
NLO relativistic corrections exceed the LO contributions
for all the processes, and what is worse, the corrections are
negative, which renders the total decay rates negative 3 and
therefore unpredictable at next-to-leading order. A resum-
mation for the large relativistic corrections may be needed
[37,38], but is, however, out of the scope of this work.
In summary, we study the NLO relativistic corrections

to ϒ exclusive decay into double S-wave charmonia.
We calculate the contributions from three channels
ϒ → g�g�g� → ηc þ J=ψ , ϒ → g�g�γ� → ηc þ J=ψ , and
ϒ → γ� → ηc þ J=ψ . Our results indicate, in spite of the

small hv2iϒ, the relativistic corrections from ϒ are extraor-
dinarily large, which suggests the relativistic corrections
fromϒ are not always negligible. Moreover, we find that all
the relativistic corrections to the decay rates are both
significant and negative, which indicates a poor conver-
gence in velocity expansion for this kind of process.
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APPENDIX: ANALYTIC EXPRESSIONS OF SDCs cð1Þ FOR THE CHANNEL ϒ → g�g�g� → ηcJ=ψ

For convenience, we rewrite the SDCs as

cð1Þ0 ¼ α3s
6m7

c
s0; cð1Þ0 cð1Þ2;1 ¼

α3s
6m7

c
s1; cð1Þ0 cð1Þ2;2 ¼

α3s
6m7

c
s2; cð1Þ0 cð1Þ2;3 ¼

α3s
6m7

c
s3 ðA1Þ

and define

L1 ¼ Re

�
ð−1þ i

ffiffiffi
3

p
βÞ ln iðβ − 1Þffiffiffi

3
p

β − i
þ ð1þ i

ffiffiffi
3

p
βÞ ln iðβ þ 1Þffiffiffi

3
p

β þ i

�
;

L2 ¼ Re

�
Li2

ð−iþ ffiffiffi
3

p Þβffiffiffi
3

p
β þ i

− Li2
ð−iþ ffiffiffi

3
p Þβffiffiffi

3
p

β − i

�
; L3 ¼ Li2

1 − β

2
;

L4 ¼ Li2
β − 1

β þ 1
; L5 ¼ Li2

2β

β þ 1
; L6 ¼ Li2

β2 þ β

β − 1
; L7 ¼ Li2

β2 þ β

2 − 6r
;

L8 ¼ Li2
βðβ þ 1Þ2
4ð1 − 3rÞ ; L9 ¼ Li2

β − β2

β þ 1
; L10 ¼ Li2

β − β2

6r − 2
; L11 ¼ Li2

ðβ − 1Þ2β
12r − 4

;

I1 ¼ ln 2; I2 ¼ lnð1 − βÞ; I3 ¼ ln
1 − β

1þ β
; I4 ¼ lnð1 − 3rÞ; I5 ¼ ln

4ð1 − 3rÞ
ðβ þ 1Þ2 ;

A1 ¼ tan−1ð
ffiffiffi
3

p
βÞ; ðA2Þ

where r ¼ m2
c

m2
b
, β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4r
p

, and LðxÞ represents the dilogarithm.

Utilizing the definitions in (A2), we present s0, s1, s2, and s3 as follows:

s0 ¼
20πð2r − 1Þr3ðI12 þ I22 þ 2L3þ L4Þ

27β3
þ 5πð10r − 3Þr3I32

27β3

−
5πð2r − 1Þr½8r2I3þ βð2r − 1Þ�I2

27β3
−
5πð2r − 1Þrðβ þ 8r2I2 − 8r2I3 − 2βrÞI1

27β3

3Since decay rates are expanded in powers of v and αs, and truncated at relative Oðv2Þ, we obtain negative values.
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þ 5πr½β − 8ð2I4þ iπ þ 4Þr3 þ 4ðβ þ iπ þ 4Þr2 − 2ð2β þ 3Þrþ 1�I3
54β3

þ 40πr4

27β3

�
2π

3
A1þ 2L2þ 2L5þ L6þ L7 − L8 − L9 − L10þ L11

�

−
5πr2½3β3 þ 2ð2 ffiffiffi

3
p

− 3iÞπβrþ π2rð2r − 1Þ�
81β3

; (A3)

s1 ¼
40πr5L1

27ð3r − 1Þβ5 þ
40πr4ðI4 − I5Þ

27β4
þ 10πð104r2 − 8r − 9Þr3

81β5

×

�
2π

3
A1þ 2L2þ 2L5þ L6þ L7 − L8 − L9 − L10þ L11

�

þ 10πð304r2 − 206rþ 37Þr3
81β5

ðI12 þ I22 þ 2L3þ L4Þ þ 5πð1120r2 − 634rþ 93Þr3I32
162β5

−
5π

972ð12r2 − 7rþ 1Þ2β f2π
2ð1 − 3rÞ2ð304r2 − 206rþ 37Þr3 þ 4π½8ð−405iþ 181

ffiffiffi
3

p
Þr3

þ ð3213i − 1532
ffiffiffi
3

p
Þr2 þ 6ð−177iþ 88

ffiffiffi
3

p
Þr − 60

ffiffiffi
3

p
þ 117i�βr3 þ ð−14976r6 þ 12888r5

− 1162r4 − 2593r3 þ 1286r2 − 249rþ 18Þβg þ 5π

486β5r
½24ð304r2 − 206rþ 37Þ

× r4ðI1I1 − I1I2 − I2I3Þ þ ð480r5 − 44r4 − 200r3 þ 235r2 − 84rþ 9ÞðI1 − I2Þβ�

þ 5πI3
486β5r

�
β3

ð12r2 − 7rþ 1Þ2ðβ þ 1Þ ½3456ð40þ 19iπÞr9 − 144iðπð114β þ 727Þ

− 48ið7β þ 33ÞÞr8 þ 4ð14598β þ 3iπð1839β þ 5585Þ þ 34606Þr7 þ ð−20974β
− 6iπð1873β þ 3585Þ − 25754Þr6 þ ð−5731β þ 24iπð107β þ 144Þ − 18253Þr5
þ 2ð4749β − 111iπðβ þ 1Þ þ 8515Þr4 − 2ð2353β þ 3431Þr3 þ ð1225β þ 1537Þr2

− 3ð55β þ 61Þrþ 9ðβ þ 1Þ� − 12r4ð104r2 − 8r − 9ÞI4
�
; ðA4Þ

s2 ¼
10πð13r − 1Þr3

81β5

�
2π

3
A1þ 2L2þ 2L5þ L6þ L7 − L8 − L9 − L10þ L11

�

þ 20πð40r3 − 15rþ 2Þr3ðI12 þ I22 þ 2L3þ L4Þ
81β5

þ 5πð120r3 − 32rþ 5Þr3I32
81β5

þ 5π

486β5
½48ð40r3 − 15rþ 2Þr3ðI1I3 − I1I2 − I2I3Þ þ βð288r5 − 352r4 − 232r3

þ 224r2 − 48rþ 3ÞðI1 − I2Þ� − 20πr4ðI4 − I5Þ
27β4

−
20πr5L1

27β5ð3r − 1Þ

þ 5πI3
486β5

�
−12ð13r − 1Þr3I4 − β3

ðβ þ 1Þð12r2 − 7rþ 1Þ2 ½−3ðβ þ 1Þ

− 384ið45π − 236iÞr9 þ 96ð290β þ 15iπð3β þ 11Þ þ 1402Þr8
þ 16ð−2523β − 15iπð12β − 7Þ − 5003Þr7 þ 4ð3842β − 3iπð95β þ 527Þ þ 2110Þr6
þ 4ð1742β þ 324iπðβ þ 2Þ þ 5075Þr5 þ ð−8805β − 12iπð27β þ 35Þ − 14809Þr4

þ ð3583β þ 24iπðβ þ 1Þ þ 4913Þr3 − 2ð367β þ 439Þr2 þ ð75β þ 81Þr�
�
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−
5πr

8748βð12r2 − 7rþ 1Þ2 ½36π
2ð1 − 3rÞ2ð40r3 − 15rþ 2Þr2

þ 4πβð216ð70
ffiffiffi
3

p
− 93iÞr4 − 4ð4036

ffiffiffi
3

p
− 4401iÞr3 þ ð6468

ffiffiffi
3

p
− 5931iÞr2

− 18ð68
ffiffiffi
3

p
− 59iÞrþ 100

ffiffiffi
3

p
− 99iÞr2 − 9βð10560r6 − 9568r5 þ 648r4 þ 1983r3

− 824r2 þ 123r − 6Þ�; (A5)

and

s3 ¼ −
100πr5L1

27ð3r − 1Þβ5 −
100πr4ðI4 − I5Þ

27β4
þ 10πð72r2 þ 31r − 1Þr3

81β5

×

�
2π

3
A1þ 2L2þ 2L5þ L6þ L7 − L8 − L9 − L10þ L11

�

þ 10πð400r3 − 24r2 − 140rþ 19Þr3ðI12 þ I22 þ 2L3þ L4Þ
81β5

þ 5πð1200r3 þ 72r2 − 358rþ 55Þr3I32
162β5

−
5π

8748ð12r2 − 7rþ 1Þ2β ½18π
2ð1 − 3rÞ2

× ð400r3 − 24r2 − 140rþ 19Þr3 þ 8πð540ð−93iþ 70
ffiffiffi
3

p
Þr4 þ ð43524i − 40036

ffiffiffi
3

p
Þr3

þ 3ð−4794iþ 5291
ffiffiffi
3

p
Þr2 − 90ð−28iþ 33

ffiffiffi
3

p
Þrþ 241

ffiffiffi
3

p
− 234iÞβr3 − 9ð52800r7

− 57632r6 þ 22872r5 − 7217r4 þ 4017r3 − 1565r2 þ 279r − 18Þβ�

þ 5π

486β5r
½24ð400r3 − 24r2 − 140rþ 19Þr4ðI1I3 − I2I3 − I1I2Þ þ ð1440r6 − 1904r5

− 4r4 − 100r3 þ 307r2 − 99rþ 9ÞðI1 − I2Þβ�

þ 5πI3
486β5r

�
β3

ð12r2 − 7rþ 1Þ2ðβ þ 1Þ ½1920ð236þ 45iπÞr10

− 96ið3πð75β þ 293Þ − 2ið725β þ 3421ÞÞr9 þ 16ð12525β þ 3iπð327β − 31Þ þ 25513Þr8
þ 8ið537πβ þ 12797iβ þ 3498π þ 16349iÞr7 þ 2ð11339β − 3iπð987β þ 2003Þ þ 15363Þr6
þ 2ið762πβ þ 5240iβ þ 990π þ 12631iÞr5 þ ð11041β − 114iπðβ þ 1Þ þ 20095Þr4

− 4ð1411β þ 2046Þr3 þ 2ð716β þ 887Þr2 − 18ð10β þ 11Þrþ 9ðβ þ 1Þ� − 12r4ð72r2 þ 31r − 1ÞI4
�
: ðA6Þ
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