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We study the properties of the Xð4260Þ resonance by reanalyzing all experimental data available,
especially the eþe− → J=ψπþπ−, ωχc0 cross section data. The final-state interactions of the ππ, KK̄
coupled-channel system are also taken into account. A sizable coupling between Xð4260Þ and ωχc0 is
found. The inclusion of the ωχc0 data indicates a small value of Γeþe− ¼ 23.30� 3.55 eV.
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I. INTRODUCTION

The Xð4260Þ resonance [previously called Yð4260Þ] was
found by the BABAR Collaboration in the initial-state
radiation process eþe− → γISRJ=ψπþπ− in 2005 [1], and
was later confirmed by the CLEO [2] and Belle [3]
collaborations. In Ref. [4], the mass and width of this
resonance were given as M ¼ 4251� 9 MeV and
Γ ¼ 120� 12 MeV, respectively. Furthermore, Γee ×
BrðJ=ψππÞ ¼ 9.7� 1.1 eV [3] or 9.2� 1.5 eV [5].
From the theoretical viewpoint, the structure of Xð4260Þ
is very interesting, since it is generally thought that there are
not enough unassigned vector states in the charmonium
spectrum [including the recently reported Yð4360Þ and
Xð4630Þ=Yð4660Þ states]. The masses are also inconsistent
with naive quark-model predictions [6]; the only such 1−−

states expected up to 4.4 GeV are 1S, 2S, 1D, 3S, 2D, and
4S, and they seem to be well established [7]. The situation is
depicted in Fig. 1. It is noticed that above the DD̄ threshold
the number of 1−− states given by the quark-model pre-
diction is inconsistent with that given by experiments. One
tends to believe that the discrepancy between the naive
quark-model prediction and the observed spectrum is
ascribed, at least partially, to the existence of many open
charm thresholds, since the latter will distort the spectrum.
The situation is depicted in Fig. 2. Because of the situation
described, above many theoretical papers have been devoted
to the investigation of Xð4260Þ. In the literature, many
models have been made, e.g., the χc0ρ0 molecule [8], ωχc1
molecule [9], cc̄g hybrid state [10–14], ΛcΛ̄c baryonium
[15], D1D̄ or D0D̄�

0 molecule [16–18], hadro-charmonium
[19], the nonresonant explanation [20,21], etc. Besides, the
tetraquark-state explanation is also very interesting [22–28],
especially after the two resonances Zcð3900Þ and Zcð4025Þ
were recently found in the J=ψπ and Dð�ÞD̄ð�Þ channels in

eþe− annihilation near 4.26 GeV by the BESIII
Collaboration [29], and confirmed by the Belle [30] and
CLEO [31] collaborations. However, the open charm chan-
nels (such as D̄D�, DD̄�, and D�D̄�) are not found in the
final states of Xð4260Þ decays [32–34], making the proper-
ties of Xð4260Þ even more mysterious.
The present authors have also studied the Xð4260Þ issue

in a previous edition of the present paper ([35], hereafter
denoted as V1). Through a careful comparison with
available experimental data, it was found that Xð4260Þ
has a sizable coupling to the ωχc0 channel, but not to other
(nearby) channels. Inspired by our result, a recent exper-
imental analysis [36,37] showed that there is indeed a
sizable ωχc0 final-state signal in eþe− collisions at around
4.26 GeV, which hints that Xð4260Þ may have a large
coupling to ωχc0, although it is not totally clear whether the
ωχc0 is from the continuum spectrum or the Xð4260Þ
resonance, or from both. Furthermore, the cross section of
the hcππ channel [38] was also measured at this energy,
implying that Xð4260Þmay also couple to it. Because of all
of these new observations, we have an urge to upgrade the
work of V1. In the present paper, we continue the preceding
analysis by including the ωχc0 (and also hcππ) cross-
section data, and we find that the major qualitative
conclusion of V1 still holds; that is, Xð4260Þ couples
significantly to ωχc0 but not to other nearby thresholds.
Furthermore, we find that the Xð4260Þ resonance is likely
to maintain a small eþe− width, thanks to the new
ωχc0 data.
The paper is organized as follows. In Sec. II we review

the theoretical tools we use in this paper, where special
emphasis is placed on the final-state interactions (FSI)
between pions and kaons. In Sec. III we give a detailed
description of our numerical fit program with two scenar-
ios: one that does not include the ωχc0 cross-section data
[36,37], and on that does. Both of them take into account
the effect of the possible hcππ decay channel. The pole
locations of the Xð4260Þ propagator are also investigated.
Finally, conclusions and physical discussions of the present
analysis are given in Sec. IV.
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II. THEORETICAL DISCUSSIONS
OF eþe− → J=ψππ

A. Effective Lagrangian describing
eþe− → J=ψππ interactions

Assuming that Xð4260Þ is a JPC ¼ 1−− chiral singlet
particle, there are two methods to describe the JPC ¼ 1−−

field: a vector and an antisymmetric tensor. The antisym-
metric tensor representation of a massive vector field is
equivalent to the vector representation [39] in the on-shell
situation. However, the high-energy behavior of the tensor
representation is better than the vector representation. [40]
In the antisymmetric tensor representation, the equation of
motion of a massive 1−− field Wμν (Wμν ¼ −Wνμ) is

∂μ∂σWσν − ∂ν∂σWσμ þM2Wμν ¼ 0: ð1Þ

The propagator is

h0jTfWμνðxÞWρσðyÞgj0i

¼ iM−2
Z

d4ke−ikðx−yÞ

ð2πÞ4

×
gμρgνσðM2 − k2Þ þ gμρkνkσ − gμσknvkρ − ðμ ↔ νÞ

M2 − k2 − iϵ
:

ð2Þ

This propagator corresponds to the normalization [39]

h0jWμνjW;pi ¼ iM−1½pμϵνðpÞ − pνϵμðpÞ�: ð3Þ

The transition operator between a photon and Xð4260Þ in
the antisymmetric representation is the following:

LγX ¼ g0XμνFμν; ð4Þ

where we use the antisymmetric representation Xμν to
describe the 1−− state Xð4260Þ, and Fμν denotes the
photon field strength. Notice that in the present notation,
one has

Γeþe− ¼ 4α

3

g20
MX

; ð5Þ

where we have neglected the electron-positron masses. For
Xð4260Þ decay, the following effective Lagrangian is used,
which is accurate in the leading order in the expansion in
terms of theπ momentum in the center-of-mass frame of ππ
system:

LXψPP ¼ h1Xμνψ
μνhuαuαi þ h2Xμνψ

μνhχþi
þ h3Xμαψ

μβhuβuαi; ð6Þ

FIG. 2. Location of Xð4260Þ and nearby thresholds.

FIG. 1 (color online). Xð4260Þ and nearby resonances from the naive quark-model calculation [6].
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where the antisymmetric representation ψμν describes
J=ψ . Up to the Oðp2

πÞ level, in Eq. (6) there exist
only three independent interaction terms with the coef-
ficients h1, h2, and h3. Further, uμ ¼ iðuþ∂μu − u∂μuþÞ
and

u ¼ exp

�
i

Φffiffiffi
2

p
Fπ

�
ð7Þ

is the parametrization of the pseudo-Goldstone octet:

Φ ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCA: ð8Þ

The chiral symmetry-breaking term with the coefficient
h2 in Eq. (6) reads

χþ ¼ uþχuþ þ uχþu;

χ ¼ 2B0diagðmu;md;msÞ: ð9Þ

The parameters Fπ and B0 can be fixed phenomenologi-
cally: Fπ≈92.4MeV and h0∣ψψ̄ ∣0i¼−F2B0½1þOðmqÞ�.
Equation (6) can also be rewritten in an explicit form,

L1 ¼
4h1
F2
π
XμνFμν

�
∂ρπ

þ∂ρπ− þ 1

2
∂ρπ

0∂ρπ0 þ ∂ρKþ∂ρK−

þ ∂ρK0∂ρK̄0 þ 1

2
∂ρη∂ρη

�
;

L2 ¼ −
4h2
F2
π
XμνFμν

�
m2

ππ
þπ− þ 1

2
m2

ππ
0π0 þm2

KK
þK−

þm2
KK

0K̄0 þ
�
2

3
m2

K −
1

6
m2

η

�
ηη

�
;

L3 ¼
4h3
F2
π
XμαFμβ

�
1

2
∂βπ

þ∂απ− þ 1

2
∂βπ

−∂απþ

þ 1

2
∂βπ

0∂απ0 þ 1

2
∂βKþ∂αK− þ 1

2
∂βK−∂αKþ

þ 1

2
∂βK0∂αK̄0 þ 1

2
∂βK̄0∂αK0 þ 1

2
∂βη

0∂αη0
�
:

ð10Þ

B. Kinematics and tree-level amplitudes

We denote the momenta of e−, eþ, Xð4260Þ,
J=ψ , πþ, and π− as q1, q2, q, l, qþ, and q−, respectively
(see Fig. 3). The polarization of J=ψ is represented

as ϵψ , and k� ¼ qþ � q−. Then one has the following
relations:

s≡ k2þ;

k2− ¼ −sρðsÞ2 ¼ 4m2
π − s;

l2 ¼ M2
J=ψ ; kþ · k− ¼ 0;

kþ · l ¼ 1

2
ðq2 −M2

J=ψ − sÞ; ð11Þ

where ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π
s

q
. The amplitude of the X →

J=ψπþπ− process at tree level is

iAtree ¼ i4eg0
MJ=ψF2

πq2DXðq2Þ
v̄ðq1; sÞγλuðq2; s0Þ

×
��

4h1
1

2
ðs − 2m2

πÞ þ 4h2m2
π

�
ðl · qϵλψ − q · ϵψ lλÞ

þ 1

2
h3½−lαq · ϵψðkλþkαþ − kλ−kα−Þ

þ ϵλψ lαqβðkαþkβþ − kα−kβ−Þ
− lλqαϵψβðkαþkβþ − kα−kβ−Þ

þ l · qϵψαðkλþkαþ − kλ−kα−Þ�
�
; ð12Þ

where α; β; λ are Lorentz indices and DXðq2Þ is the
denominator of the Xð4260Þ propagator, which will be
discussed later.
Following the helicity amplitude decomposition method

[41] and choosing the basis of tensors

~tð0Þ ¼ 1;

~tð1Þ ¼ kμ−;

~tð2Þ ¼ kμ−kν− −
1

3
k2− ~gμν;

�
~gμν ¼ gμν −

kμþkνþ
k2þ

�
; ð13Þ

it is easy to separate the S-wave and D-wave com-
ponents of the ππ system. The overall S-wave ampli-
tude reads

FIG. 3. A depiction of kinematics.
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iAtree
s ¼ i4eg0

MJ=ψF2
πq2DXðq2Þ

v̄ðq1; sÞγλuðq2; s0Þϵψω
��

4h1
1

2
ðs − 2m2

πÞ þ 4h2m2
π

�
ðl · qgλω − qωlλÞ

þ 1

2
h3

�
−
1

3
ρ2ðsÞlλqωsþ

�
1 −

1

3
ρ2ðsÞ

�
kλþqωl · kþ þ 1

3
ρ2ðsÞl · qgλωs

−
�
1 −

1

3
ρ2ðsÞ

�
gλωkþ · qkþ · l −

1

3
ρ2ðsÞlλqωsþ

�
1 −

1

3
ρ2ðsÞ

�
kλþlωq · kþ

þ 1

3
ρ2ðsÞl · qgλωs −

�
1 −

1

3
ρ2ðsÞ

�
kλþkωþq · l

��
; ð14Þ

whereas the D-wave part is

iAtree
d ¼ i4eg0

MJ=ψF2
πq2DXðq2Þ

v̄ðq1; sÞγλuðq2; s0Þϵωψ

×
1

2
h3ðtλα2 lαqω − tαβ2 gλωlαqβ þ tαβ2 gβωlλqα

− tλα2 gαωl · qÞ

≡ 2eg0h3
F2
πMJ=ψq2DXðq2Þ

Bd: ð15Þ

The standard Breit-Wigner type of Xð4260Þ propagator is
parametrized as DXðq2Þ ¼ M2

X − q2 − iMXΓXðq2Þ, where
ΓXðq2Þ is the total decay width including the partial widths
of all possible channels, which will be discussed later.
Since the D-wave contribution is proportional to the

fourth power of the kinematic factor ρðsÞ, it is highly
suppressed compared with the S-wave contribution.
Through numerical studies it is shown that the D-wave
contribution is roughly less than 1% of the total decay rate,
and therefore we will not include it in the fitting process in
this work.

C. Final-state interactions

The tree-level amplitude as described in Sec. II B is not
sufficient to describe the X → J=ψππ decay process, since
the ππ system undergoes strong final-state interactions,
especially in the IJ ¼ 00 channel. To include FSI, the
following decay amplitude is proposed [42]:

A1 ¼ Atree
1 α1ðsÞT 11ðsÞ þAtree

2 α2ðsÞT 21ðsÞ;
A2 ¼ Atree

1 α1ðsÞT 12ðsÞ þAtree
2 α2ðsÞT 22ðsÞ; ð16Þ

where the subscripts 1 and 2 denote the ππ and KK̄ final
states, respectively; T 11, T 12, and T 22 are unitarized partial
wave amplitudes representing ππ → ππ, ππ → KK̄, and
KK̄ → KK̄ scatterings, respectively. They are constructed
from the one-loop chiral perturbative amplitude

T ≡
�
T11; T12

T21; T22

�

using the [1, 1] Padé approximation,

T ¼ Tð2Þ 1

Tð2Þ − Tð4Þ T
ð2Þ; ð17Þ

where the superscripts (2) and (4) represent Oðp2Þ and
Oðp4Þ chiral amplitudes, respectively. In such a way, the
scattering matrix T is unitary (T 21 ¼ T 12),

ImT 11 ¼ T �
11ρ1T11 þ T �

12ρ2T21;

ImT 12 ¼ T �
12ρ2T22 þ T �

11ρ1T12;

ImT 22 ¼ T �
21ρ1T12 þ T �

22ρ2T22: ð18Þ

In Eq. (16) the functions αi are mild polynomials which
play the role of offsetting the “left-hand” cuts on the
complex s plane in the amplitude T that should not appear
in the function A. The unitarity relations of Eq. (16) are
then automatically satisfied. Further, in α1ðsÞ an additional
pole term is added:

α1ðsÞ ¼
cð1Þ0

s − sA
þ cð1Þ1 þ cð1Þ2 sþ � � � ; ð19Þ

where sA represents the Adler zero of T11. The role of the
pole term is to cancel the Adler zero that is hidden in T11

but not welcome in A [42].1 Up to the leading order in chiral

perturbation theory, one finds cð1Þ0 ¼ 16πF2
π and sA ¼

m2
π=2 in the I ¼ 0 S-wave. However in the [1, 1] matrix

Padé amplitude, sA¼ð0.490−0.008iÞm2
π and we fix

cð1Þ0 ¼ ð0.330 − 0.001iÞ GeV2 ¼ ð0.779 − 0.002iÞ16πF2
π .
2

In V1, three different representations of the T matrices
were used for the fit (the coupled-channel Padé approxi-
mation [43], K-matrix unitarization [44], and the Peking

1An advantage of the pole term in Eq. (19) is that, by

appropriately choosing the coefficient cð1Þ0 as lims→sA
cð1Þ
0

s−sA
×

T11ðsÞ ¼ 1, it guarantees A1 ¼ Atree
1 þOðs2Þ.

2The Adler zero moves to the complex plane because the
existence of the left-hand cut ð−∞; 4m2

K − 4m2
π � of T22, which

has been taken into T11 due to the matrix Padé approximation
(and similarly for that of c10.)
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University Representation (PKU) [45]); however, not much
difference was obtained. Therefore, we only keep the Padé
amplitude in this work to perform the fit to the ππ invariant
mass spectrum. In Table I we list the low-energy constants
of the Oðp4Þ chiral Lagrangian being used here.3 For more
details about these T matrices, we refer to the original
literature.

III. NUMERICAL ANALYSIS

A. The experimental data and fit process

Once the Xð4260Þ → J=ψππ amplitude is calculated
from Eq. (16), one obtains the decay width ΓJ=ψππ , the cross
section eþe− → Xð4260Þ → J=ψππ, and the ππ invariant
mass spectrum. In this subsection we focus on how to write
down the correct form of the denominator for the Xð4260Þ
propagator.
Beside the J=ψππ channel indicated by the experiment,

the Xð4260Þ may also decay into hcππ, and there are other
nearby thresholds close to Xð4260Þ, such as χc0ω
(4197 MeV), D�þ

s D̄�−
s (4224 MeV), D−Dþ

1 ð2420Þ
(4291 MeV), χc1ω (4293 MeV), etc. It is possible that
Xð4260Þ couples to all of these channels. Therefore a
careful method is to write down the denominator of the
Xð4260Þ propagator as

DXðq2Þ ¼ M2
X − q2 − i

ffiffiffiffiffi
q2

q
Γðq2Þ; ð20Þ

where ΓXðq2Þ consists of all partial widths,

ΓXðq2Þ ¼ ΓJ=ψππðq2Þ þ Γhcππ þ gωχc0kωχc0 þ gD�
sD�

s
k3D�

sD�
s

þ gDD1
kDD1

þ gωχc1kωχc1 þ Γ0: ð21Þ

Here ΓJ=ψππðq2Þ is calculated from the above amplitude of
Xð4260Þ → J=ψππ, and kωχc0 , kD�

sD�
s
, kDD1

, and kωχc1 are
the 3-momentum of ωχc0, D�

sD�
s ; DD1, and ωχc1 in the

Xð4260Þ rest frame, respectively. TheD�
sD�

s channel begins
with a P-wave coupling, and therefore it depends on
the third-order momentum, and the other three channels

are of S-wave couplings and hence only depend on their
first-order momentum. The possible rest partial widths are
parametrized as a constant Γ0. For hcππ, since the channel
momentum khcππ behaves like a constant near q2 ¼ M2

X,
we parametrize Γhcππ as a constant too. Notice that
Γhcππ=ΓJ=ψππðM2

XÞ is constrained by experiment. We dis-
cuss this point in more detail in the next section.
One may notice that Zcπ is also a possible decay channel

of Xð4260Þ but it is not considered in this work, since the
contribution of Xð4260Þ → Zcπ → J=ψππ can be absorbed
into the XJ=ψππ contact interaction in the Lagrangian (6).
To confirm this viewpoint, we tested the contribution of
Zcπ with the Breit-Wigner parametrization of Zc, and
found that there was not much difference between the
J=ψππ and ππ spectra with and without its contribution.
Therefore we exclude the Zcπ contribution in this paper and
leave it for future work.
In the present work we fit the Xð4260Þ line shape in the

region 4.15 GeV<
ffiffiffiffiffi
q2

p
< 4.47 GeV, where the data is

from Ref. [3] (16 data points) and Ref. [5] (16 data points);
see in Fig. 5(a). The total cross section of eþe− → J=ψππ is
given by

σeþe−→J=ψπþπ− ¼
Z

sþ

s−

Z
tþ

t−

jA1j2dsdt
ð2πÞ332ðq2Þ2 ; ð22Þ

where t ¼ ðq − q−Þ2, A1 is defined in Eq. (16) and the
lower and upper limits are given as

s− ¼ 4m2
π;

sþ ¼
	 ffiffiffiffiffi

q2
q

−MΨ



2
;

t� ¼ 1

4s
fðq2 −M2

ΨÞ2

− ½λ1=2ðq2; s;M2
ΨÞ ∓ λ1=2ðs;m2

π; m2
πÞ�2g;

λða; b; cÞ ¼ ða − b − cÞ2 − 4bc: ð23Þ

With Eq. (23), one finds that for a larger q2 the upper limit
of s becomes too large to ensure the validity of the
parametrization introduced in Sec. II C.4 For the ππ
invariant mass spectrum we use the data given in
Fig. 4b of Ref. [3], corresponding to

ffiffiffiffiffi
q2

p
∈ ½4.2; 4.4� GeV

(17 data points), the data
ffiffiffiffiffi
q2

p
∈ ½4.15; 4.45� GeV (41 data

points) in Ref. [5], and the data
ffiffiffiffiffi
q2

p
fixed at 4.26 GeV (44

points) from the recent experiment reported in Ref. [29].
For the first set of data, a Monte Carlo study of the
efficiency correction at

ffiffiffiffiffi
q2

p
¼ 4.26 GeV was performed

in Ref. [3], and through a numerical test we find that the

TABLE I. Low-energy constants from the coupled-channel
Padé amplitudes. Here these parameters are refitted and are
slightly different from those in Ref. [43]. The unit is 10−3.

L1 L2 L3 L4 L5 2L6 þ L8 2L7 þ L8

0.881 1.029 −3.803 0.176 1.111 1.123 0.392

3We noticed that for these low energy constant (LECs) there is
a difference between ours [43] (LO

i ) and that in the earlier work
[46] (LP

i ): L
P
i ¼ LO

i þ Γi

32π2
. This is because we calculated in the

MS scheme and theirs was calculated in the MS − 1 scheme. To
compare with their work we need to transform our LECs into LP

i ,
which was performed incorrectly in Ref. [43]; we correct it here.

4For
ffiffiffiffiffi
q2

p
¼ 4.47 GeV, it corresponds to a value

ffiffiffi
s

p ≃
1.17 GeV which is within the range where T can provide a
reasonable description.

NATURE OF Xð4260Þ PHYSICAL REVIEW D 92, 014020 (2015)

014020-5



efficiency curve is well reproduced by the ππ two-body
phase space up to a normalization constant; hence, in our fit
we simply use the two-body phase space instead of the
efficiency-corrected one. We assume the other two sets of
data maintain similar behavior. In total, there are 145 data
points in the πþπ− invariant mass spectrum to be used.
Recently, the cross section of the ωχc0 channel was

measured in the range [4.21, 4.45] GeV [36,37], where a
rough structure of the Xð4260Þ could be observed at
4.26 GeV. If we assume the events in Refs. [36,37] all
came from Xð4260Þ decay, then nine data points can be
used. Nevertheless, it may be possible that these events
come from the continuum rather than from Xð4260Þ; hence,
in our fit we carefully consider this possibility. That is, in
the following section, the fit named Fit I does not include
the ωχc0 cross section data, while in Sec. III C the ωχc0
cross section data are fitted, which we call Fit II. It is found
that Fit I does not differ much from the result of V1 (notice
that here we include the hcππ channel), but Fit II, which
includes the ωχc0 data, violates the approximate “scaling
law” found in V1 and leads to a small value of Γeþe− .
The parameters needed in our fit are the following. First,

Eqs. (4) and (6) describing the γ—X transition and the tree-
level Xð4260Þ J=ψ ππðKK̄Þ interactions provide four
parameters. Second, it is found that taking α1;2ðsÞ to be
linear polynomials (except the Adler zero term) is already
good enough for data fitting, and hence the two αiðsÞ
[i ¼ 1; 2 and each αiðsÞ contains two parameters] contrib-
ute another four parameters. Third, the mass MX of the
Xð4260Þ in the propagator and the coupling constant gωχc0
bring another two parameters. Finally, there are three
normalization factorsN1,N2, andN3 for the πþπ− invariant
mass spectra of Belle, BABAR, and BESIII, respectively.
After summing up there are 13 total parameters.
We also studied the parameters gD�

sD�
s
, gDD1

, gωχc1 , and Γ0

through rather extensive numerical tests in different envi-
ronments, and we found that gD�

sD�
s
, gDD1

, and gωχc1 are
always vanishingly small, which suggests that the coupling
of Xð4260Þ to D�

sD�
s , DD1ð2420Þ, and ωχc1 are negligible,

compared to J=ππ, ωχc0 and hcππ. Moreover, the param-
eter Γ0 tends to vanish in all of the different fits and hence it
can be ignored too.5 Therefore we will not include the
couplings to D�

sD�
s , DD1ð2420Þ, ωχc1, and Γ0 in our

discussion from now on.

B. Fit without ωχ c0 data

In this fit, which we call Fit I, only the J=ψππ cross
section and ππ invariant mass spectrum are included, and
not the ωχc0 cross section data, which will be analyzed in
the next section. Regarding the hcππ channel, however, on
the one hand the rough shape due to the lack of precision is

not an appropriate to fit. [47] On the other hand, it is not
clear yet whether they are from the Xð4260Þ resonance or
from the continuous background. As pointed out in
Ref. [28], hcππ is a suppressed decay mode of Xð4260Þ
compared with J=ψππ because the heavy-quark spin flip
violates heavy-quark symmetry. Therefore, we assume that
hcππ has an unknown width in the Xð4260Þ propagator; it
is assumed to be a constant because its threshold is far away
from the Xð4260Þ resonance,6 and it is constrained by the
width of ΓJ=ψππðq2Þ by the following relation:

Γhcππ ¼ R × ΓJ=ψππðq2Þjq¼4.26 GeV; ð26Þ

where the coefficient R ¼ 0.66 is a rough estimation from
the ratio of σhcππ=σJ=ψππ at q ¼ 4.26 GeV [38]. Of course,
we will also test the fits with different R values ranging
from 0 to 0.66.
When fit to the J=ψππ cross section and the ππ invariant

mass, we found that the value of g0 has a large uncertainty.

FIG. 4 (color online). χ2 dependence on g0. Fit I is without the
ωχc0 data, where we see the scaling behavior, whereas Fit II is
with the ωχc0 data, where the scaling behavior disappears.

5It is exactly for this reason that we will band the hcππ width
with the J=Ψππ width with a ratio R [see Eq. (26)]; otherwise, the
fit program will tend to destroy it.

6In fact, the momentum-dependent width of the hcππ channel
with a form factor is also tested in the fitting as follows:

Γhcππðq2Þ

∼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq2 − ð ffiffiffi
s

p þmhcÞ2Þðq2 − ð ffiffiffi
s

p
−mhcÞ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

π

p
4qs

× dsdΩ; ð24Þ

and

ΓXðq2Þ ¼ ðΓJ=ψππðq2Þ þ Γhcππðq2ÞÞ exp
�
q2 −M2

X

Λ2

�

þ gωχc0kωχc0 þ � � � : ð25Þ

This fitting result is always similar to the constant width of hcππ,
and therefore only the constant Γhcππ is shown in the text.

L. Y. DAI et al. PHYSICAL REVIEW D 92, 014020 (2015)

014020-6



Since it characterizes the transition between Xð4260Þ and
the photon field, or ΓX→eþe− according to Eq. (5), it should
not be too large to avoid the upper bound established by
an analysis of the BES experiment: Ref. [48] gives
ΓX→eþe− < 420 eV, or most conservatively <580 eV, at
the 90% confidence level. The dependence of χ2 on g0 is
clearly depicted in Fig. 4 (black squares), which exhibits an
approximate scaling law of the parameter g0. When g0
increases, the parameters hi have to become small to
compensate for the experimental value of ΓX→J=Ψππ as
given in Eq. (6). Looking at Eqs. (4) and (14), it is easy to
see out that ΓX→J=Ψππ is proportional to the product of g0

and hi. This mechanism keeps Γðq2Þ in the denominator of
the Xð4260Þ propagator [see Eq. (20)] almost unchanged
when g0 varies. As a consequence, χ2 becomes almost inert
with respect to the variation of g0 when it is large enough,
since the effect can be counterbalanced by a variation of hi.
This observation was already made in V1; here, we
reconfirm the “scaling law” even when Γhcππ is included.
The “scaling law” means that we cannot reliably deter-

mine the parameter g0 at all when g0 is large enough. It is
important to notice that in Fig. 4 there exists a large enough
space for g0 to maintain a (almost) minimal χ2, and at lower
values it is below the BES ΓX→eþe− bound given in
Ref. [48]. As an example, we list the lowest value of g0
at 4.24MeVwhich corresponds to ΓX→eþe− ≃ 41.1 eV, and
its fitting result is shown in Fig. 5 and Table II. For this

TABLE III. Definition of the four Riemann sheets with the
J=ψππ (hcππ) channel and ωχc0 channel.

Sheet I Sheet II Sheet III Sheet IV

ΓJ=ψππ þ Γhcππ þ − − þ
Γωχc0 þ þ − −

(a) (b)

(c) (d)

FIG. 5 (color online). The fit to the cross section eþe− → J=ψππ and ππ invariant mass spectrum without ωχc0 data. (a) Fit to J=ψππ
cross section data of Refs. [3,5]. (b) Fit to ππ invariant mass spectrum of Ref. [3]. (c) Fit to ππ invariant mass spectrum of Ref. [5]. (d) Fit
to ππ invariant mass spectrum of Ref. [29].

TABLE II. Parameters from Fit I and Fit II. The ratioR is chosen
as 0.66, for example. Since g0 is fixed, the total number
parameters is 12, and only the important parameters are presented.

Fit I Fit II

χ2=d:o:f. 187.1/(145-12) 193.5/(154-13)
g0 (MeV) 4.24 (fixed) 3.32� 0.11
gYωχc0 0.17� 0.01 0.06� 0.01
MX (GeV) 4.2504� 0.0034 4.2432� 0.0031
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chosen value, Table II indicates that the widths of J=ψππ,
hcππ, and ωχc0 at

ffiffiffiffiffi
q2

p
¼ 4.26 GeV are 32.4, 21.3, and

49.8 MeV, respectively.
We also search for poles of the Xð4260Þ propagator; the

complex plane is divided into four Riemann sheets byΓJ=ψππ

(Γhcππ) and Γωχc0 defined in Table III, and the pole positions
are presented in Table IV. It is noticeable that there are two

TABLE IV. Pole position of Fits I and II. The value of ffiffiffiffiffiffiffiffiffispole
p ¼

Mpole − iΓpole=2 is given in MeV.

Sheet I Sheet II Sheet III Sheet IV

Fit I – – 4231.9-44.2i 4233.2-42.5i
Fit II – 4241.5-24.4i 4232.8-36.3i –

(a) (b)

(c) (d)

(e)

FIG. 6 (color online). The cross section of eþe− → J=ψππ, the invariant mass of ππ, and the cross section of eþe− → ωχc0. (a) Fit to
J=ψππ cross section data of Refs. [3,5]. (b) Fit to ππ invariant mass spectrum of Ref. [3]. (c) Fit to ππ invariant mass spectrum of Ref.
[5]. (d) Fit to ππ invariant mass spectrum of Ref. [29]. (e) Fit to ωχc0 cross section data of Ref. [35].
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pairs of poles located above the ωχc0 threshold on the third
and fourth sheets, and both of them show a roughly 85MeV
pole width for the Xð4260Þ resonance. According to the
pole-counting rule in Refs. [49,50], the two pairs of near-
threshold poles indicate that Xð4260Þ is not like a molecule
resonance, but rather more like an “elementary” particle or
(in other words) a confining state.
For the purpose of extracting solid physical conclusions,

we also vary the coefficient R as 0.56,0.46,0.36,0.26,0.16,0
in the fit, and when R ¼ 0 the fit procedure is very similar
to that in V1 [35], where we found a large coupling
constant gωχc0 and also the χ2 scaling law on g0. It is found
that qualitative physical results are not sensitive to the R
value, and all the fits with different R values maintain the
same scaling law of the coupling constant g0. In all cases
the large coupling of the ωχc0 to Xð4260Þ always exists,
which coincides with the prediction in V1.
Before going to the next section, a brief conclusion is in

order: the fit result shows that the χ2 has an approximate
scaling law of g0, which could not be determined very well.
Two nearby poles are found on the third and fourth Riemann
sheets. The fit results are not sensitive to the R value, which
indicates that hcππ only contributes to Xð4260Þ decay as a
smooth background. We predict that the ωχc0 channel has a
large branching ratio in Xð4260Þ decay in all cases.

C. Fit including ωχ c0 cross section data

In the previous subsection, we confirmed that there
should be a sizable contribution from the ωχc0 channel
even when the recent ωχc0 cross section data from the
BESIII Collaboration [36,37] are not taken into consid-
eration. In this subsection, we include the ωχc0 cross
section data in our analysis to get a more precise result
for gωχc0. This will certainly benefit our understanding of
Xð4260Þ, provided that the ωχc0 data indeed come from
Xð4260Þ decay. The cross section of eþe− → Xð4260Þ →
ωχc0 is parametrized as in Ref. [4],

σeþe−→Xð4260Þ→ωχc0ðq2Þ ¼
3π

4q2
ΓeeΓωχc0

jDXðq2Þj2
; ð27Þ

where Γee is given in Eq. (5),DXðq2Þ is the denominator of
the Xð4260Þ propagator shown in Eqs. (20) and (21),
and Γωχc0 ¼ gωχc0kωχc0 .
The major difference after including the ωχc0 data in Fit

II is that the χ2 scaling law of g0 disappears. As shown in
Fig. 4 (green triangles), the χ2 has a minimum at
g0 ≃ 3.32 MeV. This suggests that this fit is more stable
than Fit I without the ωχc0 cross section.
We again take R ¼ 0.66 as an example: the fit result is

shown in Fig. 6 and Table II. From Table II, one notices that
the coupling of ωχc0 approaches a smaller value (but still
much larger than other open-charm channels), which is
well constrained by the new data of Xð4260Þ decaying into

ωχc0. The pole positions are also searched for and are
shown in Table IV. It should be noticed that there are two
pairs of poles on sheets II and III, which has a smaller pole
width (around 60 MeV) compared to Fit I.
Comparing the χ2=d:o:f:, Fit II (193.5/141) is similar in

quality to Fit I (187.1/133). The greatest physical difference
once the ωχc0 data are included is that it roughly reduces
gωχc0 by a factor of 3. The three partial widths ΓJ=ψππ ,
Γhcππ , and Γωχc0 are now 45.1, 29.9, and 16.9 MeV atffiffiffiffiffi
q2

p
¼ 4.26 GeV, respectively. The branching ratio of

ωχc0 in this fit is 18.5%, which is still sizable, and it is
still much larger compared with open-charm channels, such
asDD̄,D�D̄�, and D�

sD̄�
s . Furthermore, we verified that the

qualitative result is not sensitive to the ratio R in the range
[0, 0.66] (see Table V for an illustration).
In summary, after taking the ωχc0 cross section data into

account, the coupling of Xð4260Þ decay into ωχc0 becomes
smaller but fixable; even though it is no longer dominant, it
still plays an important role in Xð4260Þ decay, which
supports our previous conclusion. Certainly, because of the
large error bar near 4.26 GeV from the ωχc0 cross section
data [in Fig. 6(e)], a more qualitative conclusion would still
need more statistics from the experimental data.

IV. CONCLUSIONS AND DISCUSSION

Despite being discovered almost ten years ago, the
properties of Xð4260Þ remain mysterious. The nature of
this particle is still a controversial issue. In this work, we
investigated this particle based on all experimental data
available and very modest theoretical assumptions. Hence,
the conclusion we reached should be robust. Compared
with V1 [35], two more channels—hcππ and ωχc0—were
considered.
We have performed two fits: one without (Fit I) and one

with (Fit II) the ωχc0 cross section data. The two scenarios
have similar χ2=d:o:f: but different behavior for the
coupling constant g0. In the former, a χ2 scaling law of
g0 is observed which could not be determined from the fit,
while in the latter case the χ2 scaling law of g0 disappears,
which has a minimum value when g0 ¼ 3.32 MeV. The
value of g0 corresponds to Γeþe− ≃ 25 eV, which is
certainly below the Γeþe− bound from the BES experiment
[48]. Considering the variation of R, we also give the
following estimate:

TABLE V. Partial widths obtained when R changes. Γee is in
units of eV and the others are in units of MeV.

Fit II

R 0.66 0.56 0.46 0.36 0.26 0.16 0.00
Γee 25.23 24.36 23.55 22.82 22.19 22.03 22.02
Γωχc0 17.49 19.04 20.89 23.11 25.84 26.75 26.77
ΓJ=ψππ 54.52 57.02 59.67 62.42 65.21 65.82 65.02
Γhcππ 35.99 31.93 27.45 22.47 16.95 10.53 0
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Γee ¼ 23.30� 3.55 eV: ð28Þ

Compared with the experimental observation of
Γee × BrðJ=ψππÞ ¼ 9.7� 1.1 eV [3] or 9.2� 1.5 eV
[5], we conclude that the branching ratio of X(4260) decay
into J=ψππ is roughly 0.5. Finally, our analysis points out a
sizable coupling between Xð4260Þ and ωχc0. From the
viewpoint of heavy-quark symmetry, sinceωð1−−Þχc0ð0þþÞ
also conserves heavy-quark spin it is natural to expect that
its partial width is similar than that of J=ψππ.7

Although our result is still rather far from reaching any
sound conclusion about the nature of Xð4260Þ, some useful
information may be drawn from our analysis. In both Fits I
and II there are two nearby poles found in the Xð4260Þ
propagator, indicating that Xð4260Þ is most likely a
confining state [49,50]. This conclusion disfavors the
molecular interpretation of Xð4260Þ. Nevertheless, one
has to be cautious in making a quick conclusion: the
pole-counting rule [49] is based upon nonrelativistic
quantum scattering theory, and hence it may not be valid
for a molecular bound state made of one heavy and one
light particle [19].
The small value of Γeþe− may be consistent with the

hybrid scenario which indicates 5.5� 1.3 eV ≤ Γeþe− ≤
62� 15 eV [10] or 23� 20 eV [14]. Also the hybrid state

is suppressed to decay into DD̄, DsD̄s, D�D̄�, and D�
sD̄�

s
[51], which coincides with the experimental data for
Xð4260Þ. Nevertheless, since D1 is in the P wave, a hybrid
state is likely to have a large coupling to the DD1 channel;
this is not supported by experiment [52] or our analysis. It
should be pointed out that a small value of Γeþe− is also
consistent with the explanation that Xð4260Þ is the 3D
charmonium state. The difficulty of this possible explan-
ation comes from the role of Xð4160Þ, which is considered
as a candidate for the 3D charmonium state in the literature,
though it has a rather large Γeþe− width.
The analysis made in this paper suggests that Xð4260Þ is

a confining state rather than a molecular bound state.
Therefore, a tetraquark state can also be a possible
explanation for Xð4260Þ. Xð3872Þ is also a confining state
[50] and the former may hence be considered as the 1−−

counterpart of the latter [28]. The major difficulty for the
tetraquark scenario was also discussed in Ref. [28].
We hope our effort made in this paper will be helpful for

clarifying the issue of Xð4260Þ in future investigations.
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