
Electroproduction of the N�ð1535Þ nucleon resonance in QCD

I. V. Anikin,1,2 V. M. Braun,1 and N. Offen1
1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

2Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
(Received 26 May 2015; published 15 July 2015)

Following the 12 GeV upgrade, a dedicated experiment is planned with the Hall B CLAS12 detector at
Jefferson Laboratory, with the aim to study electroproduction of nucleon resonances at high photon
virtualities up to Q2 ¼ 12 GeV2. In this work we present a QCD-based approach to the theoretical
interpretation of these upcoming results in the framework of light cone sum rules that combine perturbative
calculations with dispersion relations and duality. The form factors are thus expressed in terms ofN�ð1535Þ
light-front wave functions at small transverse separations, called distribution amplitudes. The distribution
amplitudes can therefore be determined from the comparison with the experimental data on form factors
and compared to the results of lattice QCD simulations. The results of the corresponding next-to-leading
order calculation are presented and compared with the existing data. We find that the form factors are
dominated by the twist-four distribution amplitudes that are related to the p-wave three-quark wave
functions of the N�ð1535Þ, i.e. to contributions of orbital angular momentum.
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I. INTRODUCTION

It is generally accepted that studies of baryon form
factors at large momentum transfer Q2 give access to the
light-front wave functions at small transverse separations
between the constituents, called hadron distribution ampli-
tudes (DAs), although perturbative QCD factorization
[1–3] does not seem to be applicable for realistic Q2

accessible in current or planned experiments. The problem
is that the leading contribution involves two hard gluon
exchanges and is suppressed by the small factor ðαs=πÞ2 ∼
0.01 compared to the “soft” (end point) contributions which
are subleading in the power counting in 1=Q2 but do not
involve small coefficients. Hence the collinear factorization
regime is approached very slowly. Model calculations
suggest that “soft” contributions play the dominant role
at present energies. Taking into account soft contributions
is challenging because they involve a nontrivial overlap of
nonperturbative wave functions of the initial and the final
state hadrons, and are not factorizable, i.e. cannot be
simplified further in terms of simpler quantities.
In this situation the question what exactly do we learn

from the studies of form factors is far from trivial. One
existing description is to introduce more complicated,
transverse-momentum dependent (TMD) quark distribu-
tions, taking advantage of Sudakov suppression of large
transverse separations, following the technique suggested
initially by Li and Sterman [4] for the pion form factor.
Another approach that we advocate in this work is to
calculate the soft contributions to the form factors as an
expansion in terms of nucleon DAs of increasing twist
using dispersion relations and duality. This method is
known as light cone sum rules (LCSRs) [5] and provides
one with the most direct relation of the hadron form factors

and DAs that is available at present, with no other non-
perturbative parameters.
One attractive feature of the LCSR formalism is that

there is no double counting: perturbative QCD contribu-
tions [1–3] appear as part of the higher-order perturbative
corrections to the LCSRs. This matching of LCSR and
perturbative QCD factorization descriptions is shown by
explicit calculation and discussed in great detail in Ref. [6]
for the case of the pion form factor. For baryon form factors
the corresponding terms first occur at the next-to-next-to-
leading order level (two gluons) and are beyond the
accuracy of the present calculation. Since such terms are
suppressed by an additional αs=ð2πÞ factor, it is unlikely
that they play a significant role at accessible energies.
The LCSR approach has been used successfully for

the calculations of pion electromagnetic and also weak B-
decay form factors, see Refs. [6–8] for several recent state-
of-the-art calculations. The LCSRs for baryon form factors
are more complicated and recent. The first applications
for the nucleon electromagnetic form factors were in
Refs. [9,10]. Several further studies aimed at finding an
optimal nucleon interpolation current [10–13] and extend-
ing this technique to other elastic or transition form factors
of interest. LCSRs for the axial nucleon form factor were
presented in [10,12,14], for the scalar form factor in [14]
and tensor form factor in [15]. A generalization to the full
baryon octet was considered, e.g. in [16]. Application of the
same technique to NγΔ transitions was suggested in
[12,17] and to pion production at threshold in [18].
LCRSs for weak baryon decays Λb → p;Λlνl etc. were
studied in [19–22], etc. In the early work only the leading
order (LO) contributions to the coefficient functions in the
LCSRs have been taken into account. The first complete
next-to-leading order (NLO) analysis was done for the
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electromagnetic nucleon form factors in Ref. [23], and the
results appear to be consistent with the constraints on
nucleon DAs from lattice calculations [24]. The picture
emerging from these studies suggests that the momentum
fraction distribution of the valence quarks in the proton is
rather broad, with ∼40% of the momentum carried by the
u-quark that carries proton helicity, and approximately
symmetric to the interchange of the remaining quarks.
Our study is motivated by the dedicated experiment

planned with the Hall B CLAS12 detector at Jefferson
Laboratory following the 12 GeV upgrade, with the aim to
study electroproduction of nucleon resonances at high
photon virtualities up to Q2 ¼ 12 GeV2 [25]. The corre-
sponding form factors can be calculated using the LCSR
machinery in terms of the DAs of nucleon resonances.
Turning this relation around, information on the DAs of
resonances can be extracted from the comparison of the
LCSR calculations with the experimental data on form
factors and compared to the constraints that can come,
eventually, from lattice QCD simulations. This program
was suggested in Ref. [26], and an exploratory study was
made there for the particular case of electroproduction of
the lowest negative parity N�ð1535Þ resonance. In our
paper we elaborate on this proposal. Learning about quark
distributions in nucleon resonances is an exciting possibil-
ity, since existing QCD calculations of resonance proper-
ties, e.g. on the lattice, rarely go beyond the mass spectrum.
The case of N�ð1535Þ is special because the classifica-

tion and the structure of the light-front wave functions for
the states with opposite parity is almost identical. Hence the
LCSRs for the corresponding electroproduction form
factors are very similar to the LCSRs for electromagnetic
nucleon form factors. In particular the NLO expressions
derived in Ref. [23] can be overtaken with relatively minor
modifications. A detailed analysis of these NLO LCSRs is
the main goal of this work.
The presentation is organized as follows. The electro-

production form factors are introduced and the structure of
the corresponding LCSRs is explained in Sec. II. Section III
contains a detailed numerical analysis and comparison with
the existing experimental data, and Sec. IV is reserved for a
summary and outlook. A large Appendix A contains a short
review of the three-quark light-front wave functions of
JP ¼ ð1

2
Þ− nucleon resonances, their relation to DAs, and

also explains our conventions. Appendix B contains a
simple parametrization of the Q2 dependence of the
coefficient functions in the LCSRs.

II. ELECTROPRODUCTION FORM FACTORS
AND LIGHT CONE SUM RULES

The matrix element of the electromagnetic current jemν
between spin-1=2 states of opposite parity can be para-
metrized in terms of two independent form factors, which
can be chosen as

hN�ðP0Þjjemν jNðPÞi ¼ ūN� ðP0Þγ5ΓνuNðPÞ;

Γν ¼
G1ðq2Þ
m2

N
ðqqν − q2γνÞ

− i
G2ðq2Þ
mN

σνρqρ; ð1Þ

where q ¼ P0 − P is the momentum transfer. In what
follows we use the standard notation Q2 ¼ −q2. The
helicity amplitudes A1=2ðQ2Þ and S1=2ðQ2Þ for the electro-
production of N�ð1535Þ can be expressed in terms of the
form factors [27]:

A1=2 ¼ eB½Q2G1ðQ2Þ þmNðmN� −mNÞG2ðQ2Þ�;

S1=2 ¼
eBCffiffiffi

2
p ½ðmN −mN� ÞG1ðQ2Þ þmNG2ðQ2Þ�: ð2Þ

Here e ¼ ffiffiffiffiffiffiffiffi
4πα

p
is the elementary charge and B, C are

kinematic factors defined as

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ ðmN� þmNÞ2
2m5

Nðm2
N� −m2

NÞ

s
;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQ2 −m2

N� þm2
NÞ2

4Q2m2
N�

s
: ð3Þ

The basic object of the LCSR approach to baryon form
factors [9,10] is the correlation function

TνðP; qÞ ¼ i
Z

dxe−iqxhN�ðP0ÞjTfjνðxÞηNð0Þgj0i ð4Þ

in which j represents the electromagnetic (or weak) probe
and ηN is a suitable local operator with nucleon quantum
numbers. The N� resonance is explicitly represented by its
state vector hN�ðP0Þj, see a schematic representation in
Fig. 1. The LCSR is obtained by comparing (matching) two
different representations for the correlation function. On the
one hand, when both the momentum transfer q2 ¼ −Q2

and the momentum P2 ¼ ðP0 − qÞ2 flowing in the ηN
vertex are large and negative, the main contribution to
the integral comes from the light cone region x2 → 0 and
can be studied using the operator product expansion (OPE)

FIG. 1 (color online). Schematic structure of the light cone sum
rule for electroproduction form factors.
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of the time-ordered product TfjðxÞηNð0Þg. The singularity
at x2 → 0 of a particular contribution is governed by the
twist of the relevant composite operator whose matrix
element hN�j…j0i is related to the N� DA. On the other
hand, one can represent the answer in form of the
dispersion integral in P2 and define the nucleon contribu-
tion by the cutoff in the quark-antiquark invariant mass, the
so-called interval of duality s0 (or continuum threshold).
The main role of the interval of duality is that it does not
allow large momenta jk2j > s0 to flow through the ηN-
vertex; to the lowest order Oðα0sÞ one obtains a purely soft
contribution to the form factor as a sum of terms ordered by
twist of the relevant operators and hence including both the
leading- and the higher-twist nucleon DAs. Note that the
contribution of higher-twist DAs is suppressed by powers
of the continuum threshold (or by powers of the Borel
parameter after applying the usual QCD sum rule machi-
nery), but not by powers of Q2, the reason being that soft
contributions are not constrained to small transverse
separations.
The “plus” spinor projection (A8) of the correlation

function (4) involving the “plus” component of the electro-
magnetic current can be parametrized in terms of two
invariant functions

ΛþTþ ¼ pþfmNAðQ2; P02Þ þ q⊥BðQ2; P02ÞgNþðPÞ;
ð5Þ

where Q2 ¼ −q2 and P02 ¼ ðP − qÞ2. The correlation
functions AðQ2; P02Þ and BðQ2; P02Þ can be calculated
in QCD in terms of N� DAs for sufficiently large Euclidean
momenta Q2;−P02 ≳ 1 GeV2 using OPE. Schematically,

AðQ2; P02Þ ¼
X
k

Z
½dx�akðQ2; P02; xi; μ2FÞFkðxi; μ2FÞ;

BðQ2; P02Þ ¼
X
k

Z
½dx�bkðQ2; P02; xi; μ2FÞFkðxi; μ2FÞ;

ð6Þ

where the sum goes over all existing DAs, Fk ∈
fVk; Ak; Tk; Sk; Pkg defined in Eq. (A21), the integra-
tion goes over quark momentum fractions and μF stands
for the factorization scale. The coefficient functions
akðQ2; P02; xi; μ2FÞ and bkðQ2; P02; xi; μ2FÞ are known to
the NLO accuracy for twist-three and twist-four DAs [23],
and to LO for twist-five and twist-six. In principle this
expansion also contains contributions of four-particle DAs
with an additional gluon, five-particle with two gluons or a
quark-antiquark pair, etc. Such contributions start at twist-
four and they are not included in the present calculation
because the corresponding DAs are very poorly known
(see, however, Ref. [28]). It turns out that the coefficient
functions are the same for the states with negative and
positive parity, N�ð1535Þ and the nucleon, if the definitions

are chosen as explained in Appendix A. Thus we are able to
use the NLO expressions for the electromagnetic nucleon
form factors obtained in [23] with trivial modifications, e.g.
replacing nucleon mass mN by mN�. One difference is that,
because of the larger mass, corrections of the type m2

N�=Q2

become much larger and numerically significant. For this
reason in this work we use complete expressions for the LO
coefficient functions from Ref. [10] rather than the corre-
sponding expressions from Ref. [23] where the expansion
in powers of m2

N�=Q2 was truncated to match the accuracy
of the calculated NLO corrections.
The results of the QCD calculation in Euclidean region

can be presented in the form of a dispersion relation

AQCDðQ2; P02Þ ¼ 1

π

Z
∞

0

ds
s − P02 ImAQCDðQ2; sÞ þ � � �

BQCDðQ2; P02Þ ¼ 1

π

Z
∞

0

ds
s − P02 ImBQCDðQ2; sÞ þ � � �

ð7Þ
where the ellipses indicate possible subtractions. The same
correlation functions can be written in terms of physical
spectral densities that contain a nucleon (proton) pole at
P02 → m2

N , nucleon resonances and the continuum. The
nucleon contribution is, obviously, proportional to the
electroproduction form factors of interest, whereas for
higher mass states one can use quark-hadron duality:

AphysðQ2; P02Þ ¼ 2λN1 Q
2G1ðQ2Þ

mNmN� ðm2
N − P02Þ

þ 1

π

Z
∞

s0

ds
s − P02 ImAQCDðQ2; sÞ þ � � �

BphysðQ2; P02Þ ¼ −2λN1 G2ðQ2Þ
m2

N − P02

þ 1

π

Z
∞

s0

ds
s − P02 ImBQCDðQ2; sÞ þ � � �

ð8Þ
where s0 ≃ ð1.5 GeVÞ2 is the interval of duality (also
called continuum threshold). Matching the two above
representations and making the Borel transformation that
eliminates subtractions constants

1

s − P02 → e−s=M
2 ð9Þ

one obtains the sum rules

2λN1 Q
2G1ðQ2Þ

mNmN�
¼ 1

π

Z
s0

0

dseðm2
N−sÞ=M2

ImAQCDðQ2; sÞ;

−2λN1 G2ðQ2Þ ¼ 1

π

Z
s0

0

dseðm2
N−sÞ=M2

ImBQCDðQ2; sÞ:

ð10Þ
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The dependence on the Borel parameter M2 is unphysical
and has to disappear in the full QCD calculation. It can be
used to estimate theoretical uncertainties.

III. NUMERICAL ANALYSIS

Main nonperturbative input to the LCSRs for electro-
production form factors is provided by the DAs of nucleon
resonances that can be parameterized by two normalization
constants fN� , λN

�
1 and a set of shape parameters φnk, ηnk

corresponding to contributions of local operators of
increasing dimension, see Eqs. (A27) and (A31). The
dependence of the form factors on these parameters is
linear so that the results can conveniently be presented as

G1ðQ2Þ ¼ λN
�

1

λN1

�
g001 ðQ2Þ þ g101 ðQ2Þη10 þ g111 ðQ2Þη11

þ fN�

λN
�

1

½f001 ðQ2Þ þ f101 ðQ2Þφ10

þ f111 ðQ2Þφ11 þ � � ��
�

ð11Þ

and similarly

G2ðQ2Þ ¼ λN
�

1

λN1

�
g002 ðQ2Þ þ g102 ðQ2Þη10 þ g112 ðQ2Þη11

þ fN�

λN
�

1

½f002 ðQ2Þ þ f102 ðQ2Þφ10

þ f112 ðQ2Þφ11 þ � � ��
�

ð12Þ

where the ellipses stand for the contributions of second-
order polynomials in the leading-twist DAs (A27), terms in
φ20, φ21, φ22. The coefficient functions fn;k1;2ðQ2Þ and
gn;k1;2ðQ2Þ are given by very cumbersome analytic expres-
sions [23] and depend implicitly on the masses of N� and
the nucleon, the continuum threshold s0, Borel parameter
M2, QCD coupling αsðμFÞ and the factorization scale μF.
Note that, e.g., f001 ðQ2Þ includes the sum of contributions
of the asymptotic leading-twist DA and the corresponding
Wandzura-Wilczek terms in the higher-twist DAs, see
Appendix A and Ref. [23] for more details. Note also that
the DA Ξ4 (A25) corresponding to the lz ¼ 2 component

of the light-front three-quark wave function does not
contribute to the LCSRs for our choice of the nucleon
interpolating current.
Calculations in this work are done for the “standard”

choice of the specific LCSR parameters: continuum thresh-
old s0 ¼ ð1.5 GeVÞ2, Borel parameter M2 ¼ 2 GeV2 and
factorization (and renormalization) scale μ2F ¼ 2 GeV2.
The dependence on these parameters is rather mild; in
particular varying the Borel parameter in the range
1.5–2 GeV2 induces an overall variation of form factor
of the order of 10% so that, e.g., the ratio G2=G1 is largely
unchanged.
The resonance mass corrections enter the LCSRs in a

complicated way, as terms in m2
N�=Q2 and m2

N�=s0. The
latter ones do not decrease at large momentum transfers and
in an ideal case have to be resummed to all orders. The
corresponding expression exists for the LO LCSRs [10] but
not for the NLO corrections. In order to minimize this
mismatch we have rescaled the OðαsÞ contributions calcu-
lated in [23] by the ratio of the corresponding LO terms
calculated with account for m2

N� corrections and putting
m2

N� to zero. For the numerically important contributions
this rescaling corresponds to a reduction of the NLO
correction by 10%–20%.
Existing information on the DAs of negative parity

resonances is very scarce. The results of the recent lattice
calculation [24] are presented in Table I. The most
interesting feature of these results is that the corrections
to the asymptotic leading twist DAs have alternating signs
for the lattice states with increasing mass. In particular the
twist-three DA of N�ð1535Þ has a very small value at the
origin and is approximately antisymmetric with respect to
the exchange of the two valence quarks forming a scalar
“diquark”, whereas the DA of N�ð1535Þ is symmetric and
similar in shape to the nucleon DA, see Fig. 9 in Ref. [24].
These results are still exploratory and have to be taken with
caution because identification of lattice states with particu-
lar physical resonances is not obvious and requires further
study. Even with this uncertainty, the lattice values are very
helpful as knowing the order of magnitude of the param-
eters allows one to establish a hierarchy of different
contributions to the LCSR.
As an illustration, the NLO LCSR result for the

form factors at Q2 ¼ 2 GeV2 normalized to the dipole
formula

TABLE I. Parameters of the N�ð1535Þ distribution amplitudes at the scale μ2 ¼ 2 GeV2. For the lattice results [24] only statistical
errors are shown. The set of parameters indicated as LCSR (1) corresponds to the fit to the form factors G1ðQ2Þ and G2ðQ2Þ extracted
from the measurements of helicity amplitudes in Ref. [29] adding the errors in quadrature. The set of parameters indicated as LCSR (2) is
obtained from the fit to helicity amplitudes including all available data at Q2 ≥ 1.7 GeV2 [29–32].

Method λN1 =λ
N�
1 fN�=λN

�
1 φ10 φ11 φ20 φ21 φ22 η10 η11 Reference

LCSR (1) 0.633 0.027 0.36 −0.95 0 0 0 0.00 0.94 This work
LCSR (2) 0.633 0.027 0.37 −0.96 0 0 0 −0.29 0.23 This work
Lattice 0.633(43) 0.027(2) 0.28(12) −0.86ð10Þ 1.7(14) −2.0ð18Þ 1.7(26) [24]
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DðQ2Þ ¼ 1

ð1þQ2=aÞ2 ; a ¼ 0.71 GeV2 ð13Þ

can be written as follows:

GNLO
1 ðQ2Þ
DðQ2Þ ¼ λN

�
1

λN1
½0.666 − 2.18η10 þ 0.86η11

− 0.69~fN� − 1.76~fN�φ10 þ 1.05~fN�φ11

þ 1.3~fN�φ20 þ 0.66~fN�φ21 − 0.06~fN�φ22�;
GNLO

2 ðQ2Þ
DðQ2Þ ¼ λN

�
1

λN1
½−0.466þ 1.84η10 þ 0.06η11

− 0.82~fN� − 1.06~fN�φ10 − 1.08~fN�φ11

þ 2.6~fN�φ20 þ 1.5~fN�φ21 þ 0.39~fN�φ22�

where we use a notation ~fN� for the ratio of twist-three and
twist-four couplings

~fN� ¼ fN�

λN
�

1

¼ 0.027ð2Þ ½24�: ð14Þ

For comparison, the similar decomposition of the form
factors for the LO LCSRs [26] for the same value
Q2 ¼ 2 GeV2 reads

GLO
1 ðQ2Þ
DðQ2Þ ¼ λN

�
1

λN1
½0.816 − 2.02η10 þ 0.88η11

− 0.59~fN� − 1.60~fN�φ10 þ 1.19~fN�φ11

þ 1.26~fN�φ20 þ 0.70~fN�φ21 þ 0.12~fN�φ22�;
GLO

2 ðQ2Þ
DðQ2Þ ¼ λN

�
1

λN1
½−0.466þ 1.84η10 þ 0.06η11

− 1.19~fN� − 0.78~fN�φ10 þ 3.82~fN�φ11

þ 2.9~fN�φ20 þ 1.6~fN�φ21 þ 0.28~fN�φ22�

so that the NLO corrections are significant.
For convenience we provide a simple parametrization for

the coefficient functions fnk1;2, g
nk
1;2 (11), (12) as functions of

Q2 in Appendix B. This parametrization was obtained for
the region of momentum transfers 2 GeV2 < Q2 <
12 GeV2 and should not be used outside this interval. In
particular we found that the mass corrections ∼m2

N�=Q2

become very large for Q2 < 2 GeV2 so that the LCSRs
become unstable (and not reliable). In general, different
contributions to the LCSRs are distinguished by their Q2

dependence so that one needs a sufficient lever arm inQ2 to
determine several of them simultaneously.
Since the existing data for Q2 ≥ 1.5–2 GeV2 are very

limited, we put in this work all second-order coefficients in
the leading-twist DAs to zero, φ20 ¼ φ21 ¼ φ22 ¼ 0, used
central lattice values for fN� and λN

�
1 , and constrained

φ10;φ11 to the lattice values within the given error bars. In
this way we are left, essentially, with two free parameters
—η10 and η11. We expect that much more data will become
available after the 12 GeV upgrade at Jefferson Laboratory
where a dedicated experiment is planned to study electro-
production of nucleon resonances at high photon virtual-
ities up to Q2 ¼ 12 GeV2 [25].

0 2 4 6 8 10 12

–0.05
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0 2 4 6 8 10 12
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0.0

0.5

1.0

FIG. 2 (color online). Helicity amplitudes A12 and S12 for electroproduction of N�ð1535Þ (left panel) and the form factors G1ðQ2Þ,
G2ðQ2Þ, normalized to the dipole formula (right panel). Experimental data on the left panel are taken from [30] (empty squares) [31]
(filled squares) [32] (filled circles) and [29] (triangles). The form factors on the right panel are calculated from the data [29] on helicity
amplitudes adding the errors in quadrature. The curves show the results of the NLO LCSR fit to the form factorsG1ðQ2Þ andG2ðQ2Þ for
Q2 ≥ 1.7 GeV2 with parameters of the N�ð1535Þ DAs specified in the first line in Table I.
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Information on the electrocouplings of nucleon reso-
nances at large momentum transfers is obtained by
studying electroproduction of π and η mesons in the
respective resonance region [29–32]. The results are
usually presented for the helicity amplitudes, and in
earlier work only the larger one, A12ðQ2Þ, was studied
for large momentum transfers. The latest study [29] also
includes the results on S12ðQ2Þ up to Q2 ¼ 4.16 GeV2

allowing us to extract from these data the Dirac-like and
Pauli-like transition form factors G1ðQ2Þ and G2ðQ2Þ (1)
that are more relevant for QCD studies. In this extraction
we assumed that the errors for helicity amplitudes given
in Ref. [29] are uncorrelated and added them in quad-
rature. The results are shown in Figs. 2 and 3 on the right
panels; it is seen that the Pauli-like form factor changes
sign and becomes negative at large Q2, although the
errors are quite large.
Two different LCSR fits of the experimental data are

shown in Figs. 2 and 3. The difference is that in Fig. 2
the fit is done to the form factors extracted from the data
on helicity amplitudes reported in Ref. [29], and in
Fig. 3 we make a fit to the data on helicity amplitudes
A12ðQ2Þ and S12ðQ2Þ themselves including all existing
data for Q2 ≥ 1.7 GeV2. In the second case the fit is
driven by the data [30–32] on A12ðQ2Þ that have smaller
errors and not entirely consistent with [29], so that a
worse description of the form factors in this fit is not a
surprise. The corresponding parameters are listed in
Table I.
Because of the small value of the leading twist

normalization constant suggested by lattice calculations
(14), the results for A12ðQ2Þ and G1ðQ2Þ prove to be
almost insensitive to the leading twist DA of the
N�ð1535Þ resonance and are dominated by the twist-
four contributions corresponding to the p-wave parts of
the three-quark light-front wave functions (see
Appendix A). Moreover, sensitivity of the results to
the shape parameters of the twist-four DAs, η10 and η11,

is rather mild, cf. two last columns in the first and the
second line in Table I. Thus A12ðQ2Þ and G1ðQ2Þ are
both sensitive mostly to the ratio of the normalization
constants λN1 =λ

N�
1 which we fix to the lattice value 0.633

[24]. The LCSR predictions for these observables are
very stable, and the agreement of the existing data with
the normalization suggested by lattice calculations is
encouraging.
The S12ðQ2Þ amplitude and especially the Pauli-like

form factor G2ðQ2Þ are much more sensitive to the non-
perturbative input and in particular to the shape parameters
of the twist-four DAs, compare Figs. 2 and 3. Also the
leading-twist contributions play some role in this case
because of strong cancellations. More precise data and a
larger interval in Q2 are needed to make this comparison
quantitative.

IV. CONCLUSIONS AND OUTLOOK

In this work we argue that the LCSR approach can
provide one with quantitative information on the wave
functions of nucleon resonances at short distances. The
basic idea behind this technique is that soft Feynman
contributions to the form factors are calculated in terms
of small transverse distance quantities using dispersion
relations and duality. The form factors are thus expressed
in terms of light-front wave functions at small transverse
separations, called DAs, without additional parameters.
Alternatively, the distribution amplitudes can be
extracted from the comparison with the experimental
data on form factors and compared to the results of
lattice QCD simulations or other nonperturbative
approaches based on, e.g., QCD sum rules or Dyson-
Schwinger equations. The results of the corresponding
NLO calculation for the particular case of the N�ð1535Þ
resonance are presented and compared with the existing
data. We find that the form factors are dominated by
twist-four DAs that are related to the p-wave three-quark
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FIG. 3 (color online). The same as in Fig. 2 but for the fit to helicity amplitudes A12, S12 including all available data atQ2 ≥ 1.7 GeV2.
The fitted parameters of the N�ð1535Þ DAs are specified in the second line in Table I.
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wave functions, i.e., to the distribution of orbital angular
momentum.
Interestingly enough the LCSRs have the same form for

spin-1=2 resonances of both parities so that apart from the
(calculable) effects of resonance mass corrections the
difference in observed form factors of, say, N�ð1535Þ
and N�ð1650Þ can be attributed to the difference in the
wave functions, which is of major interest. The differences
between nucleon elastic form factors and electroexcitation
of the Roper resonance can be studied in a similar manner;
however, it is likely that in the latter case interpretation of
the results may require a better understanding and more
sophisticated models of twist-five DAs than are available at
present.
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APPENDIX A: LIGHT-FRONT WAVE
FUNCTIONS AND DAS OF JP ¼ ð12Þ− NUCLEON

RESONANCES

In the light-front description [3] a hadron is represented
by the superposition of Fock states with different number of
partons. Restricting ourselves to the three-quark (valence)
components we view, e.g., the proton with positive helicity
as a superposition of states with different values of the
quark orbital angular momentum projection on the direc-
tion of motion, lz ¼ −1; 0; 1; 2,

jN↑i ¼
X
lz

jN↑ilzuud: ðA1Þ

A nonzero value of lz accounts for the mismatch between
the proton helicity and the sum of helicities of the valence
quarks λi so that 1=2 ¼ λ1 þ λ2 þ λ3 þ lz. The four differ-
ent contributions can be written in terms of six independent
scalar light-front wave functions as [33–35]

jN↑ilz¼0
uud ¼ ϵijkffiffiffi

6
p

Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ½ψ ð0Þ
N;1ð1; 2; 3Þ þ iϵαβk⊥1αk⊥2βψ

ð0Þ
N;2ð1; 2; 3Þ�b†iu↑ð1Þðb†ju↓ð2Þb†kd↑ð3Þ − b†jd↓ð2Þb†ku↑ð3ÞÞj0i;

jN↑ilz¼1
uud ¼ ϵijkffiffiffi

6
p

Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ½k⊥1 ψ ð1Þ
N;1ð1; 2; 3Þ þ k⊥2 ψ

ð1Þ
N;2ð1; 2; 3Þ�ðb†iu↑ð1Þb†ju↓ð2Þb†kd↓ð3Þ − b†id↑ð1Þb†ju↓ð2Þb†ku↓ð3ÞÞj0i;

jN↑ilz¼−1
uud ¼ ϵijkffiffiffi

6
p

Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ½k̄⊥1 ψ ð−1Þ
N ð1; 2; 3Þ�b†iu↑ð1Þðb†ju↑ð2Þb†kd↑ð3Þ − b†jd↑ð2Þb†ku↑ð3ÞÞj0i;

jN↑ilz¼2
uud ¼ ϵijkffiffiffi

6
p

Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ½k⊥1 k⊥3 ψ ð2Þ
N ð1; 2; 3Þ�ðb†iu↓ð1Þb†ju↓ð2Þb†kd↓ð3Þ − b†iu↓ð1Þb†jd↓ð2Þb†ku↓ð3ÞÞj0i: ðA2Þ

Here b†iu↑ð1Þ etc. are creation operators for the quarks of
specific flavor with positive ↑ or negative ↓ helicity; the
argument (1) stands for the dependence on longitudinal
momentum fractions and transverse momenta of the given
quark, i.e. u↑ið1Þ ¼ u↑iðx1; k⊥1 Þ, and so on. We use the
notation for transverse momenta

k⊥ ¼ k⊥x þ ik⊥y ;
k̄⊥ ¼ k⊥x − ik⊥y : ðA3Þ

The light-front wave functions ψ ðlzÞ
N;i ð1; 2; 3Þ depend on

momentum fractions xi and transverse momenta squared
jk⊥;ij2 ¼ kik̄i of all partons. The integration measure is
chosen as [28]

½dx� ¼
Y3
k¼1

dxkδ

�
1 −

X
xk

�
; ðA4Þ

and

½dk⊥� ¼
1

4ð2πÞ6
Y3
k¼1

d2k⊥k δð2Þ
�X

k⊥i
�
: ðA5Þ

The proton light cone DAs, in turn, are defined as matrix
elements of gauge-invariant nonlocal operators with the
three quark fields separated by a lightlike distance.
Standard decomposition [36] involves 24 invariant
functions:
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4h0jϵijkuiαða1nÞujβða2nÞdkγða3nÞjNðP; λÞi
¼ SN1 mNCαβðγ5uþNÞγ þ SN2 mNCαβðγ5u−NÞγ þ PN

1 mNðγ5CÞαβðuþNÞγ þ PN
2 mNðγ5CÞαβðu−NÞγ

þ VN
1 ðpCÞαβðγ5uþNÞγ þ VN

2 ðpCÞαβðγ5u−NÞγ þ
1

2
VN
3 mNðγ⊥CÞαβðγ⊥γ5uþNÞγ

þ 1

2
VN
4 mNðγ⊥CÞαβðγ⊥γ5u−NÞγ þ VN

5

m2
N

2pn
ðnCÞαβðγ5uþNÞγ þ

m2
N

2pn
VN
6 ðnCÞαβðγ5u−NÞγ

þ AN
1 ðpγ5CÞαβðuþNÞγ þ AN

2 ðpγ5CÞαβðu−NÞγ þ
1

2
AN
3 mNðγ⊥γ5CÞαβðγ⊥uþNÞγ

þ 1

2
AN
4 mNðγ⊥γ5CÞαβðγ⊥u−NÞγ þ AN

5

m2
N

2pn
ðnγ5CÞαβðuþNÞγ þ

m2
N

2pn
AN
6 ðnγ5CÞαβðu−NÞγ

þ TN
1 ðiσ⊥pCÞαβðγ⊥γ5uþNÞγ þ TN

2 ðiσ⊥pCÞαβðγ⊥γ5u−NÞγ þ TN
3

mN

pn
ðiσpnCÞαβðγ5uþNÞγ

þ TN
4

mN

pn
ðiσnpCÞαβðγ5u−NÞγ þ TN

5

m2
N

2pn
ðiσ⊥nCÞαβðγ⊥γ5uþNÞγ þ

m2
N

2pn
TN
6 ðiσ⊥nCÞαβðγ⊥γ5u−NÞγ

þ 1

2
mNTN

7 ðσ⊥⊥0CÞαβðσ⊥⊥0
γ5u

þ
NÞγ þ

1

2
mNTN

8 ðσ⊥⊥0CÞαβðσ⊥⊥0
γ5u−NÞγ; ðA6Þ

In this expression α; β; γ are spinor indices, nμ is an
auxiliary lightlike vector, n2 ¼ 0,

pμ ¼ Pμ −
1

2

m2
N

Pn
; p2 ¼ 0; ðA7Þ

where Pμ is the proton momentum, P2 ¼ m2
N . Further,

u�N ¼ Λ�uNðP; λÞ where uNðP; λÞ is the usual Dirac spinor
in relativistic normalization, the projectors are defined as

Λþ ¼ pn
2pn

; Λ− ¼ np
2pn

;

g⊥μν ¼ gμν −
pμnν þ pνnμ

pn
ðA8Þ

and C is the charge-conjugation matrix. We use a shorthand
notation σ⊥n ⊗ γ⊥ ¼ σμνnνg

μα
⊥ ⊗ γα, etc. The invariant

functions F ¼ Vi; Ai; Ti correspond to contributions of a
given collinear twist and can be written as Fourier integrals

Fðaj; pnÞ ¼
Z

½dx�e−iðpnÞ
P

i
xiaiFðxiÞ ðA9Þ

where FðxiÞ depend on the three valence quark momentum
fractions xi.
Using various symmetries these functions can be com-

bined in eight independent light cone DAs [36]. There
exists a single DA for the leading twist-three [3]

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞnd↑k ða3nÞjNðP; λÞi

¼ −
1

2
fNðpnÞnu↑NðPÞ

Z
½dx�e−iðpnÞ

P
xiaiφNðxiÞ;

ðA10Þ

such that [37]

V1ð1; 2; 3Þ ¼
1

2
fN ½φNð1; 2; 3Þ þ φNð2; 1; 3Þ�;

A1ð1; 2; 3Þ ¼
1

2
fN ½φNð2; 1; 3Þ − φNð1; 2; 3Þ�;

T1ð1; 2; 3Þ ¼
1

2
fN ½φNð1; 3; 2Þ þ φNð2; 3; 1Þ�; ðA11Þ

and for twist-four there are three independent DAs [36]

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞpd↑k ða3nÞjNðP; λÞi

¼ − 1

4
ðpnÞpu↑NðPÞ

Z
½dx�e−iðpnÞ

P
xiai

× ½fNΦN;WW
4 ðxiÞ þ λN1 Φ

N
4 ðxiÞ�; ðA12Þ

h0jϵijkðu↑i ða1nÞCnγ⊥pu↓j ða2nÞÞγ⊥nd↑k ða3nÞjNðP; λÞi

¼ − 1

2
ðpnÞnmNu

↑
NðPÞ

Z
½dx�e−iðpnÞ

P
xiai

× ½fNΨN;WW
4 ðxiÞ − λN1 Ψ

N
4 ðxiÞ�; ðA13Þ

h0jϵijkðu↑i ða1nÞCpnu↑j ða2nÞÞnd↑k ða3nÞjNðP; λÞi

¼ λN2
12

ðpnÞnmNu
↑
NðPÞ

Z
½dx�e−iðpnÞ

P
xiaiΞN

4 ðxiÞ;

ðA14Þ
where ΦN;WW

4 ðxiÞ and ΨN;WW
4 ðxiÞ are the so-called

Wandzura-Wilczek contributions that can be expressed in
terms of the leading-twist DAφNðxiÞ [38,39]. The constants
fN , λN1 and λN2 are defined in such a way that the integrals of
the DAs φN , Φ4, Ψ4, Ξ4 are normalized to unity:
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Z
½dx�FðxiÞ ¼ 1; F ∈ fφN;Φ4;Ψ4;Ξ4g: ðA15Þ

Using the canonical expansion of the quark fields in
(A10), (A12) in terms of creation and annihilation operators

and Dirac equation to eliminate “bad” quark field compo-
nents it is easy to calculate the requiredmatrix elements from
the set of light-front wave functions in Eqs. (A2). In this way
one obtains for our normalization (cf. [35,40])

fNφNðx1; x2; x3Þ ¼ −4 ffiffiffi
6

p Z
½dk⊥�ψ ð0Þ

N;1ð1; 2; 3Þ;

½λN1 ΦN
4 þ fNΦ

N;WW
4 �ðx2; x1; x3Þ ¼ −8 ffiffiffi

6
p Z ½dk⊥�

x3mN
k⊥3 · ½k̄⊥1 ψ ð1Þ

N;1 þ k̄⊥2 ψ
ð1Þ
N;2�ð1; 2; 3Þ;

½λN1 ΨN
4 − fNΨ

N;WW
4 �ðx1; x2; x3Þ ¼ −8 ffiffiffi

6
p Z ½dk⊥�

x2mN
k̄⊥2 · ½k⊥1 ψ ð1Þ

N;1 þ k⊥2 ψ
ð1Þ
N;2�ð1; 2; 3Þ;

λN2 Ξ
N
4 ðx1; x2; x3Þ ¼ −24 ffiffiffi

6
p Z ½dk⊥�

x1mN
k⊥1 · ½k̄⊥1 ðψ ð−1Þ

N ð1; 3; 2Þ − ψ ð−1Þ
N ð1; 2; 3ÞÞ

þ k̄⊥2 ðψ ð−1Þ
N ð2; 3; 1Þ − ψ ð−1Þ

N ð2; 1; 3ÞÞ� ðA16Þ

so that DAs correspond to integrals over the light-front
wave functions over transverse momenta, with some
prefactors. One has to have in mind that these relations
are somewhat schematic since transverse momentum in-
tegrals on the right-hand side (rhs) are divergent and have to
be regulated e.g. introducing a cutoff. In turn, the DAs are
usually defined using dimensional regularization and the
minimal subtraction so that a matching coefficient can be
necessary. Also the wave function renormalization factors
have to be added for the quark fields. The twist-four DAs
include additional contributions from the four-particle Fock
states with an extra gluon [28,34]. If these contributions are
taken into account, the four-particle quark-gluon nucleon
DAs have to be added as well [28,38].
The complete set of nucleon DAs carries the full

information on the nucleon structure, in the same manner
as the complete basis of light-front wave functions. In
practice, however, both expansions have to be truncated
and the usefulness of a truncated version, taking into
account either the first few Fock states or a few lowest
twist contributions, may depend on the concrete physics
application.

The classification of the three-quark nucleon light-front
wave functions in Eq. (A2) can be overtaken for the
negative parity isospin-1=2 resonances, e.g. N�ð1535Þ,
without modification. The symmetry under parity trans-
formation does not constrain the light-front wave functions
but affects the relation between the wave functions of the
states with opposite helicity in terms of the helicity-flipped
quarks. The corresponding expressions can be worked out
using the Jacobi-Wick transformation [41]

Ŷ jN; λi ¼ ηNð−1Þ1=2−λjN;−λi ðA17Þ

where Ŷ is the parity transformation followed by a 188°
rotation along the y-axis, and ηN is internal parity, ηN ¼ 1

for the nucleon and ηN ¼ −1 for N�ð1535Þ. Thus k⊥↦Ŷ k̄⊥,

jN;↑i↦Ŷ ηN jN;↓i, whereas for the quark states

q ¼ u; db†iq↑j0i↦
Ŷ
b†iq↓j0i, but b†iq↓j0i↦

Ŷ
− b†iq↑j0i. Applying

this transformation to the both sides of Eq. (A2) one
obtains [33]

jN↓ilz¼0
uud ¼ −ηN ϵijkffiffiffi

6
p

Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ½ψ ð0Þ
N;1ð1; 2; 3Þ þ iϵαβk̄⊥1αk̄⊥2βψ

ð0Þ
N;2ð1; 2; 3Þ�b†iu↓ð1Þðb†ju↑ð2Þb†kd↓ð3Þ − b†jd↑ð2Þb†ku↓ð3ÞÞj0i;

jN↓ilz¼−1
uud ¼ ηN

ϵijkffiffiffi
6

p
Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2x3
p ½k̄⊥1 ψ ð1Þ

N;1ð1; 2; 3Þ þ k̄⊥2 ψ
ð1Þ
N;2ð1; 2; 3Þ�ðb†iu↓ð1Þb†ju↑ð2Þb†kd↑ð3Þ − b†id↓ð1Þb†ju↑ð2Þb†ku↑ð3ÞÞj0i;

jN↓ilz¼1
uud ¼ ηN

ϵijkffiffiffi
6

p
Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2x3
p ½k⊥1 ψ ð−1Þ

N ð1; 2; 3Þ�b†iu↓ð1Þðb†ju↓ð2Þb†kd↓ð3Þ − b†jd↓ð2Þb†ku↓ð3ÞÞj0i;

jN↓ilz¼−2
uud ¼ −ηN ϵijkffiffiffi

6
p

Z ½dx�½dk⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ½k̄⊥1 k̄⊥3 ψ ð2Þ
N ð1; 2; 3Þ�ðb†iu↑ð1Þb†ju↑ð2Þb†kd↑ð3Þ − b†iu↑ð1Þb†jd↑ð2Þb†ku↑ð3ÞÞj0i: ðA18Þ
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so that, e.g., for the lz ¼ 0 states

ψ ð0Þ
N;1ð1; 2; 3ÞjN↓ ¼ −ηNψ ð0Þ

N;1ð1; 2; 3ÞjN↑ ðA19Þ

A Lorentz-covariant definition of the DAs of negative
parity resonances involves some freedom. It is con-
venient to choose the definition in such a way that the

coefficient functions in the OPE of currents (4) are the
same for states of both parities, and also the relations
between different DAs imposed by QCD equations of
motion remain the same. As noticed in Ref. [26], this can
be achieved using invariant decomposition of the
N�ð1535Þ matrix element in terms of the γ5-rotated quark
fields

4ðγ5Þαα0 ðγ5Þββ0 ðγ5Þγγ0 h0jϵijkuiα0 ða1nÞujβ0 ða2nÞdkγ0 ða3nÞjN�ðP; λÞi ¼ SN
�

1 mN�Cαβðγ5uþN� Þγ þ � � � ðA20Þ

where the expression on the right-hand side is the same as in Eq. (A6) with obvious replacementsmN → mN� etc. Projecting
out the γ5 matrices we obtain

4h0jϵijkuiαða1nÞujβða2nÞdkγða3nÞjN�ðP; λÞi
¼ SN

�
1 mN�CαβðuþN� Þγ þ SN

�
2 mN�Cαβðu−N� Þγ þ PN�

1 mN� ðγ5CÞαβðγ5uþN� Þγ þ PN�
2 mN�ðγ5CÞαβðγ5u−N� Þγ

− VN�
1 ðpCÞαβðuþN� Þγ − VN�

2 ðpCÞαβðu−N� Þγ þ
1

2
VN�
3 mN�ðγ⊥CÞαβðγ⊥uþN� Þγ

þ 1

2
VN�
4 mN� ðγ⊥CÞαβðγ⊥u−N� Þγ − VN�

5

m2
N�

2pn
ðnCÞαβðuþN�Þγ −

m2
N�

2pn
VN�
6 ðnCÞαβðu−N� Þγ

− AN�
1 ðpγ5CÞαβðγ5uþN�Þγ − AN�

2 ðpγ5CÞαβðγ5u−N� Þγ þ
1

2
AN�
3 mN� ðγ⊥γ5CÞαβðγ⊥γ5uþN� Þγ

þ 1

2
AN�
4 mN�ðγ⊥γ5CÞαβðγ⊥γ5u−N� Þγ − AN�

5

m2
N�

2pn
ðnγ5CÞαβðγ5uþN� Þγ −

m2
N�

2pn
AN�
6 ðnγ5CÞαβðγ5u−N� Þγ

− TN�
1 ðiσ⊥pCÞαβðγ⊥uþN� Þγ − TN�

2 ðiσ⊥pCÞαβðγ⊥u−N� Þγ þ TN�
3

mN�

pn
ðiσpnCÞαβðuþN� Þγ

þ TN�
4

mN�

pn
ðiσnpCÞαβðu−N� Þγ − TN�

5

m2
N�

2pn
ðiσ⊥nCÞαβðγ⊥uþN� Þγ −

m2
N�

2pn
TN�
6 ðiσ⊥nCÞαβðγ⊥u−N� Þγ

þ 1

2
mN�TN�

7 ðσ⊥⊥0CÞαβðσ⊥⊥0
uþN� Þγ þ

1

2
mN�TN�

8 ðσ⊥⊥0CÞαβðσ⊥⊥0
u−N� Þγ; ðA21Þ

This expression replaces the decomposition (A6) for the
nucleon. Note that there are some minus signs and in
particular all three leading twist DAs V1, A1 and T1 are
defined in our convention with a different sign as compared
to the nucleon. As a consequence in the definition of
leading-twist DA in terms of the chiral quark fields there is
a minus sign as compared to (A10),

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞnd↑k ða3nÞjN�ðPÞi

¼ 1

2
fN� ðpnÞnu↑N� ðPÞ

Z
½dx�e−iðpnÞ

P
xiaiφN�ðxiÞ;

ðA22Þ

where, of course, P2 ¼ m2
N� and the expressions for the

invariant functions VN�
1 ; AN�

1 ; TN�
1 in terms of φN� , are the

same as for the nucleon, Eq. (A11).

The twist-four DAs also acquire some signs [26]

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞpd↑k ða3nÞjN�ðPÞi

¼ 1

4
ðpnÞpu↑N�ðPÞ

Z
½dx�e−iðpnÞ

P
xiai

× ½fN�ΦN�;WW
4 ðxiÞ þ λ�1Φ

N�
4 ðxiÞ�; ðA23Þ

h0jϵijkðu↑i ða1nÞCnγ⊥pu↓j ða2nÞÞγ⊥nd↑k ða3nÞjN�ðPÞi

¼ − 1

2
ðpnÞnmN�u↑N�ðPÞ

Z
½dx�e−iðpnÞ

P
xiai

× ½fN�ΨN�;WW
4 ðxiÞ − λ�1Ψ

N�
4 ðxiÞ�; ðA24Þ
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h0jϵijkðu↑i ða1nÞCpnu↑j ða2nÞÞnd↑k ða3nÞjN�ðpÞi ¼ λ�2
12

ðpnÞnmN�u↑N� ðPÞ
Z

½dx�e−iðpnÞ
P

xiaiΞN�
4 ðxiÞ; ðA25Þ

where ΦN�;WW
4 ðxiÞ and ΨN�;WW

4 ðxiÞ are given by the same expressions in terms of the expansion of the leading-twist DA
φN� ðxiÞ as for the nucleon.
The price to pay for universality of correlation functions for positive and negative parities is that the relations between

DAs and light-front wave functions in this convention acquire some signs as well,

fN�φN�ðx1; x2; x3Þ ¼ þ4
ffiffiffi
6

p Z
½dk⊥�ψ ð0Þ

N�;1ð1; 2; 3Þ;

½λN�
1 ΦN�

4 þ fNΦ
N�;WW
4 �ðx2; x1; x3Þ ¼ þ8

ffiffiffi
6

p Z ½dk⊥�
x3mN�

k⊥3 · ½k̄⊥1 ψ ð1Þ
N�;1 þ k̄⊥2 ψ

ð1Þ
N�;2�ð1; 2; 3Þ;

½λN�
1 ΨN�

4 − fNΨ
N�;WW
4 �ðx1; x2; x3Þ ¼ −8 ffiffiffi

6
p Z ½dk⊥�

x2mN�
k̄⊥2 · ½k⊥1 ψ ð1Þ

N�;1 þ k⊥2 ψ
ð1Þ
N�;2�ð1; 2; 3Þ;

λN
�

2 ΞN�
4 ðx1; x2; x3Þ ¼ −24 ffiffiffi

6
p Z ½dk⊥�

x1mN�
k⊥1 · ½k̄⊥1 ðψ ð−1Þ

N� ð1; 3; 2Þ − ψ ð−1Þ
N� ð1; 2; 3ÞÞ

þ k̄⊥2 ðψ ð−1Þ
N� ð2; 3; 1Þ − ψ ð−1Þ

N� ð2; 1; 3ÞÞ�; ðA26Þ

that have to be taken into account for the interpretation of the results.
Parametrization of the DAs of the resonances can be overtaken from that for the nucleon. The leading-twist DA φN� ðxi; μÞ

can be expanded in the set of orthogonal polynomials PnkðxiÞ

φNðxi; μÞ ¼ 120x1x2x3
X∞
n¼0

Xn
k¼0

φnkðμÞPnkðxiÞ;
Z

½dx�x1x2x3PnkðxiÞPn0k0 ðxiÞ ∝ δnn0δkk0 ; ðA27Þ

such that the coefficients are renormalized multiplicatively to one-loop accuracy,

fN� ðμÞ ¼ fN� ðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
2=ð3β0Þ

; φnkðμÞ ¼ φnkðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
γnk=β0

: ðA28Þ

Here β0 ¼ 11 − 2
3
nf is the first coefficient of the QCD β

function and γnk are the anomalous dimensions. The double
sum in Eq. (A27) goes over a complete set of orthogonal
polynomials PnkðxiÞ, k ¼ 0;…; n, of degree n:

P00 ¼ 1;

P10 ¼ 21ðx1 − x3Þ;P11 ¼ 7ðx1 − 2x2 þ x3Þ;

P20 ¼
63

10
½3ðx1 − x3Þ2 − 3x2ðx1 þ x3Þ þ 2x22�;

P21 ¼
63

2
ðx1 − 3x2 þ x3Þðx1 − x3Þ;

P22 ¼
9

5
½x21 þ 9x2ðx1 þ x3Þ − 12x1x3 − 6x22 þ x23� ðA29Þ

etc., and the corresponding anomalous dimensions are

γ00 ¼ 0; γ10 ¼
20

9
; γ11 ¼

8

3
;

γ20 ¼
32

9
; γ21 ¼

40

9
; γ22 ¼

14

3
: ðA30Þ

The normalization condition (A15) implies that φ00 ¼ 1. In
the main text we refer to the coefficients φnkðμ0Þ with
n ¼ 1; 2;…, as shape parameters. The set of these coef-
ficients together with the normalization constant fNðμ0Þ at
a reference scale μ0 specifies the momentum fraction
distribution of valence quarks on the nucleon. They are
related to matrix elements of local gauge-invariant three-
quark operators and can be calculated, e.g., on the lattice
[24,26].
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The twist-four DAs can be parameterized as [38]

ΦN�
4 ðxi; μÞ ¼ 24x1x2f1þ η10ðμÞR10ðx3; x1; x2Þ

− η11ðμÞR11ðx3; x1; x2Þg;
ΨN�

4 ðxi; μÞ ¼ 24x1x3f1þ η10ðμÞR10ðx2; x3; x1Þ
þ η11ðμÞR11ðx2; x3; x1Þg;

ΞN�
4 ðxi; μÞ ¼ 24x2x3

�
1þ 9

4
ξ10ðμÞR10ðx1; x3; x2Þ

�
;

ðA31Þ

where

R10ðx1; x2; x3Þ ¼ 4

�
x1 þ x2 −

3

2
x3

�
;

R11ðx1; x2; x3Þ ¼
20

3

�
x1 − x2 þ

1

2
x3

�
ðA32Þ

and η10ðμÞ, η11ðμÞ, ξ10ðμÞ are the new shape parameters.
The corresponding one-loop anomalous dimensions are
[38]

γðηÞ10 ¼ 20

9
; γðηÞ11 ¼ 4; γðξÞ10 ¼ 10

3
: ðA33Þ

For the twist-five DAs we take into account contributions of
geometric twist-three and twist-four operators as explained
in Ref. [23].
Note that the asymptotic DAs (at very large scales) for

the nucleon and the resonances are the same:

φasðxiÞ ¼ 120x1x2x3; Φas
4 ðxiÞ ¼ 24x1x2;

ΦWW;as
4 ðxiÞ ¼ 24x1x2

�
1þ 2

3
ð1 − 5x3Þ

�
;

ΨWW;as
4 ðxiÞ ¼ 24x1x3

�
1þ 2

3
ð1 − 5x2Þ

�
;

Ξ4ðxiÞ ¼ 24x2x3; Ψas
4 ðxiÞ ¼ 24x1x3: ðA34Þ

For completeness we also give here the definitions of the
normalization constants in terms of matrix elements of local
three-quark operators:

h0jϵijkðuiCnujÞð0Þγ5ndkð0ÞjN�ðPÞi
¼ fN�ðpnÞγ5nuN� ðPÞ;

h0jϵijkðuiCγμujÞð0Þγ5γμdkð0ÞjN�ðpÞi
¼ λN

�
1 mN�γ5uN� ðPÞ;

h0jϵijkðuiCσμνujÞð0Þγ5σμνdkð0ÞjN�ðPÞi
¼ λN

�
2 mN�γ5uN� ðPÞ: ðA35Þ

APPENDIX B: PARAMETRIZATION
OF COEFFICIENT FUNCTIONS

For convenience we provide a simple parametrization for
the coefficient functions fnk1;2, g

nk
1;2 appearing in (11), (12),

for the range 2 < Q2 < 12 GeV2:

fnk1;2ðQ2Þ ¼ DðQ2Þ
X4
p¼0

bnkp;1;2

�
m2

N�

Q2

�
p

;

gnk1;2ðQ2Þ ¼ DðQ2Þ
X4
p¼0

ankp;1;2

�
m2

N�

Q2

�
p

; ðB1Þ

where DðQ2Þ is the dipole form factor (13). The coeffi-
cients ankp;1, a

nk
p;2, b

nk
p;1 and bnkp;2 are collected in Table II.

TABLE II. Coefficient functions in the LCSRs for N�ð1535Þ production.
a00p;1 a10p;1 a11p;1 b00p;1 b10p;1 b11p;1 b20p;1 b21p;1 b22p;1

p ¼ 0 0.0147491 0.251939 0.0256977 0.00716919 0.192078 −0.0271761 −0.340351 −0.653521 0.00864077
p ¼ 1 0.773867 −6.0864 0.646869 −0.307557 −1.94975 −0.706607 4.61356 3.7677 0.112153
p ¼ 2 −0.18913 5.62993 0.0535879 −0.242484 0.246661 5.43478 −1.81907 −2.25019 −0.258147
p ¼ 3 0. −1.88333 0. 0. 0. −5.79459 −2.75613 0. 0.0954517
p ¼ 4 0. 0. 0. 0. 0. 1.99163 1.67516 0. 0.

a00p;2 a10p;2 a11p;2 b00p;2 b10p;2 b11p;2 b20p;2 b21p;2 b22p;2

p ¼ 0 0.0469231 −0.365146 −0.0498471 0.13253 0.210365 0.763116 −0.898009 0.978028 −0.408284
p ¼ 1 −1.35098 10.1647 1.78846 − 1.41541 0.1675 −2.84988 23.7579 19.1668 7.37946
p ¼ 2 1.30792 −16.9382 −3.92016 0.522203 −3.43005 1.08085 −50.8692 −47.2691 − 14.8858
p ¼ 3 −0.450538 12.7283 3.3271 0. 2.01318 0. 46.6823 43.7722 12.2449
p ¼ 4 0. −3.67258 −1.03533 0. 0. 0. −16.0002 −14.5341 −3.76771
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