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A generalized screened potential model (GSPM), recently developed to study the bottomonium
spectrum, is applied to the calculation of charmonium masses and electromagnetic widths. The presence in
the GSPM of more quark-antiquark bound states than in conventional nonscreened potential models, allows
for the assignment of GSPM states to cataloged nonconventional Jþþ charmonium resonances as well as
for the prediction of new (noncataloged) Jþþ states. The results obtained seem to indicate that a reasonable
overall description of Jþþ charmonium resonances is feasible.

DOI: 10.1103/PhysRevD.92.014017 PACS numbers: 14.40.Pq

I. INTRODUCTION

In a recent paper [1] a new nonrelativistic quark model for
the description of heavy quark mesons has been developed.
The novelty of the model, called the generalized screened
potential model or GSPM, is the consideration of a lattice
motivated quark-antiquark interaction that implicitly incor-
porates color screening effects from meson-meson configu-
rations. When applied to bottomonium a good spectral
description of well-established resonances is obtained and
a richer high energy spectrum (bigger number of bound
states) than the one resulting from the nonscreened Cornell
potential is predicted. However, the current lack of data does
not allow us to validate or refute this prediction. In this regard
the application of the model to charmonium could be a
determinant since a plethora of additional states, not fitting
into the conventional nonscreened Cornell potential frame-
work, has been discovered in the last ten years (see [2–4] and
references therein).
In this article we apply the GSPM to charmonium. We

extend the observable analysis beyond the spectral masses
to electromagnetic widths, for the model is suitable for their
calculation and there exist data to be compared with. We do
not analyze strong decays since a fully consistent treatment
of them within the GSPM framework (involving the
description of mesons containing light quarks) is a formi-
dable task outside the scope of the present study.
We show that a reasonable description of well estab-

lished and candidates to Jþþ resonances is feasible.
Moreover, the model allows for some definite predictions
about new resonances which might be used in future
experimental searches to further check its validity.
Regarding 1−− states the presence of overlapping thresh-
olds limits the applicability of the GSPM to spectral
energies quite below the first meson-meson threshold
becoming then completely equivalent to the Cornell model.
The article contents are organized as follows. In Sec. II a

brief review of the GSPM is presented. In Sec. III the model

is applied to the calculation of the charmonium spectrum
and electromagnetic widths and the results are compared to
data. A calculation from a nonscreened Cornell potential is
also shown for comparison. Finally, in Sec. IV our main
results and conclusions are summarized.

II. GENERALIZED SCREENED POTENTIAL
MODEL (GSPM)

The generalized screened potential model (GSPM) is
based on the assumption that a heavy quark meson
description can be attained from the consideration of
effective valence quark degrees of freedom interacting
through a potential that incorporates screening effects from
meson-meson configurations.
More precisely, the generalized screened potential that

we shall call VðrÞ henceforth tries to implement within a
quark model framework the lattice results for the energy of
two static color sources (heavy quark and heavy antiquark)
in terms of their distance, ElatticeðrÞ, when the mixing of the
quenched quark-antiquark configuration with open flavor
meson-meson ones is taken into account. In Ref. [5] the
lattice calculation for the case of one open flavor meson-
meson configuration was performed, the resulting ElatticeðrÞ
having a different form below and above the meson-meson
threshold. For the two threshold case an educated guess for
ElatticeðrÞ was done (see Fig. 22 in [5]). A simplified
generalization of these lattice results to the many threshold
case was proposed in Ref. [1]. From it a static quark-
antiquark potential, VðrÞ, was derived by means of a Born-
Oppenheimer approximation, say by subtracting the quark
and antiquark masses, mQ and mQ̄, from the static energy.
Explicitly, by calling MTi

with i ≥ 1 the masses of the
physical meson-meson thresholds, Ti, with a given set of
quantum numbers IðJPCÞ, and defining MT0

≡ 0 for a
unified notation (note that T0 does not correspond to any
physical meson-meson threshold), the form of VðrÞ in the
different energy regions (specified as energy interval
subindices) reads:*pedro.gonzalez@uv.es
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V ½MT0
;MT1

�ðrÞ ¼
�
σr − χ

r r ≤ rT1

MT1
−mQ −mQ̄ r ≥ rT1

ð1Þ

and

V ½MTj−1 ;MTj
�ðrÞ ¼

8>><
>>:

MTj−1 −mQ −mQ̄ r ≤ rTj−1

σr − χ
r rTj−1 ≤ r ≤ rTj

MTj
−mQ −mQ̄ r ≥ rTj

ð2Þ

for j > 1, with the crossing radii rTi
ði ≥ 1Þ defined by

σrTi
− χ

rTi

¼ MTi
−mQ −mQ̄ ð3Þ

with the parameters σ and χ standing for the string tension
and the color Coulomb strength respectively.
Thus VðrÞ has in each energy region between neighbor

thresholds a Cornell form but modulated at short and long
distances by these thresholds.
Thus for example in Fig. 1 the form of VðrÞ in the first

and second energy regions is drawn for cc̄ states with
IGðJPCÞ ¼ 0þð1þþÞ quantum numbers, whose first thresh-
old T1 corresponds to DD� and its second threshold T2

to Dþ
s D�−

s .
Let us remark that VðrÞ is an energy dependent potential

in the sense that its form differs in the different energy
regions delimited by the thresholds. Actually this is the
essential difference with other screened potential models
which have been also employed for the description of
charmonium [6,7].
It is also important to emphasize that in any energy

region the potential is strictly confining in the sense that

only bound states are obtained as solutions of the
Schrödinger equation in such energy region (see next
section).

III. CHARMONIUM

From the defined VðrÞ, charmonium states in the energy
region ½MTi−1 ;MTi

�, characterized by a definite set of
quantum numbers IGðJPCÞ, are obtained by solving the
Schrödinger equation for V ½MTi−1 ;MTi

�ðrÞ.
In order to get the solutions we previously fix the values

of the parameters of the model and list the open charm
meson-meson threshold masses to be considered. Then we
detail the calculation of the spectrum for a particular case
before giving the general results. Next we assign calculated
states to experimental resonances and use the correspond-
ing wave functions to evaluate electromagnetic widths.

A. Parameters

Let us realize that for energies quite below the first
corresponding thresholds the potential VðrÞ is almost
completely equivalent to a Cornell one:

VCorðrÞ≡ σr − χ

r
ðr∶ 0 → ∞Þ: ð4Þ

But the use of the conventional Cornell potential teaches us
that the charm-anticharm ðcc̄Þ system may be a relativistic
one [8]. This makes debatable the application of the GSPM
to charmonium. In the spirit of quark model calculations we
shall assume that the effectiveness of the parameters (quark
mass, string tension, and Coulomb strength) may be
appropriately taking into account, at least in part, relativ-
istic corrections. We can also invoke the effectiveness of the
parameters regarding additional contributions from light
quark-antiquark pairs apart from the implicitly considered
meson-meson configurations.
Let us also note that (i) no threshold widths have been

considered and (ii) the accumulative interacting effect from
different meson-meson configurations with the same
threshold mass has not been implemented. (Indeed if a
meson-meson configuration gives rise to a screening of the
quark and antiquark color charges for a given energy then a
reinforcement of the screening is expected when more
meson-meson configurations with the same threshold mass
are available.)
Hence we shall restrict the application of the model to

those energy regions involving nondegenerate, isolated
(in the sense of not having any significant experimental
overlap due to their widths) thresholds.
Even so the model may be too simplistic for an accurate

description of real mesons. On the one hand VðrÞ does not
contain spin dependent terms that we know may give
significant contributions to the masses of the lower spectral
states (see for example [9]). On the other hand the effect of
any threshold has been approximated by an abrupt (instead

FIG. 1 (color online). Generalized screened potential VðrÞ. The
solid (dashed) line indicates the potential in the first (second)
energy region for 0þð1þþÞ cc̄ states with mc ¼ 1348.6 MeV,
σ ¼ 850 MeV=fm, χ ¼ 100 MeV: fm, MT1

¼ 3872 MeV and
MT2

¼ 4080 MeV (values of the parameters and threshold
masses from Sec. III).
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of a physically soft) change in the potential at the crossing
radii. Moreover SUð3Þ flavor symmetry has been considered
when the same effect (flattening of the potential from the
crossing radii) from thresholds with ss̄, uū or dd̄ content has
been implemented despite the fact that the probability of
formation for each of these pairs may be different.
Keeping in mind these possible shortcomings we shall

try to show that such a simple model could provide us with
some insight onto the dominant dynamic mechanisms
governing the charmonium structure.
As we are dealing with a spin independent potential we

shall compare as usual the calculated s− wave state masses
with spin-triplet data, the p− wave state masses with the
centroids obtained from data and the d− wave states with
the few existing experimental candidates.
Aiming at a joint description of charmonium and

bottomonium we shall use for both the same values for
the parameters of the potential. From [1] we have σ ¼
850 MeV=fm and χ ¼ 100 MeV:fm: Let us realize that this
string tension value

ffiffiffi
σ

p ¼ 410 MeV is within the interval
usually accepted for it from phenomenology (see for
instance [10]). As for the Coulomb strength χ its value
corresponds to a strong quark-gluon-quark coupling
αs ¼ 3χ

4ℏ ≃ 0.38, in agreement with the value derived from
QCD from the fine structure splitting of 1p states in
charmonium [11]. Regarding the remaining parameter of
the model mc we fix its value to get a reasonable overall fit
to the spectrum.
Thus the set of parameters that will be used henceforth is

σ ¼ 850 MeV=fm

χ ¼ 100 MeV:fm

mc ¼ 1348.6 MeV ð5Þ

where the value of the charm mass mc ¼ 1348.6 MeV has
been fine-tuned to fit the mass of the well-established

nonconventional charmonium state Xð3872Þ since this
resonance may be naturally described in the GSPM as
explained later on.
It is important to remark that due to the effective

character of the parameters a better overall spectral fit
(differences from calculated masses to data of 35 MeV at
most) could be achieved by choosing for example σ ¼
750 MeV=fm, χ ¼ 100 MeV:fm, and mc ¼ 1407.8 MeV.
However as this new fit makes no difference at all in the
resulting number of spectral states we prefer to maintain the
same potential description as in bottomonium.

B. IðJPCÞ thresholds
In order to apply the GSPM to a particular set of

charmonium ðI ¼ 0Þ states with definite JPC we need
the masses MTi

for open charm meson-meson thresholds
coupling to these quantum numbers. From these masses the
crossing radii rTi

are immediately calculated from (3).
Let us realize that the static approach we follow to build

the potential implies that the heavy quark and antiquark or,
quite equivalently, the two charmed mesons forming the
threshold, are in a relative S− wave so that the threshold
mass is just the sum of the masses of the mesons.
The list of known thresholds, their masses and the

corresponding crossing radii appear in Tables I and II
where a simplified notation has been used: a threshold
has been denoted by the first meson-meson component
entering in the IðJPCÞ linear combination. Thus, the first
0ð1þþÞ threshold in Table I, D0D�0ð2007Þ denotes
ðD0D�0ð2007Þ; DþD�ð2010Þ−ÞI¼0;JP¼1þ þ c:c: where c:c:
stands for the charge conjugate.
We have used isospin symmetry to construct thresholds

with well-defined isospin. This means that we are neglect-
ing the mass differences between the electrically neutral
and charged members of the same isospin multiplet, for
example D0 and D� with PDG quoted masses [2]

TABLE I. Open charm meson-meson thresholds for 0ðJþþÞ charmonium states. JP1 and JP2 stand for the angular
momenta of the mesons forming the threshold. Threshold masses ðMTi

Þ obtained from the charmed and charmed
strange meson masses quoted in [2]. Crossing radii ðrTi

Þ calculated from (3).

IðJPCÞ Ti Charmonium Thresholds ðJP1 ; JP2 Þ MTi
(MeV) rTi

(fm)

0ð0þþÞ
T1 D0D̄0 ð0−; 0−Þ 3730 1.31
T2 Dþ

s D−
s ð0−; 0−Þ 3937 1.54

T3 D�0ð2007ÞD�0ð2007Þ ð1−; 1−Þ 4014 1.62
T4 D�þ

s D�−
s ð1−; 1−Þ 4224 1.86

T5 D0D̄0ð2550Þ ð0−; 0−Þ 4405 2.07
0ð1þþÞ

T1 D0D�0ð2007Þ ð0−; 1−Þ 3872 1.46
T2 Dþ

s D�−
s ð0−; 1−Þ 4080 1.70

0ð2þþÞ
T1 D�ð2007Þ0D�0ð2007Þ ð1−; 1−Þ 4014 1.62
T2 D�þ

s D�−
s ð1−; 1−Þ 4224 1.86
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1864.91� 0.17 and 1869.5� 0.4, respectively, or
D�ð2007Þ0 and D�ð2010Þ− with quoted masses 2006.98�
0.15 and 2010.21� 0.13, respectively. For the calculation
of the threshold masses we have used the lower mass value
in any isospin multiplet (1865 MeV and 2007 MeV in the
examples just mentioned).
Regarding the C parity, for a threshold formed by two

mesons M1 and M2 we can construct the combinations
ðM1M2 � c:c:Þ with C parity þ and −, respectively.
Notice though that if M2 ¼ M1 then, as the two mesons
are in S− wave, we have M1M1 ¼ ð−Þj1þj1−jM1M1

where j1 stands for the spin of M1 and j for the total
spin of the threshold. Therefore only one combination in
M1M1 � c:c: is allowed for a given value of j (the other
vanishes). For example the I ¼ 0 threshold D�D� with
j1 ¼ 1 has only positive C parity when coupled to j ¼ 0; 2
(and only negative C parity when coupled to j ¼ 1).
A look at Table I makes clear that for 0ðJþþÞ states only

nondegenerate isolated thresholds are present. Therefore
the GSPM can be safely applied. On the contrary for
0ð1−−Þ states, Table II, there are degenerate (T1 and T3) and
overlapping thresholds [for instance T1 and T3 overlap with
T2 due to the large width (267 MeV) of D�

0
0ð2400Þ].

Therefore, at its present stage the GSPM can only be
consistently applied to 0ð1−−Þ states quite below the first
threshold. Consequently, we shall restrict our study in this
case to the first energy region.

C. Spectrum

Charmonium ðcc̄Þ states are obtained by solving the
Schrödinger equation for VðrÞ. As in any energy region it is
a radial potential we use spectroscopic notation k≡ nl, in
terms of the radial, n, and orbital angular momentum, l,
quantum numbers, to denote its bound states. Thus in the
energy region ½MTi−1 ;MTi

� we have

ðT þ V ½MTi−1 ;MTi
�Þjðcc̄Þk½Ti−1 ;Ti � i ¼ Mk½Ti−1 ;Ti � jðcc̄Þk½Ti−1 ;Ti � i

ð6Þ

where T stands for the kinetic energy operator,
jðcc̄Þk½Ti−1 ;Ti � i for the bound states and Mk½Ti−1 ;Ti �

for their

masses.
Let us consider for example the 0þð1þþÞ spectral states.

In the first energy region the potential VðrÞ has the form
V ½MT0

;MT1
�ðrÞ, given by (1) (solid line in Fig. 1)

V ½0;3872�ðrÞ ¼
�
σr − χ

r r ≤ 1.46 fm

1174.8 MeV r ≥ 1.46 fm
ð7Þ

where MT1
and rT1

have been taken from Table I and the
values of the parameters ðσ; χ; mcÞ are given by (5).
By solving the Schrödinger equation for V ½0;3872�ðrÞ we

get the GSPM 0þð1þþÞ spectrum in the first energy region
½MT0

¼ 0;MT1
¼ 3872 MeV�. It has two bound states,

1p½T0;T1� and 2p½T0;T1�, whose masses Mk½T0 ;T1 �
generically

denoted by MGSPM are listed in Table III.
In the second energy region, ½MT1

¼ 3872 MeV;
MT2

¼ 4080 MeV�, the potential VðrÞ has the form
V ½MT1

;MT2
�ðrÞ, given by (2) (dashed line in Fig. 1):

V ½3872;4080�ðrÞ ¼

8><
>:

1174.8 MeV r ≤ 1.46 fm

σr − χ
r 1.46 fm ≤ r ≤ 1.70 fm

1382.8 MeV r ≥ 1.70 fm

ð8Þ

where the threshold masses and crossing radii are taken
from Table I. The spectrum has only one bound state

TABLE II. Open charm meson-meson thresholds for 0ð1−−Þ charmonium states. JP1 and JP2 stand for the angular
momenta of the mesons forming the threshold. Threshold masses ðMTi

Þ obtained from the charmed and charmed
strange meson masses quoted in [2]. Crossing radii ðrTi

Þ calculated from (3).

IðJPCÞ Ti Charmonium Thresholds ðJP1 ; JP2 Þ MTi
(MeV) rTi

(fm)

0ð1−−Þ
T1 D0D1

0ð2420Þ
D0D1

0ð2430Þ
ð0−; 1þÞ 4287 1.93

T2 D�ð2007Þ0D�
0
0ð2400Þ ð1−; 0þÞ 4325 1.98

D�ð2007Þ0D1
0ð2420Þ ð1−; 1þÞ

D�ð2007Þ0D1
0ð2430Þ ð1−; 1þÞ

T3 Dþ
s Ds1ð2460Þ− ð0−; 1þÞ 4429 2.09

D�þ
s D�

s0ð2317Þ− ð1−; 0þÞ
T4 D�ð2007Þ0D�

2
0ð2460Þ ð1−; 2þÞ 4470 2.14

T5 Dþ
s Ds1ð2536Þ− ð0−; 1þÞ 4504 2.18

T6 D�þ
s Ds1ð2460Þ− ð1−; 1þÞ 4572 2.26

T7 D�þ
s Ds1ð2536Þ− ð1−; 1þÞ 4648 2.35

T8 D�þ
s D�

s2ð2573Þ− ð1−; 2þÞ 4685 2.39
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1p½T1;T2� whose mass M1p½T1 ;T2 �
generically denoted by

MGSPM is listed in Table III.
By proceeding in the sameway for higher energy regions

and for different quantum numbers we get the complete
GSPM bound state spectrum. But before listing the
calculated spectral masses it may be illustrative to analyze
the effect produced by just one threshold. For this purpose
we shall compare the results obtained from the Cornell
potential with the ones obtained from a GSPM with only
one threshold.
Let us consider again 0þð1þþÞ states and calculate the

spectrum if only the threshold T1 [corresponding to
D0D�0ð2007Þ] is present. Then there will be two energy
regions. In the first one, ½MT0

¼ 0;MT1
¼ 3872 MeV�,

the potential is given by (7). Hence there are two
bound states, 1p½T0;T1� and 2p½T0;T1�, with the masses
previously calculated (see Table III) which have been listed
again in Table IV. In the second energy region,
½MT1

¼ 3872 MeV;∞½, the potential reads

V ½3872;∞½ðrÞ ¼
�
1174.8 MeV r ≤ 1.46 fm
σr − χ

r r ≥ 1.46 fm

and has an infinite number of bound states. The masses of
the two lowest states in this energy region are listed in
Table IV.
For the sake of comparison we calculate the Cornell

spectrum in the same energy interval (from 0 to 4400 MeV)
from the same values of the parameters σ, χ, and mc
given by (5). The results are also listed in Table IV.

We immediately realize that in the spectral
region considered there are four GSPM states
ð1p½T0;T1�; 2p½T0;T1�; 1p½T1;∞½; 2p½T1;∞½Þ for only three
Cornell states ð1p; 2p; 3pÞ. Moreover, the masses of the
first and fourth GSPM states are quite the same as
the masses of the first and third Cornell states. Since the
GSPM potential differs from the Cornell one in the
incorporation of the threshold T1 ≡D0D�0ð2007Þ we
may interpret these results by saying that the second
ð2p½T0;T1�Þ and third ð1p½T1;∞½Þ GSPM states are effectively
describing the mixing of the second Cornell ð2pÞ state with
the D0D�0ð2007Þ configuration. Therefore the effect of the
threshold is the appearance of one more spectral state
(notice though that if the 2p Cornell state were farther
above the threshold the GSPM would not generate the
2p½T0;T1� state).
It may also be interesting to compare the resulting radial

wave functions for the 2p½T0;T1� GSPM state and the 2p
Cornell state. This comparison is drawn in Fig. 2.
As can be checked, the 2p½T0;T1� radial wave function

extends to much larger distances than the 2p one. If we
consider the 2p½T0;T1� state as an effective description of the
experimental Xð3872Þ and the 2p Cornell state as describ-
ing a (nonexperimental) conventional χc1ð2pÞ state then it
is clear the difference between them. The comparison of the
respective root square mean radii, 3.6 fm for Xð3872Þ and
1.1 fm for χc1ð2pÞ, indicates the screening of the heavy
quark color charges in Xð3872Þ due to the presence of the
threshold. (Let us point out that in a couple channel
treatment involving quenched quark-antiquark and
meson-meson configurations this would correspond to
the presence of aD0D�0ð2007Þwave function component.)

1. 0þðJþþÞ GSPM states

The spectrum for 0þðJþþÞ cc̄ states from VðrÞ is shown
in Table V. The spectrum from the Cornell potential VCorðrÞ

TABLE III. Calculated 0þð1þþÞ charmonium masses from
VðrÞ, generically denoted by MGSPM, in the first two energy
regions specified by the thresholds ½Ti−1; Ti� and their masses
½MTi−1 ;MTi

�.
cc̄
0ð1þþÞ ½Ti−1; Ti�

½MTi−1 ;MTi
�

MeV
GSPM States

k½Ti−1;Ti�
MGSPM
MeV

½T0; T1� [0, 3872] 1p½T0;T1� 3456.1
2p½T0;T1� 3871.7

½T1; T2� [3872, 4080] 1p½T1;T2� 4017.3

TABLE IV. Calculated 0þð1þþÞ charmonium masses up to
4400 MeV when only the first threshold is considered: MGSPM.
Masses from the Cornell potential, MCor, are also shown for
comparison. Conventional spectroscopic notation has been used
to denote the Cornell states.

GSPM States MGSPM MeV MCor MeV Cornell States

1p½T0;T1� 3456.1 3456.2 1p
2p½T0;T1� 3871.7 3910.9 2p
1p½T1;∞½ 4029.3
2p½T1;∞½ 4303.3 4294.6 3p

FIG. 2 (color online). Radial wave functions R(r) (in units
fm−3

2) for the 1þþð2p½T0;T1�Þ GSPM state (thick line) and the
1þþð2pÞ Cornell state (thin line).
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given by (4) with the same values of the parameters σ, χ,
and mc is also listed for comparison.
A glance at the table confirms the presence of a bigger

number of GSPM states than Cornell ones even ignoring
possible additional 1þþ states above 4080 MeV and 2þþ
states above 4224 MeV. More precisely there are (at least)
four Jþþ GSPM states in the energy interval 4000–
4400 MeV for only one Cornell state. Since the calculated
masses of three of these GSPM states are in good
correspondence with the masses of Xð4140Þ 0þð??þÞ and
Xð4350Þ 0þð??þÞ, the currently existing experimental
candidates to 0þðJþþÞ states in that energy interval (see
Particle Listing in [2]; see also [3]), a tentative assignment
of GSPM states to these candidates has been done in
Table V. From it a guess for their unknown quantum
numbers comes out: Xð4140Þ 0þð0þþÞ or Xð4140Þ
0þð2þþÞ and Xð4350Þ 0þð0þþÞ.
Furthermore the model predicts the existence of at least

two new 0þðJþþÞ resonances in the energy interval
considered. One of them, that we shall call Cð4140Þ
(C standing for theoretical candidate) would be assigned
to the 2þþð1p½T1;T2�Þ or 0þþð1p½T3;T4�Þ GSPM state at
4140.2 MeV (see Table V). Let us note that the existence
of this state in the GSPM is linked to the existence of the
0þþð1p½T3;T4�Þ or 2þþð1p½T1;T2�Þ state that we have assigned
to Xð4140Þ; as both states are in between the same
thresholds [D�ð2007Þ0D̄�0ð2007Þ and D�þ

s D�−
s ] the central

potential used does not make any difference for J ¼ 0
and J ¼ 2. The other new resonance that we shall call
Cð4017Þ would be assigned to the 1þþð1p½T1;T2�Þ GSPM
state at 4017.3 MeV. As shown above, this resonance is
generated altogether with Xð3872Þ as an effect of the
introduction of the D0D�0ð2007Þ threshold. Hence
the existence of Cð4017Þ seems to be unavoidable if the

mechanism proposed for the generation of Xð3872Þ is the
correct one.
For the sake of completeness let us mention that for

energies quite below the first thresholds the calculated
spectrum is of Cornell type giving rise to degenerate Jþþ ¼
ð0; 1; 2Þþþ states. This degeneracy is broken for energies
reaching the first thresholds (and beyond) due to the
different values of the threshold masses in each case.
We might then conclude that an assignment of GSPM

states to the existing well-established or possible candidates
to 0þðJþþÞ resonances is feasible. With respect to the
observed differences between the calculated GSPM masses
and data we shall assume that the experimental values can
be reached from the GSPM ones through perturbative
corrections to the Hamiltonian. The experimental confir-
mation of the candidates and the discovery of the new
predicted resonances could give definite support to this
conclusion.

2. 0ð1−−Þ GSPM states

The spectrum for 0−ð1−−Þ cc̄ states from VðrÞ up to
4200 MeV (quite below the first threshold located at
4287 MeV, see Table II) is shown in Table VI. The
spectrum from the Cornell potential VCorðrÞ given by (4)
with the same values of the parameters σ, χ, and mc is also
listed for comparison.
An almost pure Cornell-like spectrum (very little thresh-

old effects) is obtained in this energy region as can be
checked by comparing the calculated GSPM masses with
the Cornell ones.
As explained before, the GSPM cannot be reliably

applied to calculate the masses of higher spectral states
in this case. Nonetheless a qualitative analysis of the
possible mixing configuration content in some of the

TABLE V. Calculated Jþþ charmonium masses from VðrÞ: MGSPM up to 4350 MeV. The 0þþð1p½T2;T3�Þ row has been omitted since
there is no GSPM bound state in that energy region. For 1þþ we do not list any state above 4080 MeV due to the current incomplete
knowledge about thresholds above this energy. The same for 2þþ states above 4224 MeV. Masses for experimental resonances, MPDG,
have been taken from [2] (when a resonance appears in the Particle Listing section of [2] but not in the Summary Table we write the
name of the resonance that contains the nominal mass between parenthesis). For p waves we quote separately the np0, np1, and np2

states. Masses from the Cornell potential, MCor, are also shown for comparison.

JPC GSPM States k½Ti−1;Ti� MGSPM MeV MPDG MeV MCor MeV Cornell States k

0þþ 1p½T0;T1� 3456.1 3414.75� 0.31 3456.2 1p
1þþ 1p½T0;T1� 3456.1 3510.66� 0.07 3456.2 1p
2þþ 1p½T0;T1� 3456.1 3556.20� 0.09 3456.2 1p
1þþ 2p½T0;T1� 3871.7 3871.69� 0.17 3910.9 2p
0þþ 1p½T1;T2� 3897.9 3918.4� 1.9 3910.9 2p
2þþ 2p½T0;T1� 3903.0 3927.2� 2.6 3910.9 2p
1þþ 1p½T1;T2� 4017.3
0þþ 1p½T3;T4� 4140.2

Xð4140Þ
2þþ 1p½T1;T2� 4140.2
0þþ 1p½T4;T5� 4325.1 Xð4350Þ 4294.6 3p
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well-established higher spectral resonances can be carried
out. Let us center for instance in Xð4260Þ lying close below
the first (degenerate) threshold. Let us examine whether this
resonance could be obtained or not if only the threshold
T11 ≡D0D1

0ð2420Þ at 4287 MeV were present. Then the
resulting GSPM spectrum from 4.0 to 4.5 GeV would be as
listed in Table VII where the Cornell spectrum is also given
for comparison.
A glance at the table shows that the presence of the

threshold would generate a new spectral state at 4337 MeV
as compared to the Cornell case. But there would not be any
chance to obtain a resonance close below threshold, as the
Xð4260Þ. The explanation for this has to do with the fact
that there is not any Cornell state close below or above
threshold from which such resonance could be formed by
the effect of the threshold.
The situation could change by considering the

additional effect of the other degenerate threshold T12 ≡
D0D1

0ð2430Þ on the new spectral state. As the mass of this
state, 4337 MeV, is close above T12, it could be shifted
down to a value below the threshold as experimentally
observed [notice that some additional attraction could also
be provided by the D�ð2007Þ0D�

0
0ð2400Þ threshold due to

its large width]. In this regard a refined version of the
GSPM, incorporating a lesser abrupt change in the potential
when approaching the threshold, could allow for a con-
sistent treatment of the degenerate as well as the non-
degenerate threshold effects through the different paths
followed by the potential to reach the threshold energy.
Therefore, we might tentatively conclude (without any

quantitative proof) that the existence of Xð4260Þ could be

related to the presence of degenerate overlapping thresh-
olds. Otherwise said Xð4260Þ could be the result of the
mixing of the quenched cc̄ with D0D1

0ð2420Þ and
D0D1

0ð2430Þ configurations.

3. Electromagnetic widths

Electromagnetic decay rates of charmonium are sensitive
to details of the wave functions involved. Therefore their
study might serve to test a quark model and to discriminate
it against others. One should realize though that when ratios
of decay rates are considered, similar results may be
obtained from different models. Indeed some of these
ratios, involving transitions from initial to final charmo-
nium states, can be explained from heavy quark symmetry
considerations without reference to any particular dynamic
model [12].
Let us note that the GSPM assigns a differentiated state

to each of the existing nonconventional experimental
candidates to be a 0þðJþþÞ resonance. It also allows for
an unambiguous assignment of states to conventional
0þðJþþÞ and 0−ð1−−Þ resonances below their first thresh-
olds. Therefore it can be consistently used for the analysis
of transitions involving these states.
We will focus on the calculation of electric dipole (E1)

and two photon decay widths for which a comparative
analysis to data can be carried out. Thus, for E1 decays we
shall center on transitions between spin triplet P−wave and
S− wave states for which the nonrelativistic E1 partial
widths read [8]

ΓE1ði → f þ γÞ ¼ 4αe2cw3
ifð2Jf þ 1Þ
27

jhfjrjiij2 ð9Þ

where i and f denote the initial (final) charmonium state, α
stands for the fine structure constant, ec ¼ 2

3
is the charm

quark electric charge, wif is the photon energy

wif ¼
1

2Mi
ðM2

i −M2
fÞ ð10Þ

and hfjrjii is the dipole matrix element

TABLE VI. Calculated 1−− charmonium masses from VðrÞ: MGSPM. Masses for experimental resonances, MPDG, have been taken
from [2]. Masses from the Cornell potential, MCor, are also shown for comparison.

JPC GSPM States k½Ti−1;Ti� MGSPM MeV MPDG MeV MCor MeV Cornell States k

1−− 1s½T0;T1� 3046.0 3096.916� 0.011 3046.0 1s
2s½T0;T1� 3632.2 3686.09� 0.04 3632.2 2s
1d½T0;T1� 3743.5 3773.15� 0.33 3743.5 1d
3s½T0;T1� 4063.2 4039� 1 4065.8 3s
2d½T0;T1� 4139.3 4191� 5 4142.8 2d

TABLE VII. Calculated 1−− charmonium masses from 4.0 to
5.0 GeV when only one nondegenerate threshold ~T1 ≡
D0D1

0ð2420Þ is considered: MGSPM. Masses from the Cornell
potential, MCor, are also shown for comparison.

GSPM States MGSPM MeV MCor MeV Cornell States

3s½T0; ~T1� 4063.2 4065.8 3s
2d½T0; ~T1� 4139.3 4142.8 2d
1s½ ~T1;∞½ 4337.3
1d½ ~T1;∞½ 4454.1 4436.5 4s
2s½ ~T1;∞½ 4483.5 4496.1 3d
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hfjrjii ¼
Z∞

0

RfðrÞr3RiðrÞdr ð11Þ

with RfðrÞ and RiðrÞ standing for the radial wave functions
of the final and initial state, respectively.
From (9) we can easily establish the ratios:

(a)

ΓE1ði → f1 þ γÞ
ΓE1ði → f2 þ γÞ ¼

w3
if1

w3
if2

jhf1jrjiij2
jhf2jrjiij2

ð12Þ

for the case in which the same initial state decays into
two final (f1 and f2) states with the same value of
Jf and

(b)

ΓE1ði1 → f þ γÞ
ΓE1ði2 → f þ γÞ ¼

w3
i1f

w3
i2f

jhfjrji1ij2
jhfjrji2ij2

ð13Þ

for the case in which two initial states (i1 and i2) decay
into the same final state.

As for two photon transitions we shall consider the
decays from 3P0 and 3P2 states. In the nonrelativistic limit,
the decay widths can be expressed as [13]

Γðið3P0Þ → γγÞ ¼ 27α2e4c
m4

c
jR0

ið3P0Þð0Þj
2 ð14Þ

Γðið3P2Þ → γγÞ ¼ 36α2e4c
5m4

c
jR0

ið3P2Þð0Þj
2 ð15Þ

where R0
ið0Þ stands for the derivative of the radial wave

function at the origin.
First order QCD radiative corrections to (14) and (15), in

the form of multiplying factors, have been calculated. For
the effective value of αs ¼ 0.38 we are using they are
significant. This poses the need to calculate them to higher
order. Instead we shall keep the zeroth order expressions to
get a first approach to data and we shall use for practical
purposes the ratios

Γði2ð3P0Þ → γγÞ
Γði1ð3P0Þ → γγÞ ¼

jR0
i2ð3P0Þð0Þj

2

jR0
i1ð3P0Þð0Þj

2
ð16Þ

Γði2ð3P2Þ → γγÞ
Γði1ð3P2Þ → γγÞ ¼

jR0
i2ð3P2Þð0Þj

2

jR0
i1ð3P2Þð0Þj

2
ð17Þ

where the multiplying factors cancel out.

a. χcJð1PÞ.—The χcJð1PÞ resonances are identified with
the Jþþð1p½T0;T1�Þ GSPM states which are practically
identical to the Jþþð1pÞ Cornell states. As the J=ψ
description is also the same with both models they give
the same results for the χcJð1PÞ → γJ=ψ decay widths if
the same values for the photon energies are chosen.
The calculated GSPM widths are shown in Table VIII

where the dipole matrix elements are also tabulated. For the
photon energies the experimental values have been used.
This can be justified under our former assumption that the
experimental masses can be reached from the GSPM
ones through first-order perturbative corrections to the
Hamiltonian (let us recall that no modification of the wave
functions is then generated).
As can be checked the values obtained are 30% off the

experimental intervals. This can be considered a reasonable
first approach to data and a starting point to include additional
corrections (see [14] and references therein). Althoughwe do
not proceed here along this line it is worthwhile to point out
that the central values of the experimental ratios

ðΓE1ðχc2ð1PÞ → γJ=ψÞÞExp
ðΓE1ðχc0ð1PÞ → γJ=ψÞÞExp

¼ 2.9� 0.8 ð18Þ

and

ðΓE1ðχc1ð1PÞ → γJ=ψÞÞExp
ðΓE1ðχc0ð1PÞ → γJ=ψÞÞExp

¼ 2.2� 0.6 ð19Þ

are in good agreement with the experimental photon energy
ratios

ðw3
χc2ð1PÞJ=ψ ÞExp

ðw3
χc0ð1PÞJ=ψ ÞExp

¼ 2.9

and

ðw3
χc2ð1PÞJ=ψ ÞExp

ðw3
χc1ð1PÞJ=ψ ÞExp

¼ 2.1:

TABLE VIII. Calculated E1 dipole matrix elements (fourth column) and decay widths (fifth column) for χcJð1PÞ → γJ=ψ. Photon
energies (third column) from (10) with experimental masses [2]. Widths data (sixth column) from [2].

f i ðwifÞExp MeV jhfjrjiij2 fm2 ðΓE1ði → f þ γÞÞGSPM MeV ðΓE1ði → f þ γÞÞExp MeV

J=ψ χc0ð1PÞ 303.04 0.198 0.20 0.13� 0.02
χc1ð1PÞ 389.36 0.198 0.43 0.29� 0.02
χc2ð1PÞ 429.63 0.198 0.58 0.37� 0.04
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Taking into account (13) this suggests the additional correc-
tions should not introduce any significant difference among
the χc0ð1PÞ, χc1ð1PÞ, and χc2ð1PÞ wave functions.
Regarding two photon decay widths, the degeneracy of

the Jþþð1p½T0;T1�Þ GSPM states gives rise from (14) and
(15) to the ratio

ðΓðχc0ð1PÞ → γγÞÞGSPM
ðΓðχc2ð1PÞ → γγÞÞGSPM

¼ 27

ð36
5
Þ ¼ 3.75

within the experimental interval [2]

ðΓðχc0ð1PÞ → γγÞÞExp
ðΓðχc2ð1PÞ → γγÞÞExp

¼ 2.3� 0.4 KeV
0.53� 0.07 KeV

¼ 4.3� 1.6

b. χc2ð2PÞ.—The χc2ð2PÞ resonance at 3927 MeV is
assigned to the 2þþð2p½T0;T1�Þ GSPM state that differs little
from the 2þþð2pÞ Cornell one, as shown in Fig. 3.
Only an experimental lower bound for the two photon

decay width is known [2]

ðΓðχc2ð2pÞ → γγÞÞExp > 0.21� 0.04 eV

from

ðΓðχc2ð2pÞ → γγÞBðχc2ð2pÞ → DD̄ÞÞExp
¼ 0.21� 0.04 eV

where B stands for branching fraction.
From the calculated GSPM wave functions we get from

(17) the ratio

ðΓðχc2ð2pÞ → γγÞÞGSPM
ðΓðχc2ð1pÞ → γγÞÞGSPM

¼
ðjR0

2þþð2p½T0 ;T1 �Þ
ð0Þj2Þ

GSPM

ðjR0
2þþð1p½T0 ;T1 �Þ

ð0Þj2Þ
GSPM

¼ 1.34

By assuming that this value is a reasonable approach to the
experimental ratio we might expect the approximated
values

Γðχc2ð2pÞ → γγÞ≃ 1.34ðΓðχc2ð1pÞ → γγÞÞExp
¼ 0.71� 0.09 keV

Bðχc2ð2pÞ → DD̄Þ≃ 0.30� 0.10

c. Xð3872Þ.—As shown before the 1þþð2p½T0;T1�Þ GSPM
state is identified with the Xð3872Þ whose mass has been
used to fine-tune the charm quark mass.
Concerning electromagnetic decays the ratio

A≡ ΓðXð3872Þ → γψð2sÞÞ
ΓðXð3872Þ → γJ=ψÞ

has been recently measured [15] to be

AExp ¼ 2.46� 0.64� 0.29

compatible with the previous value 3.4� 1.4 [16] and the
upper bound < 2.1 [17].
From (12) the GSPM gives for this ratio the value

AGSPM ¼ 2.01

calculated from the dipole matrix elements

jhψð2sÞjrjXð3872ÞiGSPMj2 ¼ 0.2856 fm2

jhJ=ψ jrjXð3872ÞiGSPMj2 ¼ 0.0025 fm2

and the experimental values of the photon energies

ðwXð3872Þψð2sÞÞExp ¼ 181.25 MeV

ðwXð3872ÞJ=ψÞExp ¼ 697.19 MeV:

Therefore a full compatibility with existing data comes out.
We should point out though that quite the same result
would be obtained for the dipole matrix elements by using
the 1þþð2pÞ Cornell state wave function instead of the
1þþð2p½T0;T1�Þ GSPM one. As the main difference between
these two wave functions is the long tail of 2p½T0;T1� state as
compared to that of 2p (see Fig. 2) we may conclude that
these radiative decays are not sensitive to the long distance
nature of Xð3872Þ. This can be understood by the negli-
gible long distance overlap of the 1þþð2p½T0;T1�Þ state with
J=ψ and ψð2sÞ. (The calculated root mean square radii for
J=ψ and ψð2sÞ are, respectively, 0.5 fm and 0.9 fm.) It
should be mentioned that the same conclusion has been
also inferred by other authors using molecular descriptions
for Xð3872Þ [18,19].

FIG. 3 (color online). Radial wave functions R(r) (in units
fm−3

2) for the 2þþð2p½T0;T1�Þ GSPM state (thick line) and the
2þþð2pÞ Cornell state (thin line).
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d. Xð3915Þ.—The Review of Particle Properties [2] has
identified the Xð3915Þ with a conventional χc0ð2pÞ, this is
with a 0þþð2pÞ Cornell like state. This identification has
been criticized by some authors [20,21]. A major criticism
is the lack of evidence of Xð3915Þ → DD̄ decays. From our
estimation above for the branching fraction Bðχc2ð2pÞ →
DD̄Þ≃ 0.30 a similar result could be expected for
Bðχc0ð2pÞ → DD̄Þ since the 0þþð2pÞ and 2þþð2pÞ
Cornell states are degenerate and the measured values of
the masses and total widths of χc2ð2pÞ and Xð3915Þ are
quite similar.
Regarding electromagnetic processes a lower bound for

the two photon decay width [2]

ðΓðXð3915Þ → γγÞÞExp > 54� 9 eV

is known from

ðΓðXð3915Þ→ γγÞBðXð3915Þ → J=ψωÞÞExp > 54� 9 eV:

The GSPM assigns the Xð3915Þ to the 0þþð1p½T1;T2�Þ
state that differs greatly from the 0þþð2pÞ Cornell one as
shown in Fig. 4.
From the calculated GSPM wave functions we get from

(16) the ratio

ðΓðXð3915Þ → γγÞÞGSPM
ðΓðχc0ð1PÞ → γγÞÞGSPM

¼
jR0

0þþð1p½T1 ;T2 �Þ
ð0Þj2

jR0
0þþð1p½T0 ;T1 �Þ

ð0Þj2 ¼ 0.02:

Assuming again that this value is a reasonable approach to
the experimental ratio we might expect

ΓðXð3915Þ → γγÞ≃ 0.02ðΓðχc0ð1pÞ → γγÞÞExp
¼ 44� 7 eV:

By combining this result with the experimental lower
bound given above we would get

ΓðXð3915Þ → γγÞ≃ 48� 3 eV

and

BðXð3915Þ → J=ψωÞ > 0.88:

It should be emphasized that the identification of Xð3915Þ
with 0þþð2pÞ would give a completely different ratio

ðΓðXð3915Þ → γγÞÞCornell
ðΓðχc0ð1PÞ → γγÞÞCornell

¼
jR0

0þþð2pÞð0Þj2
jR0

0þþð1pÞð0Þj2
¼ 1.2

and consequently completely different values for the two
photon decay width ð2640 eVÞ and the branching fraction to
J=ψω (> 0.02).
Certainly the big GSPM branching fraction for

Xð3915Þ → J=ψω, OZI suppressed in the Cornell model,
should be somehow justified. A quantitative justification, if
possible, would imply the development of a strong decay
theory above threshold within the GSPM framework which
is outside the scope of this work. Hence we shall limit
here to a merely speculative qualitative comment. Let us
imagine for instance that due to the threshold modulation
the GSPM interaction favored, at the energy of Xð3915Þ
and through light quark pair creation out of the vacuum, the
formation of color octets made of heavy quark-light
antiquark and vice versa. Then it would be possible to
have a dominant decay through reordering of the quarks in
such a state like J=ψω. On the contrary the Cornell states
are known to favor the formation of color singlets giving
rise to the dominant fall apart decay mode DD̄.
Therefore the GSPM and Cornell descriptions

represent incompatible scenarios for the understanding of
Xð3915Þ. According to our analysis more detailed data
could definitely clarify the situation about the true nature
(nonconventional or conventional) of this resonance.

IV. SUMMARY

A nonrelativistic quark model called the generalized
screened potential model, or abbreviate GSPM, previously
used to calculate the bottomonium spectrum has been
applied to charmonium.
The model, whose interaction potential has a Cornell

form but modulated by meson-meson thresholds, has been
used to calculate 0þðJþþÞ charmonium masses up to
4.4 GeV, a limit imposed to the application of the model
by the incomplete current knowledge of open charm
meson-meson thresholds. As it turned out to be the case
in bottomonium a richer spectrum (bigger number of bound
states) than the one resulting from the nonscreened Cornell
potential is predicted. However, differing from bottomo-
nium where the lack of data prevented the verification or

FIG. 4 (color online). Radial wave functions R(r) (in units
fm−3

2) for the 0þþð1p½T0;T1�Þ GSPM state (thick line) and the
0þþð2pÞ Cornell state (thin line).
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refutation of such a prediction, there exist in charmonium
well-established as well as candidates to nonconventional
resonances in the energy interval analyzed. As a matter of
fact, the well-established Xð3872Þ is nicely described as a
GSPM state that can be interpreted as being generated from
the D0D�0ð2007Þ threshold and the 1þþð2pÞ Cornell state.
Regarding the experimental candidates Xð4140Þ0þð??þÞ
and Xð4350Þ0þð??þÞ a good spectral correspondence with
GSPM states is observed. Furthermore, two new 0þðJþþÞ
resonances are predicted, a 0þð2þþÞ or 0þð0þþÞ one with
mass around 4140 MeV and a 0þð1þþÞ one with mass
around 4017 MeV. (Notice though that all the calculated
GSPM masses, except for Xð3872Þ which is used to fine-
tune the quark mass, are below the experimental ones
which suggests that the masses of these new resonances
could also be underestimated.) The generation of these new
resonances in the GSPM is related to the presence of the
states assigned to Xð4140Þ and Xð3872Þ. Therefore their
discovery would constitute a definite check of the GSPM as
a model for the spectral description.
The GSPM has also been employed to evaluate the

0−ð1−−Þ spectrum up to 4.2 GeV, a limit imposed to the
applicability of the model by the presence of degenerate

and overlapping thresholds. The resulting spectrum in this
energy region is very much of Cornell type. In order to go
further in energy the model should be refined. With respect
to this a simplified qualitative analysis of the possible
generation of Xð4260Þ seems to point out that the joint
effect from overlapping meson-meson configurations
should be an essential ingredient to be incorporated.
A study of electromagnetic decays of 0þðJþþÞ reso-

nances, specifically E1 and two photon decays for which
there are data available, has also been carried out. The
calculated GSPM widths are fully compatible with existing
data. However, more detailed data are needed to perform a
stringent check of the GSPM. In this regard a thorough
experimental analysis of Xð3915Þ is of particular interest
given the very different description coming out from the
GSPM and the Cornell models.
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