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We perform a dispersive analysis of the ωπ electromagnetic transition form factor, using as input the
discontinuity provided by unitarity below the ωπ threshold and including for the first time experimental
data on the modulus measured from eþe− → ωπ0 at higher energies. The input leads to stringent
parametrization-free constraints on the modulus of the form factor below the ωπ threshold, which are in
disagreement with some experimental values measured from ω → π0γ� decay. We discuss the dependence
on the input parameters in the unitarity relation, using for illustration an N=D formalism for the P partial
wave of the scattering process ωπ → ππ, improved by a simple prescription which simulates the
rescattering in the crossed channels. Our results confirm the existence of a conflict between experimental
data and theoretical calculations of the ωπ form factor in the region around 0.6 GeV and bring further
arguments in support of renewed experimental efforts to measure more precisely the ω → π0γ� decay.
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I. INTRODUCTION

The transition form factors of light mesons play an
important role in low energy precision tests of QCD [1].
In particular, they enter as contributions to hadronic light-
by-light scattering calculations [2], which are crucial for a
more accurate theoretical determination of the standard
model prediction for the muon’s anomalous magnetic
moment (for recent reviews see [3,4]).
The case of the ωπ electromagnetic form factor is

particularly interesting as there are some discrepancies
between the theoretical calculations and the experimental
data from the decay ω → π0γ� reported in [5–7]. This form
factor was described by the vector meson dominance model
and by a chiral Lagrangian approach in [8,9]. Calculations
based on a standard dispersion relation were performed a
long time ago in [10] and recently in [11,12]. The disconti-
nuity of the form factor required in the Cauchy integral can
be expressed in terms of known observables by using
unitarity. The two-pion contribution to the unitarity sum
gives the discontinuity in terms of the P partial wave of
the amplitude of the processωπ → ππ, itself calculated in the
dispersion theory [10,12,13], and the pion electromagnetic
form factor, a quantity which is known with very good
precision. However, the two-pion approximation is valid only
in a region which extends to a good approximation up to
the ωπ threshold, tþ ¼ ðmω þmπÞ2. Due to the lack of
information on the discontinuity above this threshold, various
assumptions were adopted for the evaluation of the
dispersion integral, either by applying the two-pion approxi-
mation also at higher energies [10,11], or by expanding the
dispersion integral in powers of a suitable variable [12].
A study performed recently in [14] used as input

above the ωπ threshold, instead of the discontinuity, a

model-independent integral condition on the modulus
squared of the ωπ form factor. The condition was obtained
by using an approach proposed originally by Okubo [15],
which has come to be known as the method of unitarity
bounds (a recent review of this approach is presented in
[16]). It exploits unitarity and the positivity of the spectral
function of a suitable current-current correlator, calculated
by operator product expansion in the Euclidean region.
In the particular case of the ωπ form factor, the method,
adapted to the specific input conditions available, led
eventually to a functional optimization problem of a type
considered for the first time in [17,18]. The solution of
the problem yields upper and lower bounds on the modulus
of the ωπ form factor in the region 4m2

π ≤ t < tþ [14].
A specific feature encountered in this case is that the
discontinuity of the form factor across the cut is not purely
imaginary. As a consequence, the form factor is not a real
analytic function, as happens in familiar cases like the pion
vector form factor. Therefore, in [14] the formalism of
bounds was extended to functions which are not real
analytic. Although not very stringent, the bounds derived
in [14] are in disagreement with the experimental data on
the modulus of the form factor in the region around
0.6 GeV, measured from the decay ω → π0γ�, confirming
thus the conclusion of the analysis [11] based on standard
dispersion theory.
It is important to note that the dispersive analyses

performed so far did not include experimental data on
the form factor available in the scattering region, above
the ωπ threshold. Measurements of the modulus from the
reaction eþe− → ωπ0 are reported in [19–25] [a set of such
data is shown in Fig. 1, where we show for completeness
also the modulus measured in the decay region t < t−,
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t− ¼ ðmω −mπÞ2]. In the present paper we consider the
problem of including this information in the dispersive
formalism. Specifically, we perform an analysis of the form
factor using as input the discontinuity for t < tþ, calculated
in a theoretical model based on unitarity, and experimental
information on the modulus for t > tþ. Even though the
modulus is not known at all energies, we can implement
the information in a conservative way, as a condition on a
weighted integral of the modulus squared from tþ to
infinity. This leads to a mathematical problem similar to
that encountered and solved in [14]. The result is expressed
in the form of explicit upper and lower bounds on the
modulus of theωπ form factor below tþ, calculable in terms
of the discontinuity below tþ and the modulus above tþ.
The formalism provides therefore a consistency test for
the experimental data on the ωπ electromagnetic form
factor, which exploits analyticity and unitarity in a
parametrization-free way.
The theoretical input of the test consists from the

unitarity relation giving the discontinuity of the form
factor, which involves the amplitude of the πω → ππ
scattering. It is of interest to study the influence of the
possible uncertainties in this part of the input. The full
calculation involves the solution of integral equations
known as Khuri-Treiman equations [26]. The amplitudes
reported in [12,13] are obtained by solving numerically
these integral equations. Therefore, the dependence on the
free parameters used in the calculations is not very trans-
parent. The older treatment performed in [10], based on
N=D formalism, has the advantage of providing explicit
expressions depending on physical parameters. However,
that treatment is not entirely satisfactory, as it does not
account for the rescatterings between all the final pions in
the kinematical region where the decay ω → πππ is
allowed. It is worthwhile trying to cure the shortcomings
of this approach. In this paper we consider an improved

N=D treatment, obtained by applying to [10] a prescription
proposed in [27] for including finite-width effects in the
resonances exchanged in the crossed channels. The
improved model captures the essential features of the full
solution, still preserving the explicit dependence on the
input parameters. This has enabled us to investigate the
influence of the uncertainties affecting the theoretical input
of the consistency test.
The paper is organized as follows. In the next section we

review the basic definitions and show how the input
information on the form factor can be expressed as an
extremal problem for analytic functions. In Sec. III we
review the main steps of the proof and write down the
solution of the extremal problem obtained in Ref. [14].
The results are presented in Sec. IV, where we discuss also
their dependence on the parameters of the input. Section V
contains our conclusions. The paper has an Appendix
where we describe briefly the N=D model of [10] and
an improved version based on a prescription suggested
in [27].

II. INPUT IN THE CONSISTENCY TEST

We begin with a brief description of the form factor and
the constraints that it satisfies. We use the conventions of
[11], where the form factor fωπðtÞ is defined from the
matrix element

hωðpa; λÞπ0ðpbÞjjμð0Þj0i ¼ iϵμτρσϵτ�ðpa; λÞpρ
bq

σfωπðtÞ;
ð1Þ

where jμ is the isovector part of the electromagnetic
current, λ denotes the ω polarization, q ¼ pa þ pb and
t ¼ q2. In the convention adopted here1 the form factor
fωπðtÞ has dimension of GeV−1.
Unitarity implies that fωπðtÞ has a cut along the real axis

for t ≥ 4m2
π. Keeping the two-pion contribution in the

unitarity sum, the discontinuity of fωπðtÞ across the cut is
written as

discfωπðtÞ ¼
iqðtÞ3
6π

ffiffi
t

p F�
πðtÞf1ðtÞθðt − 4m2

πÞ; t ≤ tþ;

ð2Þ
where qðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=4 −m2

π

p
is the center of mass momentum

of the pion pair, FπðtÞ is the pion electromagnetic form
factor and f1ðtÞ the P partial-wave amplitude of the
scattering

0.2 0.4 0.6 0.8 1 1.2 1.4

t
1/2

(GeV)

5

10

15

20

25
|f ω

π(t
)|

Lepton-G
NA60 (2009)
NA60 (2011)
CMD-2 (2005)

FIG. 1 (color online). Modulus of the ωπ form factor measured
from ω → π0γ� decay by Lepton-G [5], NA60 (2009) [6] and
NA60 (2011) [7], and from eþe− → ωπ0 by CMD-2 (2005) [22].

1The dimensionless form factor FπωγðtÞ defined in [10] is
related to the definition adopted here by FπωγðtÞ ¼ mωfωπðtÞ.
The form factor FπωðtÞ defined in [27] is dimensionless,
normalized as Fπωð0Þ ¼ 1 and is related to our definition by

fωπðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
2 ~Cω

q
FπωðtÞ, where ~Cω is defined in Eq. (35) of [27]

in terms of the total width Γω→π0γ .
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ωðpa; λÞπ0ðpbÞ → πþðq1Þπ−ðq2Þ: ð3Þ

The scattering process is physical for t ≥ tþ. In the region
4m2

π < t < t−, where the decay ω → πþπ−π0 is allowed,
f1ðtÞ is the P-wave projection of the decay amplitude,
while the region t− < t < tþ is unphysical.
The amplitude f1ðtÞ was calculated in [10] in the frame

of N=D formalism, with the left-hand cut described by
poles in the crossed channels due to the exchange of the ρ
meson assumed to be stable. In this model, the phase of
f1ðtÞ coincides with the ππ P-wave phase shift and exactly
compensates in the discontinuity (2) the phase of F�

πðtÞ,
related also to the ππ P wave phase shift δ11 by Watson
theorem [28]. Therefore, the form factor fωπðtÞ calculated
in [10] is a real analytic function.2

In the more complete calculation [11–13] based on
Khuri-Treiman formalism [26], the amplitude f1ðtÞ is
obtained by numerically solving a set of integral equations.
Due to the rescattering between the final pions in the decay
region 4m2

π < t < t−, the phase of f1ðtÞ does not coincide
with the ππ P-wave phase shift, as one would naively
expect from Watson theorem. Therefore, the phases of the
two factors in (2) do not compensate each other, and the
discontinuity (2) is not purely imaginary [11,12]. In other
words, the ωπ form factor is not a real analytic function,
which is true also in the case of other transition form
factors [27].
The expression (2) is valid only in the region 4m2

π ≤
t < tþ, since above the ωπ threshold other intermediate
states, besides the two-pion states, contribute to the
unitarity sum. So, strictly speaking the discontinuity of
fωπðtÞ is not available for t > tþ. On the other hand, the
modulus of fωπðtÞ can be extracted from experimental
data on the eþe− → ωπ0 process, measured in [19–25]. The
connection between the cross section and the modulus
[10,27] is, in our convention,

σeþe−→ωπ0ðtÞ ¼
4πα2

3

pðtÞ3
t3=2

jfωπðtÞj2; ð4Þ

where pðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt − t−Þðt − tþÞ=4t
p

is the center of mass
momentum of the ωπ pair in the rest system of the virtual
photon and we recall that t� ¼ ðmω �mπÞ2.
Using the experimental data on the modulus and the

asymptotic decrease like 1=t predicted by perturbative
QCD scaling [29], it is possible to obtain a reasonable
estimate of a weighted integral over the modulus squared
from tþ to infinity. Thus, we adopt an L2-norm condition of
the form

1

π

Z
∞

tþ
jfωπðtÞj2wðtÞdt ¼ I; ð5Þ

where wðtÞ is a suitable weight, chosen such as to allow a
precise evaluation of the quantity I. A similar way of
including experimental information on the modulus at
higher energies was adopted in the recent investigations
[30,31] of the pion electromagnetic form factor.
Of course, the condition (5) is weaker than the informa-

tion provided at each t by (4). However, measurements of
the cross section are available only at a finite number of
discrete values of energy, which are not sufficient for a
parametrization-free approach like the one considered in
this paper. Moreover, the modulus is not known at higher
energies. In the present analysis we have considered
weights of the simple form

wðtÞ ¼ 1

tc
; ð6Þ

where the value of c > 0 is taken such as to suppress the
contribution to the integral of the intermediate and high
energies, where the form factor is not known. In practice
we evaluated the quantity I using an interpolation of the
data on modulus from [22] shown in Fig. 1 from tþ ¼
0.84 GeV2 up to t ¼ 1.86 GeV2, continued in a smooth
way with a modulus jfωπðtÞj decreasing like 1=t. As will be
clear in the next section, for a fixed weight the results of the
formalism depend monotonically on the numerical value of
I, in the sense that a larger I gives weaker results.
Therefore, for a conservative estimate, we have used as
input in the data region the central values from [22]
enlarged by their quoted errors. For c ¼ 2 this leads to

I ¼ 4.63 GeV−4; ð7Þ

where the region above 1.86 GeV2 contributes to the
integral with about 8%.
Finally, we use as input the value of jfωπð0Þj, known

experimentally from the ω → π0γ decay rate. The updated
value is [32]

jfωπð0Þj ¼ ð2.30� 0.04Þ GeV−1: ð8Þ

The aim of the present paper is to check the consistency
of the data shown in Fig. 1 with unitarity and analyticity. To
this end we shall compare the experimental data below t−
with the allowed ranges of the modulus jfωπðtÞj which
follow from analyticity, unitarity and the data available
above tþ. Mathematically, the problem amounts to deriving
upper and lower bounds on jfωπðtÞj for t < tþ, upon the
class of functions fωπðtÞ analytic in the t-plane cut for
t ≥ 4m2

π , which satisfy the following conditions: (i) their
discontinuity is given by (2) in the region t < tþ, (ii) they
satisfy the constraint (5), and (iii) they satisfy the condition

2A function FðtÞ analytic in the t-plane cut for t ≥ 4m2
π is of

real type if it satisfies the condition Fðt�Þ ¼ ðFðtÞÞ�. In particular,
this implies that the function is real on the real axis for t < 4m2

π,
and its discontinuity across the cut can be written as disc
FðtÞ≡ Fðtþ iϵÞ − Fðt − iϵÞ ¼ 2iImFðtþ iϵÞ.
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(8). The solution of this mathematical problem will be
given in the next section.

III. SOLUTION OF THE EXTREMAL PROBLEM

An extremal problem of the type mentioned above was
solved for the first time in [17,18] on the class of real
analytic functions. The generalization to functions which
are not real analytic was investigated in detail in [14].
We do not repeat the whole proof here, but only outline the
main steps and write down the solution.
The first step is to map the t plane cut along t ≥ tþ onto

the unit disk jzj ≤ 1 in the z≡ ~zðtÞ plane. We have adopted
the conformal mapping

~zðtÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=tþ

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t=tþ
p ; ð9Þ

which brings the origin of the t-plane to the origin of the z
plane, ~zð0Þ ¼ 0. In the z-plane the elastic region 4m2

π ≤
t < tþ becomes the segment xπ ≤ x < 1 of the real axis,
where xπ ¼ ~zð4m2

πÞ > 0, and the upper (lower) edges of the
cut t > tþ become the upper (lower) semicircles.3

Further, we construct a so-called outer function [33], i.e., a
function analytic and without zeros in jzj < 1, its modulus
on jzj ¼ 1 being equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð~tðzÞÞjd~tðzÞ=dzj

p
, where wðtÞ

is the weight appearing in (5) and ~tðzÞ is the inverse of the
function ~zðtÞ defined in (9). The general expression of the
outer functions is given in [33] (see also the review [16]). For
weights wðtÞ of the form (6), we obtain for the outer
function, denoted as CðzÞ, the exact analytic expression [16]

CðzÞ ¼ ð2 ffiffiffiffiffi
tþ

p Þ1−cð1 − zÞ1=2ð1þ zÞc−3=2: ð10Þ

From this expression it follows that CðxÞ is real and positive
on the segment −1 < x < 1, which corresponds in the
t-plane to the semiaxis t < tþ.
If we introduce now a new function hðzÞ by

hðzÞ ¼ CðzÞfωπð~tðzÞÞ; ð11Þ
the condition (5) takes the simple form

1

2π

Z
2π

0

dθjhðeiθÞj2 ¼ I: ð12Þ

The function hðzÞ is analytic in jzj < 1 except for a cut
along the segment ðxπ; 1Þ, where its discontinuity is

disc hðxÞ≡ ΔðxÞ ¼ CðxÞdiscfωπð~tðxÞÞ: ð13Þ
By expressing hðzÞ as

hðzÞ ¼ 1

2πi

Z
1

xπ

ΔðxÞ
x − z

dxþ gðzÞ; ð14Þ

the new function gðzÞ is analytic in jzj < 1, as its dis-
continuity across the cut vanishes:

disc gðxÞ ¼ 0; x ∈ ðxπ; 1Þ: ð15Þ

Since we consider in general form factors that are not real
analytic, the function gðzÞ is analytic, but its values on the
real axis may be complex.
We now express the available information on the form

factor as a number of constraints on the function g.
By inserting (14) in (12) we obtain the condition

1

2π

Z
2π

0

dθ

���� 1

2πi

Z
1

xπ

ΔðxÞ
x − eiθ

dxþ gðeiθÞ
����
2

¼ I; ð16Þ

and using (11) and (14) we write gð0Þ as4

gð0Þ ¼ fωπð0ÞCð0Þ −
1

2πi

Z
1

xπ

ΔðxÞ
x

dx: ð17Þ

The problem is to find the maximal allowed range of jgðz1Þj
at an arbitrary given point z1 ¼ ~zðt1Þ in the interval ðxπ; 1Þ,
for functions gðzÞ analytic in jzj < 1 and subject both to the
boundary condition (16) and the additional constraint (17).
It is useful to denote

gðz1Þ ¼ ξ; ð18Þ

where ξ is an unknown parameter. Then one can prove (see
for instance [18]) that the allowed range of ξ is described by
the inequality5

μ22ðξÞ ≤ I; ð19Þ
where μ22ðξÞ is the solution of the functional minimization
problem

μ22ðξÞ ¼ min
g∈Gξ

1

2π

Z
2π

0

dθ

���� 1

2πi

Z
1

xπ

ΔðxÞ
x − eiθ

dxþ gðeiθÞ
����
2

;

ð20Þ

upon the class Gξ of functions gðzÞ analytic in jzj < 1,
which satisfy the constraint (17) and the additional con-
dition (18) for a given ξ.
The constrained minimum norm problem (20) was

solved in [14] by the technique of Lagrange multipliers,
leading to a solution written in compact form:

3Other mappings are obtained by changing the point that is
mapped onto the origin of the z-plane. It can be shown [16] that
the results do not depend on the choice of the conformal mapping.

4Note that the expression of gð0Þ given in Eq. (24) of Ref. [14]
contains a misprint (which actually did not affect the results, since
the calculations were performed with the correct expression).

5This shows that the results remain the same if (5) is replaced
by an inequality involving a quantity that majorizes I.
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μ22ðξÞ ¼
1

4π2

Z
1

xπ

Z
1

xπ

ΔðxÞΔ�ðyÞ
1 − xy

dxdyþ jgð0Þj2

þ 1 − z21
z21

jξ − gð0Þj2: ð21Þ

By inserting (21) in (19) we obtain upper and lower bounds
on the parameter ξ. Expressed in terms of the form factor
fωπðtÞ by using Eqs. (11) and (14), they lead to the
inequalities [14]:

jfωπðtÞj ≤

���gð0Þ þ 1
2πi

R
1
xπ

ΔðxÞ
x−~zðtÞ dx

���þ ~zðtÞI0ffiffiffiffiffiffiffiffiffiffiffi
1−~zðtÞ2

p
Cð~zðtÞÞ ;

jfωπðtÞj ≥

���gð0Þ þ 1
2πi

R
1
xπ

ΔðxÞ
x−~zðtÞ dx

��� − ~zðtÞI0ffiffiffiffiffiffiffiffiffiffiffi
1−~zðtÞ2

p
Cð~zðtÞÞ ; ð22Þ

where ~zðtÞ ∈ ðxπ; 1Þ is the image of the point t in the
z-plane, and

I0 ¼
�
I −

1

4π2

Z
1

xπ

Z
1

xπ

ΔðxÞΔ�ðyÞ
1 − xy

dxdy − jgð0Þj2
�
1=2

:

ð23Þ

We recall that Cð~zðtÞÞ > 0 for t < tþ, which justifies its
appearance outside the modulus sign in the denominator
of (22).
The upper and lower bounds (22) are calculable in terms

of the input defined in the previous section. They determine
an allowed interval for the modulus jfωπðtÞj at every t < tþ.
From (22) it follows that, for a fixed weight wðtÞ in the L2-
norm constraint (5), the bounds depend monotonically on
the value of I: smaller values of I lead to narrower allowed
intervals for jfωπðtÞj at t < tþ. We already took into
account this property for a conservative estimate of I, as
discussed in the previous section.
It is useful to remark also that, since the last term in (21)

is positive, from (19) and (21) we can write down the
inequality

1

4π2

Z
1

xπ

Z
1

xπ

ΔðxÞΔ�ðyÞ
1 − xy

dxdyþ jgð0Þj2 ≤ I; ð24Þ

where gð0Þ is defined in (17) and ΔðxÞ is (13). The
inequality (24) involves only input quantities and repre-
sents a necessary condition that must be satisfied by them.
If it is violated, the input is not consistent with analyticity
and unitarity.

IV. RESULTS

We have investigated several suitable weights of the form
(6) and checked that they lead to similar results. The
calculations reported below were done with the choice

c ¼ 2, which ensures a good suppression of the high energy
part of the integral.
As already mentioned, we have taken the discontinuity

(2) of the ωπ form factor in the range ð4m2
π; tþÞ from the

recent dispersive treatment reported in [11] and from the
older work [10]. The pion vector form factor FπðtÞ entering
(2) has been calculated in [11] from an Omnès representa-
tion [34] using as input the pion-pion phase shift δ11ðtÞ
obtained from Roy equations in [35,36]. In [10], the pion
form factor was described by a Gounaris-Sakurai repre-
sentation given in Eqs. (A14)–(A16) of the Appendix. The
differences between the two representations of the pion
form factor are very small and have a negligible influence
on the results. On the other hand, Refs. [10] and [11] differ
substantially in the dispersive calculation of the partial
wave f1ðtÞ required also as input in (2).
In Fig. 2 we show the allowed range of the modulus

squared (normalized to its value at t ¼ 0), determined by
the upper and lower bounds calculated in this paper, in the
part of the elastic region accessible experimentally in ω →
π0μþμ− decay. The curves have been obtained using the
expressions (22), which contain only known input quan-
tities. For the discontinuity ΔðxÞ we have used the
numerical solution6 obtained in Ref. [11], and the model
[10], presented in the Appendix. The results shown in
Fig. 2 were obtained by varying the input value at t ¼ 0
inside the error bar given in (8) and taking the weakest
bounds, i.e., the largest allowed bands at each energy. For
comparison, we also show the result of the dispersive
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FIG. 2 (color online). Upper and lower bounds compared
with experimental data on jfωπðtÞ=fωπð0Þj2. Cyan band: bounds
calculated using in the discontinuity (2) the partial wave
amplitude f1ðtÞ from [10]. Grey band: bounds calculated using
in the discontinuity (2) the amplitude f1ðtÞ from [11]. The yellow
band is the result of the dispersive calculation performed in [11].
The data are from Lepton-G [5], NA60 (2009) [6] and NA60
(2011) [7].

6I am grateful to Bastian Kubis for this input.
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calculation performed in [11], and several experimental
data from [5–7].
With the input discontinuity from [11], the allowed band

is consistent with the dispersion relation calculation per-
formed in that work. The allowed band obtained with the
partial wave f1ðtÞ from [10] is shifted upwards and the two
bands do not overlap. For both inputs the upper bounds
shown in Fig. 2 are significantly lower than the data from
[5–7] in the region around 0.6 GeV.
We mention that the upper and lower bounds shown in

Fig. 2 are much more stringent than the upper and lower
bounds obtained in [14] with the same input on the
discontinuity (2), but with a model-independent condition
on the modulus above the ωπ threshold.7

It is of interest to understand the origin of the difference
between the two predictions shown in Fig. 2. To this end,
we have calculated the bounds using also the improved
version of the N=Dmodel for the partial wave f1ðtÞ, which
includes the effect of rescattering in the crossed channels as
discussed in the Appendix. The improvement has the effect
of shifting the bounds downwards, towards the band
calculated with the input amplitude f1ðtÞ from [11,13],
but the shift is small, of a few percents. For illustration we
present in Fig. 3 the bounds calculated with the improved
N=D model for f1ðtÞ in the whole range t < tþ.
As follows from Eqs. (A5) and (A19) of the Appendix, the

N=D model contains as input the dimensionless coupling
constants gρππ and gωρπ. The results presented in Figs. 2 and
3 have been obtained using the values from [10]

gρππ ¼ 5.96; gωρπ ¼ 13.42: ð25Þ

The quantity gρππ has not changed significantly over the past
40 years, the value (25) being fully consistent with the
PDG-2014 width Γρ, quoted below Eq. (A16). On the other
hand, the coupling gωρπ is still not very well known.We note
that the dimensionless constant gωρπ used here is related to
the similar parameter used in [22,27], which we denote as
~gωρπ to avoid confusion, by gωρπ ¼ mω ~gωρπ. The values
~gωρπ ¼ ð13.8� 0.3Þ GeV−1 obtained in [27] from a global
fit of the ωπ form factor, and ~gωρπ ¼ ð16.7� 0.4�
0.6Þ GeV−1 derived in [22] from a fit of the cross section
of eþe− → ωπ0, correspond in our notation to the values
gωρπ ¼ 10.80� 0.23 and gωρπ ¼ 13.07� 0.31� 0.47,
respectively. We note that, while the above references
consider parametrizations of the ωπ form factor, in the
present analysis the coupling gωρπ is an input parameter in
the model of the partial-wave amplitude f1ðtÞ.
One might ask whether a suitable choice of the parameter

gωρπ can reduce the conflict between the calculated bounds
and the experimental data. We have investigated this
question using the improved N=D model discussed in
the Appendix. We remark first that for values gωρπ > 15.5
the inequality (24), which expresses a consistency con-
dition on the input, is violated. Therefore, values of gωρπ
larger than 15.5 are not allowed, being inconsistent with the
other input quantities [the data above tþ and the value (8) at
t ¼ 0] and the general properties of analyticity and
unitarity.
In Fig. 4 we show the allowed bands calculated with

three choices of the couplings gωρπ: the value (25), a smaller
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NA60 (2009)

NA60 (2011)

Effective theory [8, 9]

FIG. 4 (color online). Upper and lower bounds on jfωπðtÞ=
fωπð0Þj2 calculated using the improved N=D model for f1ðtÞ,
with gωρπ ¼ 11.5 (green band) gωρπ ¼ 13.42 (orange band) and
gωρπ ¼ 15.5 (indigo line). The dashed lines are the bounds
calculated with the discontinuity (2) from [11]. The red line is
the form factor calculated in [8,9] with a low-energy effective
theory.
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FIG. 3 (color online). Orange band: bounds on jfωπðtÞ=
fωπð0Þj2 in the whole region t < tþ, obtained with the improved
N=D model for the partial wave f1ðtÞ. The data are from Lepton-
G [5], NA60 (2009) [6], NA60 (2011) [7] and CMD-2 (2005) [22].

7For instance, the allowed range of the ratio jfωπðtÞ=fωπð0Þj2
at 0.64 GeVobtained in [14] with input discontinuity from [11] is
(1.6, 36.8), while the range predicted in this paper with the same
discontinuity is (11.3, 15.7).
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value, gωρπ ¼ 11.5, and the maximum allowed value
gωρπ ¼ 15.5 mentioned above. In the latter case, when
the inequality (24) is saturated, the quantity I0 defined in
(23) is zero and the upper and lower bounds written in (22)
become equal. Therefore, as shown in Fig. 4, the allowed
band of the modulus shrinks in this case to a line. The
curves show that the bounds exhibit a monotonous depend-
ence on the value of gωρπ, the band obtained with gωρπ ¼
11.5 being consistent with the allowed domain obtained
using as input f1ðtÞ from the calculation performed in
[11,13]. An important conclusion is that the disagreement
with the experimental data around 0.6 GeV is preserved
even if the coupling gωρπ is increased up to its maximum
allowed value.
We show also in Fig. 4 the ωπ form factor calculated in

[8,9] within an effective field approach. It exhibits a more
rapid increase and slightly exceeds the highest allowed
band shown in Fig. 4 near 0.6 GeV.

V. DISCUSSION AND CONCLUSIONS

Our study has been motivated by the existence of
certain discrepancies between the recent calculations
[11,12,14] of the ωπ electromagnetic transition form
factor in the frame of dispersion theory, and the data
measured from the ω → π0γ� decay around 0.6 GeV.
The present work differs from the previous calculations
by the different input used above the ωπ threshold tþ:
while the investigations [11,12] are based on a standard
dispersion relation requiring the knowledge of the dis-
continuity of the form factor along the whole cut, and the
work [14] exploits a model-independent integral condition
on the modulus, derived from unitarity and perturbative
QCD, we have resorted to experimental data obtained
from eþe− → ωπ0. In order to avoid model-dependent
assumptions at higher energies, where data are not avail-
able, we have implemented this information in a
conservative way, as a weighted integral (5) of the modulus
squared. Since we used experimental data above tþ, the
results obtained in the present paper are much stronger than
those obtained in [14], where only a theoretical inequality on
the modulus above tþ was exploited.
The aim of our study was to test the consistency of the

experimental and theoretical information available on
the ωπ form factor in a parametrization-free approach.
We have derived upper and lower bounds on the modulus
for t < tþ, using as input the discontinuity (2) in its region
of validity below the ωπ threshold, and the condition (5)
on the modulus above the ωπ threshold. Mathematically,
the problem is of the type considered some time ago
for real-analytic functions in [17,18] and generalized
recently to analytic functions which are not of real type
in [14].
The results are presented in Figs. 2–4, where we show

the allowed ranges of the modulus squared (normalized to

its value at t ¼ 0), defined by the upper and lower bounds
calculated in this paper. The curves have been obtained
using the expressions (22), where all the input quantities
are known. The main theoretical ingredient of the analysis
is the partial wave f1ðtÞ entering the discontinuity (2).
Therefore, it was of interest to establish the influence of
the parameters entering this quantity on the final results.
The amplitude f1ðtÞ calculated in [12,13] is available in
numerical form and its dependence on the free parameters
is not very transparent. We have considered therefore the
older calculation based on N=D formalism performed
in [10], which has the advantage of displaying in an
explicit way the dependence on the input parameters, and
have improved it by a prescription suggested in [27]
for including the effect of rescattering in the crossed
channels.
Our study has shown that including the rescattering has

the effect of shifting down the allowed band for the
modulus of the form factor in the region t < t−.
However, in the frame of the N=D model the effect is
quite modest, of a few percents. On the other hand, the
bounds are quite sensitive to the coupling gωρπ, which
enters as input in the calculation of f1ðtÞ in the N=D
formalism. The results obtained with f1ðtÞ from [11,13]
can be reproduced by using the value gωρπ ¼ 11.5 in the
improved N=D formalism. It turns out that values of gωρπ
larger than 15.5 are excluded, being inconsistent with the
data above tþ and the value (8) at t ¼ 0. By increasing gωρπ,
the allowed bands are pushed upwards. However, as shown
in Fig. 4, the narrow band calculated with the maximum
allowed value of gωρπ is still significantly lower than the
experimental data from [5–7] near 0.6 GeV.
Our results indicate a clear conflict between the exper-

imental data on the modulus of the ωπ form factor
measured in the decay region t < t− from ω → π0γ� and
in the scattering region t > tþ from eþe− → ωπ0. We note
that possible discrepancies between the data on the modu-
lus measured at energies below t− and above tþ have been
noticed also in the attempts to describe the form factor with
specific parametrizations [27]. In contrast, no parametriza-
tion of the form factor was necessary in our analysis. The
present paper confirms the conclusions of other recent
dispersive analyses [11,14] and brings further arguments in
support of renewed experimental efforts to measure more
precisely the ω conversion decays [37,38].
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APPENDIX: IMPROVED N=D TREATMENT
OF THE ωπ → ππ AMPLITUDE

The N=D model proposed in [10] does not include the
rescattering between all the final pions in the kinematical
region where the ω decay to three pions is allowed. In this
Appendix we briefly describe the model and present a
simple modification, which is able to capture the character-
istic features of the full solution.
For convenience, we use in this Appendix the notation of

[10]. The relation with the conventions used in the text is
clear by comparing Eqs. (5.1) and (5.3) of [10] with
Eqs. (2) and (4) of this paper, respectively. The P partial
wave amplitude of the scattering process (3), denoted in
[10] as t1ðtÞ, has dimensions of GeV−2 and is related to the
partial wave f1ðtÞ of [11,13] by

t1ðtÞ ¼ 2

3
mωf1ðtÞ: ðA1Þ

In the N=D formalism, the amplitude t1ðtÞ is written as [10]

t1ðtÞ ¼ t1LðtÞ þ t1RðtÞ; ðA2Þ

where t1LðtÞ has only a left-hand cut and t1RðtÞ has only a
right-hand cut for t > 4m2

π.
The piece t1LðtÞ was calculated in [10] as

t1LðtÞ ¼
1

2

Z
1

−1
dz½d200ðθÞ − d000ðθÞ�Tsuðt; zÞ; ðA3Þ

where z≡ cos θ, djm0mðθÞ are elements of Wigner’s
d-matrix and

Tsuðt; zÞ ¼ −
4

3
g1g2

�
1

m2
ρ − sðt; zÞ þ

1

m2
ρ − uðt; zÞ

�
ðA4Þ

is the ρ-pole contribution in the crossed channels. The
dimensionless coupling constants are defined as [10]

g1 ≡ gρππ; g2 ≡ gωρπ ðA5Þ
and the Mandelstam variables have the expressions

sðt; zÞ ¼ RðtÞ þ KðtÞz; uðt; zÞ ¼ RðtÞ − KðtÞz;
ðA6Þ

with

RðtÞ ¼ m2
ω þ 3m2

π − t
2

; KðtÞ ¼ 2qðtÞpðtÞ; ðA7Þ

where qðtÞ and pðtÞ are defined below Eqs. (2) and (4),
respectively.
The part t1RðtÞ of the amplitude accounts for the rescat-

tering in the direct channel. In the two-pion approximation,
unitarity gives

disc½t1ðtÞΩ−1ðtÞ� ¼ 0; t ≥ 4m2
π; ðA8Þ

where ΩðtÞ is the Omnès function

ΩðtÞ ¼ exp

�
t
π

Z
∞

4m2
π

δ11ðt0Þ
t0ðt0 − tÞ dt

�
; ðA9Þ

which is analytic without zeros in the t-plane cut for t >
4m2

π and is normalized to Ωð0Þ ¼ 1. It can be written above
the cut as

Ωðtþ iϵÞ ¼ jΩðtÞjeiδ11ðtÞ; t ≥ 4m2
π; ðA10Þ

where δ11ðtÞ is the phase shift of the P wave of the elastic
pion-pion amplitude.
Since t1LðtÞ is regular for t ≥ 4m2

π, from (A2) and (A10) it
follows that

disc½t1RðtÞΩ−1ðtÞ� ¼ −2it1LðtÞIm½Ω−1ðtÞ�: ðA11Þ

From the discontinuity one can reconstruct the function by
means of a standard dispersion relation, written in [10] as

t1RðtÞΩ−1ðtÞ ¼ aþ t − t0
π

Z
∞

4m2
π

t1Lðt0Þ sin δ11ðt0Þ
jΩðt0Þjðt0 − t0Þðt0 − tÞ dt;

ðA12Þ

in terms of the unknown subtraction constant a. Combined
with (A2), this leads to

t1ðtÞ ¼ ΩðtÞ
�
t1LðtÞ
ΩðtÞ þ a

þ t − t0
π

Z
∞

4m2
π

t1Lðt0Þ sin δ11ðt0Þ
jΩðt0Þjðt0 − t0Þðt0 − tÞ dt

�
: ðA13Þ

In [10], instead of the Omnès function ΩðtÞ a Gounaris-
Sakurai parametrization [39] was actually adopted, which
is a reasonable approximation on the right-hand cut where
it is employed. Thus,

ΩðtÞ ⇒ GSðtÞ ¼ Dð0Þ
DðtÞ ; ðA14Þ

where DðtÞ is written as

DðtÞ ¼ m2
ρ − t − gðtÞ − imρΓρðtÞ: ðA15Þ

In this relation

ΓρðtÞ ¼
mρffiffi
t

p
�

qðtÞ
qðm2

ρÞ
�

3

Γρ ðA16Þ

is the energy-dependent ρ width defined in terms of the
physical width Γρ ¼ 147.8� 0.9 MeV [32], and
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gðtÞ ¼ mρΓρ

qðm2
ρÞ
ðkðtÞ − kðm2

ρÞ − ðt −m2
ρÞk0ðm2

ρÞÞ;

kðtÞ ¼ 2qðtÞ3
π

ffiffi
t

p ln
2qðtÞ þ ffiffi

t
p

2mπ
: ðA17Þ

Choosing the subtraction point at t0 ¼ m2
ρ, the behavior

of t1ðtÞ near t ¼ m2
ρ implies

a ¼ 4

3

g1g2
Dð0Þ : ðA18Þ

Then, the representation (A13) is written finally as [10]

t1ðtÞ ¼ 1

DðtÞ
�
t1LðtÞDðtÞ þ 4

3
g1g2

þmρðt −m2
ρÞ

π

Z
∞

4m2
π

t1Lðt0ÞΓρðt0Þ
ðt0 −m2

ρÞðt0 − tÞ dt
�
: ðA19Þ

As follows from (A3) and (A4), t1LðtÞ is real for t > 4m2
π,

which implies that the imaginary terms within the square
brackets compensate each other. Therefore, the phase of
t1ðtÞ is equal to the phase of the Omnès function 1=DðtÞ,
i.e., to the phase shift δ11ðtÞ. In this model, t1ðtÞ satisfies the
Watson theorem, and leads to a purely imaginary disconti-
nuity (2) of the ωπ form factor. As shown in [11–13], these
properties are no longer valid in the more rigorous treat-
ments of the amplitude.
An obvious shortcoming of the model [10] is the fact that

the amplitude t1LðtÞ was calculated in terms of a ρ-meson
exchange neglecting the width of the ρ. In this approxi-
mation theωmeson is actually stable since its mass is lower
that the mass of ρπ pair. To improve the model, a
straightforward procedure would be to include a finite
width for the ρ poles in the denominators of (A4). We have
adopted the prescription proposed in [27], where finite-
width resonance exchange amplitudes with correct analy-
ticity properties were obtained by replacing

1

m2
ρ − sðt; zÞ ⇒

1

π

Z
∞

4m2
π

dx
σðxÞ

x − sðt; zÞ ; ðA20Þ

and similarly for the u-channel contribution. The pole was
replaced by a modified Breit-Wigner expression which
automatically ensures the absence of singularities in the
complex plane except for a right-hand cut. As suggested in
[27], a reasonable choice for the spectral function σðxÞ is
the imaginary part of the Breit-Wigner propagator:

σðxÞ ¼ mρΓρðxÞ
ðm2

ρ − xÞ2 þm2
ρðΓρðxÞÞ2

; ðA21Þ

with ΓρðxÞ defined in (A16). In the limit of zero width,
Γρ → 0, when σðxÞ → πδðx −m2

ρÞ, the left side of (A20) is
recovered.

By inserting the prescription (A20) in (A3) and (A4), the
integration upon z≡ cos θ can be performed exactly,
leading to

t1LðtÞ ¼
4g1g2
3

1

π

Z
∞

4m2
π

dxσðxÞFðZÞ
KðtÞ ; ðA22Þ

where

FðyÞ ¼ 3

4

�
2yþ ð1 − y2Þ ln yþ 1

y − 1

�
; ðA23Þ

and

Z ¼ x − RðtÞ
KðtÞ ; ðA24Þ

with RðtÞ and KðtÞ defined in (A7).
The singularities of t1LðtÞ in the complex plane arise from

the singularities of the function FðyÞ at y ¼ �1 produced
by the logarithm, which depend parametrically on x. When
x varies along the integration range in (A22), the singu-
larities describe paths in the complex t-plane and in
principle can overlap with the t-channel unitarity cut along
the real semiaxis t ≥ 4m2

π . The overlap can be avoided by a
suitable prescription. In the present study we have adopted
the prescription proposed in [40], which consists in adding
to m2

ω a small imaginary part, i.e., m2
ω → m2

ω þ iϵ, with
ϵ > 0. With this prescription, we checked numerically that
the singularities of t1LðtÞ do not cross the unitarity cut in the
t-plane. Moreover, the amplitude t1LðtÞ has no discontinuity
across the line t ≥ 4m2

π , although it is no longer real on the
unitarity cut.
The points t ¼ 4m2

π and t ¼ t�, i.e., the physical thresh-
olds and the pseudo-threshold t−, require special attention
since there the function KðtÞ defined in (A7) vanishes. By
using the asymptotic expansion

FðyÞ ∼ 1

y
þ 1

5y3
þ � � � ; jyj ≫ 1; ðA25Þ

and the decrease σðxÞ ∼ 1=x, we have checked explicitly
that in the present model t1LðtÞ is regular at these points.
Since the amplitude t1LðtÞ calculated from (A22) has no

discontinuity across the unitarity cut t ≥ 4m2
π , the repre-

sentation (A19) remains valid. However, as mentioned
above, t1LðtÞ is complex for t ≥ 4m2

π. Therefore, from (A19)
it follows that the phase of the amplitude t1ðtÞ for t ≥ 4m2

π

is no longer equal to the phase δ11ðtÞ of the function 1=DðtÞ.
Watson theorem, which was valid in the original N=D
model, is no longer valid now. Moreover, the amplitude is
not an analytic function of real type. These properties are
satisfied of course by the exact solution f1ðtÞ calculated in
[11–13].
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It is useful to compare the simple improved N=D model
presented here with the exact amplitude calculated by
solving numerically integral equations of the Khuri-
Treiman type. An obvious feature of the N=D model is
the lack of symmetry between the direct (t) and the crossed
(s and u) channels. In fact, in the decay region the dynamics
in the three two-pion channels must be the same. In the
Khuri-Treiman formalism, by iteratively solving the

relevant integral equation, the symmetry between the three
channels is gradually increased. This adjustment is not
performed in the N=D approach, which has a rigid
structure. However, by improving the description of the
crossed channels in the frame of the N=D model, the main
features of the exact partial wave amplitude f1ðtÞ, namely
the failure of Watson theorem and the breakdown of the
reality property, appear in a natural way.
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