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The symmetric and traceless part of the matrix element ST hNjq̄DμDνqjNi can be determined from the
second moment of the twist-3 parton distribution function eðxÞ. Recently, novel experimental data on eðxÞ
have become available, which enables us to evaluate the magnitude of the above matrix element with
considerably reduced systematic uncertainties. Based on the new experimental data, we show that
ST hNjq̄DμDνqjNi is likely to be at least an order of magnitude smaller than what previous model-based
estimates have so far suggested. We discuss the consequences of this observation for the analysis of deep
inelastic scattering and QCD sum rules studies at finite density for the vector meson and the nucleon in
which this matrix element is being used as an input parameter.
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I. INTRODUCTION

The traceless and symmetric component of the matrix
element of the operator q̄DμDνq between a one-nucleon
state,

ST hNjq̄DμDνqjNi

≡ 1

2
ST ðhNjūDμDνujNi þ hNjd̄DμDνdjNiÞ;

≡ −e2
�
pμpν −

1

4
gμνM2

N

�
; ð1Þ

is known to play a role in the analysis of deep inelastic
scattering (DIS) [1] and in applications of the QCD sum
rule method to finite density [2,3]. In Eq. (1), pμ stands for
the four-momentum of the nucleon and MN is the nucleon
mass. The value of e2, however, has so far only been
estimated via simple models or certain assumptions on
the proportionality between different matrix elements [2].
While such estimates may be fine for obtaining a first
qualitative idea on the magnitude of e2, it is far from clear
whether they are quantitatively reliable.
The situation has now changed with the availability of

new experimental data [4], which, as we will see, strongly
constrain the value of e2. This is possible due to the fact
that e2 is related to the second moment of the twist-3
distribution function eðxÞ as shown below:

e2 ¼
Z

1

0

dxx2eðxÞ

¼ 1

2

Z
1

0

dxx2½euðxÞ þ edðxÞ þ eūðxÞ þ ed̄ðxÞ�: ð2Þ

Here, the various flavor components eqðxÞ are defined
as [5]

eqðxÞ ¼ 1

2MN

Z
λ

2π
eiλxhNjq̄ð0Þ½0; λn�qðλnÞjNi; ð3Þ

with ½0; λn� being the gauge link for making the above
expression gauge invariant and n a null vector with mass
dimension −1. Through the analysis of experimental data
on the beam-spin asymmetry of di-hadron semi-inclusive
DIS obtained at the CLAS experiment at Jefferson Lab [4],
it has become possible to extract a small number of data
points for eVðxÞ, which is defined as follows:

eVðxÞ ¼ 4

9
½euðxÞ − eūðxÞ� − 1

9
½edðxÞ − ed̄ðxÞ�: ð4Þ

Making use of some reasonable assumptions on the flavor
structure of eðxÞ and on its behavior in those x regions,
where no data points are available, will allow us to get an
estimate of e2.
As a result, we find that even though the experimental

uncertainties are still rather large, the data can constrain the
magnitude of e2 to be at least an order of magnitude smaller
than values obtained from the previous simple estimates
[2]. This means that the matrix element ST hNjq̄DμDνqjNi
has been largely overestimated in the past DIS or QCD sum
rule analyses at finite density.
Indeed, applying the novel estimate of e2 to the operator

product expansion (OPE) of the electromagnetic current,
which contains information on the spin-averaged structure
functions F2 and FL, it is found that the above matrix
element only gives a contribution of 3% or less compared to
the experimentally extracted values of the twist-4 effects in
the second moments of these structure functions and can,
therefore, be ignored at the presently available level of*pgubler@riken.jp
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precision, which is in contrast to the conclusions of earlier
studies. Furthermore, examining the OPE of the vector
current correlator in nuclear matter, coupling to the ρ, ω,
and ϕ mesons, and, separately, the nuclear correlator in
nuclear matter, we similarly find the relevant contributions
to be small.
The paper is organized as follows. After explaining how

to extract the value of e2 from the experimental data in
Sec. II, we study its consequences in Sec. III, which
includes a discussion of both the OPE needed for analyzing
DIS data and for the sum rule analyses of vector mesons
and the nucleon at finite density. The paper is summarized
and concluded in Sec. IV.

II. ESTIMATION OF e2

A. Earlier simple estimates

Before discussing the estimation of e2 based on the
newly available experimental data, we here for illustration
and later comparison briefly describe two simple methods
that have so far been used to compute e2.

1. Method 1

Here, we will follow [1] to estimate the needed matrix
element:

hNjq̄DμDνqjNi≃ − Pq
μP

q
νhNjq̄qjNi

¼ −
1

36
pμpνhNjq̄qjNi: ð5Þ

Pq
μ in the first line represents the average momentum of the

quark q in the nucleon, while the second line follows from

the assumption that Pq
μ is about 1=6 of the nucleon

momentum pμ, as half of the nucleon momentum is carried
by the gluons and the rest is divided evenly among the three
valence quarks. Transforming this result into a traceless
form, we get

ST hNjq̄DμDνqjNi≃ −
1

36
hNjq̄qjNi

�
pμpν −

1

4
gμνM2

N

�
;

ð6Þ

which hence means

e2 ≃ 1

36
hNjq̄qjNi: ð7Þ

Expressing this through the quark mass mq ¼ 1
2
ðmu þmdÞ

and the πN sigma term σπN ¼ mqhNjq̄qjNi, we get

e2 ≃ 1

36

σπN
mq

: ð8Þ

Using σπN ¼ 45 MeV [6] and mq ¼ 3.5 MeV [7], we
finally obtain

e2 ≃ 0.36: ð9Þ

2. Method 2

Here, we briefly recapitulate the discussion of [2]
to estimate the needed matrix elements. Combining
Eqs. (4.43) and (4.49) of [2], we obtain

ST hNjq̄DαDβqjNi ¼ 4

3

1

M2
N

�
hNjq̄D0D0qjNi − 1

8
hNjq̄gσ ·GqjNi

��
pαpβ −

1

4
M2

Ngαβ

�
; ð10Þ

where the second term follows from the fact that the two
covariant derivatives do not commute. The above equation
then immediately gives

e2 ¼ −
4

3

1

M2
N

�
hNjq̄D0D0qjNi − 1

8
hNjq̄gσ ·GqjNi

�
:

ð11Þ

Employing a bag model estimate, it was furthermore shown
in [2] that first term in the bracket on the right-hand side of
the above equation is much smaller than the second one and
can, therefore, be ignored.
Next, using a parametrization proposed in [2],

hNjq̄gσ · GqjNi≡m2
0hNjq̄qjNi; ð12Þ

we are led to

e2 ≃ 1

6

m2
0

M2
N
hNjq̄qjNi ¼ 1

6

m2
0

M2
N

σπN
mq

: ð13Þ

m2
0 is believed to be aboutm

2
0 ≃ 0.8� 0.2 GeV2 in vacuum

[8], which was assumed in [2] to hold also for the one-
nucleon state. This assumptions leads to

e2 ≃ 1.95; ð14Þ

which is about 5 times larger than Eq. (9) of the previous
subsection.
As we will see later, the estimate in Eq. (14) turns out to

be 2 orders of magnitude larger than our updated value
based on experimental constraints. This means that the
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ansatz of Eq. (12) with m2
0 ≃ 0.8� 0.2 GeV2 is most

likely an overestimation of the actual matrix element.
We, therefore, caution the practitioners of QCD sum rules
at finite density to be careful when making use of this
parametrization.

B. Evaluation based on experimental data

As already mentioned in the Introduction, the only
information that we presently have from experiment, is
the magnitude of eVðxÞ [given in Eq. (4)] at a few values of
x. This, obviously, does not suffice to determine e2
completely and we, thus, have a number of assumptions
on the relations of euðxÞ, edðxÞ and their sea-quark
counterparts. For this, we will have to rely partially on
model calculations of eðxÞ. Specifically, these models are
the bag model (BM) [5], the chiral quark soliton model
(χQSM) [9], and the spectator model (SM) [10]. To get an
idea of the systematic uncertainties of these assumptions
and models, we will test several versions of them and study
their effects on e2. For illustration we give the e2 values and
their respective flavor decompositions obtained from the
BM, χQSM, and SM in Table I.
Throughout our whole study, we will assume the

sea-quark effect on e2 to be flavor symmetric. Namely,
we will set

Z
1

0

dxx2eūðxÞ ¼
Z

1

0

dxx2ed̄ðxÞ≡ eū2: ð15Þ

The violation of this flavor symmetry can be studied by
both the BM and χQSM, which show that it is only a very
small effect (see Table I), which can be ignored here.
Next, we will have to fix the relative strength of the

u- and d-quark contributions to the second moment of
eVðxÞ. One could naturally expect that the two are propor-
tional to the number of respective valence quarks; hence,

ed2 ≡
Z

1

0

dxx2edðxÞ ¼ 1

2

Z
1

0

dxx2euðxÞ≡ 1

2
eu2; ð16Þ

which is satisfied with good accuracy by both the BM and
χQSM. We will call this assumption “Ansatz 1” in the
following.

The SM, however, seems to suggest a somewhat
different picture, in which edðxÞ shows an oscillating
behavior and its second moment, therefore, even becomes
a negative, but rather small number (see Fig. 9 of [11]
and Table I). We will, therefore, set as a second
assumption,

Z
1

0

dxx2edðxÞ ¼ 0; ð17Þ

which we call “Ansatz 2.”
For Ansatz 1, we can rewrite the second moment of the

experimentally measured function eVðxÞ as
Z

1

0

dxx2eVðxÞ ¼ 7

18
eu2 −

1

3
eū2; ð18Þ

and for Ansatz 2,

Z
1

0

dxx2eVðxÞ ¼ 4

9
eu2 −

1

3
eū2: ð19Þ

As a last point, we need to fix the ratio between the
second moment of the u and ū quarks, for which we can
obtain some guidance from the BM and the χQSM. For the
BM, the eūðxÞ is small and has some sizable strength only
around x ¼ 0. Its second moment is, hence, negligible. On
the other hand, the eūðxÞ for the χQSM is larger, with eū2
having the size of almost 10% of the valence value of eu2 .
We, thus, define

Z
1

0

dxx2eūðxÞ ¼ η

Z
1

0

dxx2euðxÞ; ð20Þ

and choose for the parameter η a range of 0 ≤ η ≤ 0.10.
With this definition, we can finally relate the second

moment of the experimentally measured function eVðxÞ,
Z

1

0

dxx2eVðxÞ≡ eV2 ; ð21Þ

with eu2 , e
ū
2 , e

d
2 and ed̄2 . For Ansatz 1, we get

eu2 ¼
18

7 − 6η
eV2 ;

ed2 ¼
9

7 − 6η
eV2 ;

eū2 ¼ ed̄2 ¼
18η

7 − 6η
eV2 : ð22Þ

The results for Ansatz 2 can meanwhile be given as
follows:

TABLE I. Second moments of eðxÞ for the various quark
components, extracted from the bag model [5], the chiral quark
soliton model [9], and the spectator model [10].

BM χQSM SM

eu2 × 102 8.1 5.3 10.7
ed2 × 102 4.1 3.1 −2.2
eū2 × 102 0.2 0.4 � � �
ed̄2 × 102 0.3 0.3 � � �
e2 × 102 6.3 4.6 4.3
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eu2 ¼
9

4 − 3η
eV2 ;

ed2 ¼ 0;

eū2 ¼ ed̄2 ¼
9η

4 − 3η
eV2 : ð23Þ

Next, we briefly discuss how to obtain eV2 from the
experimental data of [4]. In the region of the three data
points provided by experiment, we employ the most simple
rectangular rule to approximate the integral, as indicated in
Fig. 1. For applying this rule, the horizontal rectangle sizes
are fixed as follows: (1) The boundary of any two
neighboring rectangles is determined to be in the center
of the corresponding data points. (2) The lowest and
highest rectangles are set to be symmetric with respect
to their data points. For the region below the lowest
rectangle, we make use of the fact that eVðxÞ at small x
is known to have a A=x1þα behavior with α < 1 [5]. Note
that the leading Pomeron contribution (α ¼ 1) vanishes
here because quarks and antiquarks contribute with oppo-
site signs to eVðxÞ. However, as we have no additional
information on the value of α, we will nevertheless set
α ¼ 1 as an upper limit, fix the coefficient A from the
lowest data point, and compute the respective contribution
to the second moment analytically. Furthermore, the
experimental points appear to quickly approach 0 above
the highest data point at x ¼ 0.356. We, thus, assume it to
be 0 for x values above the respective highest rectangle. All
this is pictorially illustrated in Fig. 1, in which the shaded
areas depict the way the numerical integration is performed.
We should mention here that computing the second

moment of eðxÞ with only three available data points is in

principle an ill-defined task. However, all of the models
describing the function eðxÞ have their dominant strength
below 0.5, as is shown in Fig. 2. Moreover, for the small-x
behavior of eðxÞ, we are using a conservative upper limit,
which is based on general considerations. Therefore, even
though we have to rely only on three data points, the values
of eðxÞ at these points can be expected to determine the
order of magnitude of its second moment, which is all the
precision needed for the present work.
The experimental results of [4], in fact, contain the data

of two different analyses. The first one is based on the
Wandzura-Wilzcek approximation (and is, therefore, called
the “WW scenario”), while the second one includes terms
that go beyond the Wandzura-Wilzcek approximation
and is called the “leading scenario.” In the following, we
will consider the results of both scenarios to get a rough
estimate of the systematic uncertainties involved. The
numerical integration described above and depicted in
Fig. 1 then gives

Z
1

0

dxx2eVðxÞ

¼
� ð2.35� 0.32Þ × 10−2 ðWW scenarioÞ;
ð−0.97� 0.32Þ × 10−2 ðleading scenarioÞ: ð24Þ

All components are now in place for estimating e2. First
of all, using Eq. (2) we can combine the various flavor
contributions given in Eqs. (22) and (23) as

e2 ¼
1

2
ðeu2 þ ed2 þ eū2 þ ed̄2Þ: ð25Þ

Applying then the results of eV2 of both the WWand leading
scenario, we get altogether four values of e2 with ranges
determined by the variation of η. These ranges are shown in
Table II together with the corresponding flavor decom-
positions. It can be seen in this table that the largest

eV
(x

)

x

WW scenario
leading scenario

-2

 0

 2

 4

 6

 8

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

FIG. 1 (color online). The three experimentally available data
points in both the WW scenario (red points) and leading scenario
(blue points), shown together with the rectangles used for the
numerical integration, as described in the text. In addition to the
data points, the extrapolation used for eVðxÞ at small x, for which
we have assumed a 1=x2-type form, is illustrated below x ∼ 0.13
as red and blue lines, respectively.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

e(
x)

x

bag model
chiral quark soliton model

spectator model

FIG. 2 (color online). The function eðxÞ for the three models
(BM, χQSM, and SM) considered in this work. The numerical
data needed for this plot have been extracted from Fig. 9 of [11].
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uncertainty of e2 is related to the discrepancy of the two
scenarios used for analyzing the experimental data.
Comparing the numbers of Table II with those of
Table I, it is observed that the model values have the same
order of magnitude, but are generally somewhat larger than
the experimentally extracted ones. Furthermore, it is noted
that model values are mostly positive, which means that
they favor the WW over the leading scenario (see also the
recent discussion in [12]).
With the four ranges obtained above, we can now give

our final estimate for e2. Taking the smallest and largest
value in the bottom line of Table II and, furthermore,
allowing for the possibility that eV2 can vary in the range
determined by the statistical errors given in Eq. (24), our
result reads

e2 ¼ −0.030 ∼ 0.064; ð26Þ

which should be compared to the numbers 0.36 of
Method 1 and 1.95 of Method 2. This comparison clearly
shows that both Methods 1 and 2 have overestimated the
relevant matrix element by at least an order of magnitude.
Therefore, even though the experimental uncertainties of e2
are still large, we can be quite certain that it must be much
smaller than previously expected.

III. DISCUSSION OF EFFECTS ON DIS
AND QCD SUM RULE ANALYSES

A. Contribution to deep inelastic electron scattering

The relevant OPE can be obtained by using the
electromagnetic current jμðxÞ ¼ q̄ðxÞQγμqðxÞ in the
correlator

Πμνðω; ~qÞ ¼ i
Z

dx4eiqxhNjT½jμðxÞjνð0Þ�jNi: ð27Þ

Here, Q is the charge operator, and jNi stands for the
one-nucleon state. The twist-4 contributions, including the
target mass corrections, appear as [1]

Πtwist4
μν ðω; ~qÞ ¼ 1

x2Q2

�
dμν

�
5

8
Aþ 1

8
B−

13

4
CþE

�

þ eμν

�
1

4
A−

3

4
B−

9

2
C

�

þ eμνM2
N

q2

ðp · qÞ2
�
1

4
Aþ 1

4
B−

1

2
Cþ 1

2
E

��
;

ð28Þ

where we have defined

eμν ¼ gμν −
qμqν
q2

; ð29Þ

dμν ¼ −
pμpν

ðp · qÞ2 q
2 þ ðpμqν þ pνqμÞ

1

p · q
− gμν; ð30Þ

and

Q2 ¼ − q2; ð31Þ

x ¼ −
q2

2ðp · qÞ : ð32Þ

In the above definitions, pμ stands for the four-momentum
of the nucleon, with MN being the nucleon mass; hence,
p2 ¼ M2

N . The parameters A-E are related to the operators
shown below:

Aαβ ¼ gST q̄½Dμ; Gβμ�γαQ2q

¼ g2ST ðq̄γαtaQ2qÞ
X
q

ðq̄γβtaqÞ;

Bαβ ¼ gST q̄fiDα; ~Gβμgγμγ5Q2q;

Cαβ ¼ mqST q̄DαDβQ2q;

Dαβ ¼ gST q̄½Dα; Gμβ�γμQ2q;

Eαβ ¼ g2ST ðq̄taγ5γαQqÞðq̄taγ5γβQqÞ: ð33Þ

The expectation values of these operators are para-
metrized as

hNjAαβjNi ¼
�
pαpβ −

1

4
M2

Ngαβ

�
A;

hNjBαβjNi ¼
�
pαpβ −

1

4
M2

Ngαβ

�
B;

hNjCαβjNi ¼
�
pαpβ −

1

4
M2

Ngαβ

�
C;

hNjDαβjNi ¼
�
pαpβ −

1

4
M2

Ngαβ

�
D;

hNjEαβjNi ¼
�
pαpβ −

1

4
M2

Ngαβ

�
E: ð34Þ

TABLE II. Second moments of eðxÞ for the various quark
components, extracted from the experimental values of [4]. The
ranges in each entry of the table are obtained by employing the
central values of Eq. (24) and varying the parameter η of Eq. (20)
between 0 and 0.10.

WW scenario Leading scenario

Ansatz 1 Ansatz 2 Ansatz 1 Ansatz 2

eu2 × 102 6.0 ~ 6.6 5.3 ~ 5.7 −2.5∼ −2.7 −2.2∼ −2.4
ed2 × 102 3.0 ~ 3.3 0.0 −1.3∼ −1.4 0.0

eū2 ¼ ed̄2 × 102 0.0 ~ 0.7 0.0 ~ 0.6 0.0∼ −0.3 0.0∼ −0.2

e2 × 102 4.5 ~ 5.6 2.7 ~ 3.4 −1.9∼ −2.3 −1.1∼ −1.4
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In the deep inelastic limit Q2 → ∞ and x ¼ finite, one can
neglect the target mass corrections, and the matrix elements
contribute to the second moments of the transverse and
longitudinal structure function as follows:

Z
1

0

Fτ¼4
2 dx ¼ 0.005� 0.004 GeV2 ðprotonÞ

¼ 2MN

�
1

2
Eþ 5

16
Aþ 1

8
B −

13

8
C

�
; ð35Þ

Z
1

0

Fτ¼4
L dx ¼ 0.035� 0.004 GeV2 ðprotonÞ

¼ 2MN

�
1

8
A −

3

16
B −

9

4
C

�
: ð36Þ

Here, the values in the first lines are obtained from
experimental constraints as extracted in [3]. The overall
factor of 2MN appearing in the second lines comes from
the covariant normalization factor of the nucleon used in
extracting the above numbers. Using the notation intro-
duced before, the value of C appearing in Eqs. (35) and (36)
can be written as

C ¼ −
2

9
muðeu2 þ eū2Þ −

1

18
mdðed2 þ ed̄2Þ: ð37Þ

Using the values given in Table II and the PDG averages for
the quark masses at 1 GeV [7], we find that the range of C
values are given as in Table III. As one can see from the
table, C contributes less than 4% and 1%, to the extracted
numbers of the second moments for the transverse and
longitudinal parts, respectively, for all cases. Hence its
contribution can be safely neglected. It should be empha-
sized here that this conclusion differs from [1], in which an
old estimate in line with Eq. (9) was used, and where the
contribution of C to the second moment of the transverse
structure function was found to be sizable. The novel
findings of the present work have, therefore, somewhat
changed this situation.

B. Contribution to the ρ and ω meson sum rule

The relevant OPE to the vector meson sum rule
can be obtained by using the vector meson current
jμðxÞ ¼ q̄ðxÞτγμqðxÞ, where τ is the isospin operator, in
the correlator

Πμνðω; ~qÞ ¼ i
Z

dx4eiqxhT½jμðxÞjνð0Þ�iρ: ð38Þ

Here, hiρ stands for the expectation value with respect to the
ground state of nuclear matter at T ¼ 0. In the linear
density approximation, the matrix element can be obtained
as the nucleon matrix element times the density ρ. Hence,
the twist-4 operators contribute to the OPE as in Eq. (28)
multiplied by ρ, the only difference being that the operators
in Eq. (33) contain the isospin matrix ρ instead of the
charge operator Q. In the sum rule analysis, the vector
meson is taken to be at rest ~q ¼ 0, in which case there is
only one invariant tensor, and the Borel transform is taken
with respect to −ω2 → ∞. The sum rule including the
twist-4 operators, except the operator of interest here,
namely Cαβ, are given in [13,14].
While the matrix elements are defined with the charge

operator Q replaced by the isospin operator τ, the relative
contribution of the operator Cαβ relative to the other twist-4
operators remains small as in the previous subsection, and
its contribution to the vector meson sum rule can be safely
neglected. The situation could, however, be different for the
ϕ meson as the small mu;md is replaced by the larger
strange quark mass ms. This case will, thus, be considered
next in more detail.

C. The OPE for the ϕ meson channel in
nuclear matter

The ϕ meson can be described by the interpolating field
jμðxÞ ¼ s̄ðxÞγμsðxÞ, which is substituted into the two-point
function of Eq. (38). Up to dimension six and twist-2 terms,
the OPE for this correlator has already been given in earlier
works [15,16]. Here, we are interested in the operators of
dimension six and twist-4 that contain strange quark fields.
Within the linear density approximation, the Wilson coef-
ficients of such operators are obtained in analogy to the
previous subsections. The final result can then be given as
Eq. (28) multiplied by ρ, the operators corresponding to the
parameters A-E now being

Aαβ ¼ gST s̄½Dμ; Gβμ�γαs ¼ g2ST ðs̄γαtasÞ
X
q

ðq̄γβtaqÞ;

Bαβ ¼ gST s̄fiDα; ~Gβμgγμγ5s;
Cαβ ¼ msST s̄DαDβs;

Dαβ ¼ gST s̄½Dα; Gμβ�γμs;
Eαβ ¼ g2ST ðs̄taγ5γαsÞðs̄taγ5γβsÞ: ð39Þ

TABLE III. Values of C that contribute to the second moments
of the structure functions in units of GeV2. The ranges in each
entry of the table are obtained by employing the central values of
Eq. (24) and varying the parameter η of Eq. (20) between 0 and
0.10. The second and third lines use factors as they appear in
Eq. (35) and Eq. (36), respectively.

WW scenario Leading scenario

Ansatz 1 Ansatz 2 Ansatz 1 Ansatz 2

2MNC × 105 −9.9∼ − 12 −6.8∼ −8.5 4.1 ~ 5.0 2.8 ~ 3.6
2MN

−13
8
C × 105 16 ~ 20 11 ~ 14 −6.7∼ −8.1 −4.6∼ − 5.9

2MN
−9
4
C × 105 22 ~ 27 15 ~ 19 −9.2∼ − 11 −6.3∼ − 8.1
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It is noted that, as before, D does not appear in the final
result and we, therefore, do not need to be concerned with
the corresponding operator any longer. An estimate of the
one-nucleon matrix elements of the other operators is
given below.

1. Numerical estimates of the twist-4 matrix elements

We here wish to evaluate the one-nucleon matrix
elements of Eq. (39). This can, however, not be done as
reliably as for the u- or d-quark case, because no exper-
imental information from DIS is available. Nevertheless,
one can still try to get an estimate by making certain
assumptions on the behavior of the matrix elements.
Specifically, we will make repeated use of the ansatz

hNjs̄ΓOsjNi≃ hNjūΓOujNiA
s
1

Au
1

; ð40Þ

for relating the s-quark operators with a general operator
insertion O to their u-quark counterparts. Here, the param-
eters As

1 and Au
1 are moments of parton distributions of the

nucleon, with quark flavor s and u. They are defined as

Au
1 ¼ 2

Z
1

0

dxx½uðxÞ þ ūðxÞ�; ð41Þ

As
1 ¼ 2

Z
1

0

dxx½sðxÞ þ s̄ðxÞ�: ð42Þ

Using the recent estimation of the parton distribution
functions in [17], the moments can be evaluated as

Au
1 ¼ 0.808� 0.069; ð43Þ

As
1 ¼ 0.0443� 0.0102: ð44Þ

(i) ST hNjg2ðs̄γαtasÞ
P

qðq̄γβtaqÞjNi
Using Eq. (40), we rewrite the matrix element as

follows:

ST hNjg2ðs̄γαtasÞ
X
q

ðq̄γβtaqÞjNi

≃ ST hNjg2ðūγαtauÞ
X
q

ðq̄γβtaqÞjNiA
s
1

Au
1

: ð45Þ

Ignoring the strange quark contribution to the sum
on the right-hand side of this equation, it is seen
that it can be related to the parameter K2

u, discussed
in [3]:

ST hNjg2ðs̄γαtasÞ
X
q

ðq̄γβtaqÞjNi

≃ 1

2MN

�
pαpβ −

1

4
M2

Ngαβ

�
K2

u
As
1

Au
1

: ð46Þ

Therefore, the parameter A can be given as

A ¼ 1

2MN
K2

u
As
1

Au
1

: ð47Þ

(ii) ST hNjgs̄fiDα; ~Gβμgγμγ5sjNi The next matrix
element can be treated in a similar way:

ST hNjgs̄fiDα; ~Gβμgγμγ5sjNi

≃ ST hNjūfiDα; ~Gβμgγμγ5ujNiA
s
1

Au
1

: ð48Þ

Using Eq. (19) of [3], which is rewritten as
Eqs. (C1-3) in [18], it can be related to the parameter
Kg

u:

ST hNjgs̄fiDα; ~Gβμgγμγ5sjNi

≃ 1

2MN

�
pαpβ −

1

4
M2

Ngαβ

�
Kg

u
As
1

Au
1

: ð49Þ

Comparing the above result with Eq. (34), we can
express B as

B ¼ 1

2MN
Kg

u
As
1

Au
1

: ð50Þ

(iii) msST hNjs̄DαDβsjNi
To study this matrix element, we will make use of

the knowledge of the previous sections, which dealt
with hNjq̄DαDβqjNi. Using again Eq. (40), we get

msST hNjs̄DαDβsjNi

≃msST hNjūDαDβujNiA
s
1

Au
1

¼ −mse2
1

2MN

�
pαpβ −

1

4
M2

Ngαβ

�
As
1

Au
1

; ð51Þ

which means that C can be given as

C ¼ −mse2
As
1

Au
1

: ð52Þ

(iv) ST hNjg2ðs̄taγ5γαsÞðs̄taγ5γβsÞjNi
The last matrix element to be determined is the

one containing four strange quarks. We use the same
strategy as above and rewrite it as
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ST hNjg2ðs̄taγ5γαsÞðs̄taγ5γβsÞjNi

≃ST hNjg2ðs̄taγ5γαsÞðūtaγ5γβuÞjNiA
s
1

Au
1

≃ST hNjg2ðūtaγ5γαuÞðūtaγ5γβuÞjNi
�
As
1

Au
1

�
2

¼ 1

2MN

�
pαpβ −

1

4
M2

Ngαβ

��
K1

u −
1

2
K1

ud

��
As
1

Au
1

�
2

:

ð53Þ

In the last line, we have used Eqs. (C1) and (C3) of
[18]. We can, hence, express the parameter E as

E ¼ 1

2MN

�
K1

u −
1

2
K1

ud

��
As
1

Au
1

�
2

: ð54Þ

For extracting the values of A, B, C, and E from the
formulas of the this subsection, we need the values of the
parameters K1

u, K2
u, K

g
u, and K1

ud. These were estimated in
[3] from lepton-hadron DIS measurement results and by
assuming ratio of Ku and Kud to lie in a reasonable range.
We will use the findings of [3] together with the PDG
average of the strange quark mass at 1 GeV [7] to give an
estimate of our parameters. The corresponding result is
given in Table IV.

2. Consequences for the ϕ meson sum rules at rest

To get an idea of the size of the contributions of the
twist-4 terms, we will here evaluate their contribution to the
OPE of the ϕ meson at rest. A more detailed study on
the OPE for the general finite three-momentum case will
be done elsewhere.
Let us simplify Eq. (28) by setting p ¼ ðMN; 0; 0; 0Þ,

which means that we are working in the nuclear matter rest
frame. Furthermore, we set ~q ¼ 0, take the trace over the
Lorentz indices, and define

Πðq20Þ ¼ −
1

3q20
Πμ

μðq0; ~q ¼ 0Þ; ð55Þ

which gives for the dimension-six, twist-4 term,

Πdim 6; twist 4ðq20Þ ¼ 4M2
Nρ

1

q60

�
−
1

4
A −

5

8
B −

7

4
C −

1

2
E
�

≡ 4M2
Nρ

1

q60
X: ð56Þ

Considering the expression of X together with the numbers
of Table IV, it is seen that B gives the dominant contribution
for all data sets and that C with our new estimate is
negligibly small. It is, however, noted that with the old
estimate of Eq. (14), which would mean using Cold instead
of C, the C-term would, due to its large prefactor 7=4,
actually have provided by far the largest contribution and
would have increased the overall value of X at least by a
factor of about 4. If the findings of this paper are correct,
this will help to largely reduce the twist-4 contributions to
this sum rule.
Making use now of our new estimate of C and of the

other parameters given in Table IV, the variable X is
found to take values that lie roughly between 4 and
9 MeV. After Borel-transforming the result of Eq. (56),
we obtain

Πdim 6; twist 4
OPE ðM2; ρÞ ¼ −2XM2

N
ρ

M6
: ð57Þ

Let us compare this finding with the other terms
appearing in the OPE at the same order. These
are given for instance in Eq. (12) of [16], from which
we list below the linear density coefficients of the
dimension-six term:

−
224

81
παsκNhs̄sihNjs̄sjNi − 104

81
m3

shNjs̄sjNi

þ 8

81
m2

smqhNjq̄qjNi − 4

81
m2

sMN

−
3

4
m2

sAs
2MN −

5

6
As
4M

3
N: ð58Þ

Numerically, these give

1.71 × 107 MeV3 − 5.80 × 105 MeV3

þ 2.01 × 104 MeV3 − 4.19 × 105 MeV3

− 2.80 × 105 MeV3 − 7.61 × 105 MeV3; ð59Þ

for which we have used κN ¼ 1 and σsN ¼
mshNjs̄sjNi ¼ 50 MeV, which is rather on the larger
side considering the recent lattice QCD calculations of
this quantity. For the other parameters, we used the
values given in [16]. It is clear from the above numbers
that the four-quark condensate term is dominant. All this

TABLE IV. Values of the parameters A, B, C, and E in units of
MeV, for six different data sets of K1

u, K2
u, K

g
u, and K1

ud, given in
[3]. For C and Cold, we use Eq. (52) with the central value of our
new estimate of Eq. (26), e2 ≃ 0.01, and the old value of Eq. (14),
respectively.

A B C Cold E

K1
u ¼ K1

ud=β 5.93 −6.95 −0.12 −13.69 −1.56
K1

u ¼ K1
udðβ þ 1Þ=β 3.21 −8.76 −0.12 −13.69 0.22

K1
u ¼ K1

ud 1.93 −9.61 −0.12 −13.69 1.07
K1

u ¼ −K1
ud −5.29 −14.43 −0.12 −13.69 5.91

K1
u ¼ −K1

udðβ þ 1Þ=β −6.57 −15.27 −0.12 −13.69 6.76
K1

u ¼ −K1
ud=β −9.29 −17.08 −0.12 −13.69 8.54
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now has to be compared to Eq. (57), without the density
and Borel mass factors. This leads to

−2XM2
N ≃ −1.13 × 107 MeV3; ð60Þ

where we have set X ¼ 6.40 MeV, which lies at the
center of the expected value range of X. Even though our
new estimate of the C operator has helped to reduce the
magnitude of the twist-4 contribution, the result of
Eq. (60) is still rather large, namely, of the same order
as the four-quark condensate term and more than 16
times larger than the twist-2 term.

D. Consequence on the nucleon sum
rule and nuclear symmetry energy

The sum rule for the proton can be obtained by looking at
the correlation function of the proton interpolating fields,

ΠðqÞ≡ i
Z

d4xeiqxhT½ηðxÞη̄ð0Þ�iρ
¼ Πsðq2; quÞ þ Πqðq2; quÞqþ Πuðq2; quÞu; ð61Þ

where q is the external momentum, u is the medium four-
velocity, and Πsðq2; quÞ, Πqðq2; quÞ, and Πuðq2; quÞ are
the three invariants according to Lorentz, parity and time
reversal symmetries [19]. The Ioffe current [20] will be
used as a proton interpolating field:

ηðxÞ ¼ εabc½uTaðxÞCγμubðxÞ�γ5γμdcðxÞ: ð62Þ

1. OPE for the proton

The OPE for proton correlator of Eq. (61) is given, for
instance, in [18]. Including, furthermore, the αs corrections
[21–23] and the dimension-eight contributions [24], it can
be summarized as follows:

ΠOPE
s ðq2; quÞ ¼ −

1

4π2
ð−q2Þ lnð−q2=μ2Þ

�
1þ 3

2

αs
π

�
hd̄diρ;I þ

4

3π2
q20
q2

hd̄fiD0iD0gdiρ;I; ð63Þ

ΠOPE
q ðq2; quÞ ¼ −

1

64π4
ð−q2Þ2 lnð−q2=μ2Þ

�
1þ 71

12

αs
π
−
1

2

αs
π
lnð−q2=μ2Þ

�

−
2

3

1

q2

�
1 −

5

6

αs
π
−
1

3

αs
π
lnð−q2=μ2Þ

�
hūui2ρ;I

þ 1

6

�
−

1

q2

�
2

hūuihgsūσGuiρ;I

þ ðquÞ
�
1

6π2
lnð−q2=μ2Þ

�
1þ 7

2

αs
π
−
1

2

αs
π
lnð−q2=μ2Þ

��
ðhu†uiρ;I þ hd†diρ;IÞ; ð64Þ

ΠOPE
u ðq2; quÞ ¼ −

1

12π2
ð−q2Þ lnð−q2=μ2Þ

�
1þ 15

4

αs
π
−
1

2

αs
π
lnð−q2=μ2Þ

�
ð7hu†uiρ;I þ hd†diρ;IÞ: ð65Þ

Here, μ is the renormalization scale which will be matched with the Borel massM after the Borel transformation. Note that
the operator of interest appears as the last term in the scalar self-energy.
The density dependencies of all the operators are given in [18] except for that of dimension eight, for which we use the

approximation

h½q̄q�ih½gsq̄σ · Gq�iρ;I ¼h½q̄q�ivach½gsq̄σ · Gq�ivac
þ ðh½q̄q�ivach½gsq̄σ · Gq�0ip þ h½q̄q�0iph½gsq̄σ · Gq�ivacÞ

�
1∓R−ðmqÞ

RþðmqÞ
I

�
ρ; ð66Þ

where h½gsq̄σ · Gq�ivac ¼ ð0.8Þh½q̄q�ivac and “þ” and “−” stand for u and d quark flavors, respectively. h½gsq̄σ · Gq�0ip is
chosen to be 3 GeV2 as in [8,25]. The detailed definition and description of the ratio R�ðmqÞ can be found in Sec. III B
of [18].
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2. Result for the nucleon sum rule

The analysis for the nucleon and the symmetry energy
follows that given in [18], with f ¼ −0.3. Here, f para-
metrizes the degree of factorization of four quark operator
in medium hq̄qi2ρ → ð1 − fÞhq̄qi2vac þ fhq̄qi2ρ. The formal-
ism and other parameters are based on the nucleon sum rule
at −q2 → ∞ but fixed j~qj [19].
First, we show the Borel window before (a) and after (b)

including the αs corrections and dimension-eight conden-
sates in Fig. 3. The left panel of Fig (3) is adapted from
[18]. There, the upper bound for the Borel mass was
obtained by requiring the ratio between the contribution of
the highest dimensional operators and that of the total OPE
to be less than 50%, and the lower bound from the
condition that the ratio between the continuum contribution
and the total OPE should be less than 75%, which confines
the Borel window to 1.0 GeV2 < M2 < 1.2 GeV2. The
added corrections lead to a considerable improvement, as
can be inferred by comparing plots (a) and (b). We can,
therefore, now require above the ratios to be less than 50%
and 5%, respectively, which confines the Borel window
to 0.8 GeV2 ≤ M2 ≤ 1.0 GeV2.
Next, we study the sum rule for the scalar (M�), vector

self-energy (ΣV), and the change in the pole mass
[EqðI ¼ 0Þ] for symmetric nuclear matter, which can be
obtained from combining the three invariant functions
appearing in Eq. (61) as discussed in [18]. As can be seen
in Fig. 4 (a), the ratio EqðI¼0Þ=MN varies from 0.90 to 0.84
and M�

N=MN from 0.55 to 0.48, respectively, as one
changes e2 from −0.20 to 2.00. On the other hand, when
αs corrections and dimension-eight condensates are
included, the corresponding values of EqðI¼0Þ=MN and
M�

N=MN are, respectively, modified to vary from 1.00 to
0.93 and from 0.58 to 0.52 for the same range of e2. If e2
can be restricted to the narrow range of Eq. (26), this means
that the dependence of both EqðI¼0Þ=MN and M�

N=MN

within this range clearly becomes very small. Moreover,
previous sum rule calculations based on the larger value of
e2 given in Eq. (14) [19], have presumably overestimated
the absolute changes of the above ratios in nuclear matter.
Finally, let us check the modification of the symmetry

energy as we change e2 as above. In Fig. 5, we show the
symmetry energy obtained with the full sum rule including
αs correction and dimension-eight condensate without (a)
and with (b) the four-quark twist-4 spin-2 contributions. As
can be seen in the figure, the curves are essentially constant
for both cases and hence show no dependence on e2. This
simply shows that, in contrast to the nucleonic parameters
shown in Fig. 4, the contribution of e2 to the symmetry
energy is negligible.

IV. SUMMARY AND CONCLUSION

We have in this work studied the matrix element
ST hNjq̄DμDνqjNi and have for the first time provided
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(a) (b)

FIG. 3 (color online). Borel window for B̄½Πqðq20; j~qjÞ� (a) with
OPE up to dimension-six condensates and (b) dimension-eight
condensates together with αs corrections. The solid (dashed) lines
show the ratios between the contribution of the highest dimen-
sional operators (the continuum) and that of the total OPE. The
horizontal dotted lines correspond to the ratios being 0.75 (red)
and 0.5 (blue) in (a) and 0.05 (red) and 0.5 (blue) in (b),
respectively.
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FIG. 4 (color online). The ratios between quasi nucleon self-
energies and the vacuum mass as a function of e2. (a) shows the
results without and (b) with αs corrections.
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FIG. 5 (color online). Nuclear symmetry energy as a function of
e2 without (a) and with (b) twist-4 spin-2 four-quark matrix
elements. The vertical axis is shown in units of GeV. For the
detailed definition of the vector and scalar contributions, we refer
the reader to [18].
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an estimate for its value that is based on experimental
constraints. To do this, we partially had to rely on a number
of assumptions on the relative contributions of u and d
quarks and their respective antiparticles to e2 and, fur-
thermore, on the behavior of eðxÞ at small and large x. For
setting up these assumptions we followed the guidance
of the bag model [5], the chiral quark soliton model [9] and
the spectator model [10], which have been used to compute
the contributions of the different quark flavors to eðxÞ.
The final result, given in Eq. (26), contains both the

uncertainties of the experimental results of [4] and the
systematic errors due to the assumptions derived from
the different quark models. We should stress here that, even
though uncertainties of Eq. (26) are large, the smallness of
e2 compared to the earlier estimates of Eqs. (9) and (14)
appears to be robust and does not depend on the details of
our employed assumptions. It hence seems to be essentially
impossible to reconcile the experimental data of [4] with
the old estimates of e2, which, therefore, should be
discarded in future studies.
To study the consequences of our findings, we

have furthermore investigated the contribution of
ST hNjq̄DμDνqjNi to the OPE relevant for DIS and
for the correlator of the vector meson current, that
couples to the ρ, ω and ϕ meson states. Our calculations
show that, with the new estimate of Eq. (26), e2 is so
small that its contribution to the OPE for all the above-
mentioned cases turns out to be negligible. Let us here
especially mention the OPE corresponding to the ϕ
meson channel, for which the relevant operator is
msST hNjq̄DμDνqjNi. With the old value of Eq. (14),

this would have become the dominant twist-4 term, with
seizable consequences for the behavior of the ϕ meson in
nuclear matter, but our result shows that this is not the
case. We furthermore studied the contribution of the
present operator to the nucleon scalar and vector self-
energy and the nuclear symmetry energy in nuclear
matter as obtained from the nucleon sum rule. From
this, we found that the uncertainties of the self-energies
due to e2 are much reduced with our new estimate. For
the nuclear symmetry energy, the effect of e2 turned out
to be minimal.
Our new estimate of e2 will also have consequences for

the OPE of other channels not studied in this work, which
will be relevant for investigations of the behavior of the
respective hadrons in nuclear matter. One such case could,
for instance, be the study of the D or B meson spectrum at
finite density [26,27]. As e2, however, turns out to be small,
it can generally be expected to have only a marginal effect,
but this needs to be confirmed in a separate calculation for
each channel of interest. The present authors have already
started an investigation of the hyperon symmetry energy
at finite density and found that it could indeed be non-
negligible for this case [28].
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