
Rare exclusive decays of the Z boson revisited

Ting-Chung Huang*

Department of Physics & Astronomy, Northwestern University, Evanston, Illinois 60201, USA

Frank Petriello†

Department of Physics & Astronomy, Northwestern University, Evanston, Illinois 60201, USA
and High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 2 December 2014; published 6 July 2015)

The realization that first- and second-generation Yukawa couplings can be probed by decays of
the Higgs boson to a meson in association with a photon has renewed interest in such rare exclusive decays.
We present here a detailed study of the rare Z-boson processes Z → J=ψ þ γ, Z → ϒþ γ, and Z → ϕþ γ
that can serve as benchmarks for the analogous Higgs-boson decays. We include both direct-production
and fragmentation contributions to these decays and consider the leading QCD corrections and the
relativistic corrections to the J=ψ and ϒ processes. We present numerical predictions for the branching
ratios that include a careful accounting of the theoretical uncertainties.
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I. INTRODUCTION

A primary goal of Run II of the LHC will be the further
investigation of the Higgs boson discovered in 2012.
Current measurements by the ATLAS and CMS collab-
orations indicate that the couplings of this new state agree
with Standard Model (SM) predictions at the 20%–30%
level [1,2]. These measurements so far only provide
information about the Higgs couplings to electroweak
gauge bosons and to third-generation fermions. The Higgs
Yukawa couplings to first- and second-generation quarks
are currently unknown. It is extremely difficult to exper-
imentally access these couplings. They are predicted to
be small in the SM, and the inclusive decays of the
Higgs to these states are swamped by large QCD back-
grounds. These couplings are indirectly constrained
weakly by the inclusive Higgs production cross section
[3]. Such constraints only probe the simultaneous
deviation of all Yukawa couplings. They do not allow
the separate Yukawa couplings of the various quarks to be
determined.
It was discovered recently that it is possible to explore

these couplings using rare exclusive decays of the Higgs
boson to mesons in association with a photon. The first
manifestation of this idea was the suggestion that the Higgs
coupling to charm quarks could be probed using the
exclusive decay H → J=ψ þ γ [4]. The enhancement of
the branching ratio for this mode compared to initial
expectations came from the realization that two distinct
production mechanisms give rise to this process:

(i) the direct contribution in which the Higgs boson
decays into a cc̄ pair, one of which radiates a photon
before forming a J=ψ ;

(ii) the indirect or fragmentation contribution, in which
the Higgs boson decays to a γ and an off-shell γ�,
with the γ� then fragmenting into a J=ψ .

Initial considerations of this process [5] studied only the
direct production mechanism. The indirect production
amplitude is larger, and its interference with the direct
mode renders this decay measurable at the LHC and
sensitive to the Hcc̄ coupling. Although this coupling
can possibly be accessed at the LHC using charm tagging
[6], its phase can only be studied using processes such as
this rare decay that involve quantum interference effects.
It was later realized that other exclusive decays of the
Higgs boson to light mesons in association with either a
photon or a heavy electroweak gauge boson can similarly
be used to probe the Yukawa couplings of the other first-
and second-generation quarks [3]. Decays to light mesons
together with a heavy gauge boson may also be used to
probe the structure of the Higgs couplings to electroweak
gauge bosons [7]. The study of these rare decays at the
high-luminosity LHC offers potentially the only way to
directly study these couplings in the foreseeable future.
Their predicted rates at planned future eþe− machines are
too small. Only the LHC and future very high-energy
hadron colliders produce enough Higgs bosons to allow
observation of these decays.
Initial experimental studies of these channels have begun

and appear promising. One topic needed to further assist
these investigations is a set of experimental benchmarks
besides the Higgs decays that can be used to refine and
validate search techniques. Obvious candidates are rare
decays of the Z boson. Its mass is not too much smaller than
the Higgs mass, and it is also produced primarily at the
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LHC as an s-channel resonance. The set of rare Higgs
boson decays outlined in Refs. [3,4] can be divided into two
broad categories based on their experimental signatures:

(i) the decays H → V þ γ where V ¼ J=ψ or ϒ feature
the final state lþl−γ after leptonic decays of the
vector quarkonium are required;

(ii) decays of the Higgs boson to a light meson such as
the ϕ plus a photon—in this case the ϕ decays
hadronically, and a track-based trigger must be
developed.

We focus in this manuscript on the decays Z → J=ψ þ γ,
Z → ϒþ γ, and Z → ϕþ γ, which are representative of
these two categories. The decays of the Z boson to the
heavy quarkonium states J=ψ and ϒ were studied in a
classic paper by Guberina et al. [8] (GKPR). In their work,
GKPR include only the direct production mechanism
and work in the exact nonrelativistic limit. As far as we
are aware, the decay Z → ϕþ γ has not been studied in the
literature.
Our goal in this manuscript is to provide up-to-date

theoretical predictions for these rare Z-boson decays for use
in LHC searches. We consider both the indirect and direct
contributions to both decays. For the J=ψ and ϒ final
states, we use the nonrelativistic QCD (NRQCD) frame-
work [9] to perform the calculation. We cross-check our
result using the light-cone distribution amplitude (LCDA)
approach [10,11]. The evaluation of the direct amplitude
using both approaches allows us to include the leading
OðαsÞ QCD corrections and the leading Oðv2Þ relativistic
corrections to the decay. We compute the Z → ϕþ γ decay
using the LCDA approach and include the leading-
logarithmic QCD corrections that come from the evolution
of the LCDA from the hard scaleMZ down to the phi mass
scale, mϕ. We perform a detailed estimate of the remaining
sources of theoretical uncertainty affecting both decays.
We find the following final results for the branching ratios:

BSMðZ → J=ψ þ γÞ ¼ ð9.96� 1.86Þ × 10−8;

BSMðZ → ϒð1SÞ þ γÞ ¼ ð4.93� 0.51Þ × 10−8;

BSMðZ → ϕþ γÞ ¼ ð1.17� 0.08Þ × 10−8:

ð1Þ

We define the branching ratios as BSMðZ → M þ γÞ ¼
ΓðZ → M þ γÞ=ΓðZÞ, where ΓðZÞ is the total width of
the Z boson. We use ΓðZÞ ¼ 2.4952 GeV from the Particle
Data Group [12].
Although small, it is possible that the heavy quarkonium

branching ratios will be accessible in Run II measurements
[13]. Compared to the analogous Higgs-boson decays [3,4],
the J=ψ and ϕ branching ratios are smaller by 1–2 orders of
magnitude. This is due primarily to the suppression of the
indirect amplitude in the Z-boson decays as compared to
the Higgs decays. This amplitude proceeds through the
Zγγ� effective coupling, which receives contributions from
Standard Model anomaly diagrams. It was previously

suggested in the literature that the indirect amplitude could
give large contributions to the similar process of a Z boson
decaying to a pseudoscalar meson and a photon [14]. We
show here that there is no such enhancement for this
process. The indirect amplitude depends on the difference
between fermion masses within a generation and goes to
zero for heavy fermions such as the top quark. The only
numerically relevant contributions therefore come from the
tau lepton, the charm quark, and the bottom quark. Since
these fermion masses are small, the indirect amplitude is
small for this process. Furthermore, the Landau–Yang
theorem [15] prevents the decay of the Z boson to two
on-shell photons and therefore requires that the indirect
amplitude for the process considered here vanishes in the
limit mJ=ψ → 0. This implies that there can be no enhance-
ment with respect to the direct amplitude by the ratio
m2

H=m
2
J=ψ , as there is for the analogous Higgs decays.

These effects lead to an indirect amplitude with a magni-
tude less than 1% of the direct-amplitude magnitude.
Our paper is organized as follows. In Sec. II, we derive

the amplitude for the Z → J=ψ þ γ decay. The ϒ decay
calculation is identical. We discuss our evaluation of both
the direct and indirect contributions and our evaluation of
the leading QCD and relativistic corrections. In Sec. III we
describe our calculation of the Z → ϕþ γ process using the
LCDA approach. We present our numerical results and
describe our estimates of the theoretical uncertainties in
Sec. IV. We conclude in Sec. V.

II. DECAY Z → J=ψ þ γ

We begin by discussing the decay Z → J=ψ þ γ. Since
the calculation of the ϒ decay is identical to the J=ψ , we
do not present it explicitly. We give numerical results
for both modes in a later section. This process receives
contributions from both a direct amplitude and an indirect
amplitude. These are shown, respectively, in the left and
right panels of Fig. 1. We calculate the direct-amplitude
contribution to this process using the NRQCD framework
[9]. We include the velocity corrections through Oðv2Þ.
In addition, we include the leading OðαsÞ corrections
using the LCDA approach [10,11]. The indirect amplitude
proceeds through the loop-induced Zγ�γ effective vertex,
which can be calculated in perturbation theory. The
subsequent γ� → J=ψ transition can be obtained from
data.
We perform our calculation to leading order in the ratio

m2
J=ψ=M

2
Z. The corrections from the higher-order terms in

this expansion are expected to be at the 0.1% level, far
below any other source of theoretical error we consider.
We have checked that a certain class of these corrections
that we can easily obtain (those coming from the final-state
phase space and from the direct amplitude) have no effect
on our numerical results.
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A. Direct amplitude in the nonrelativistic limit

We begin by calculating the direct amplitude in the
nonrelativistic v ¼ 0 limit. We have reproduced and have
found agreement with the result in GKPR [8]. We briefly
sketch the derivation here.
We define the partonic process leading to J=ψ produc-

tion as

ZðPÞ → cðp1Þc̄ðp2Þ þ γðpγÞ: ð2Þ

We introduce the relative momenta between the c and c̄ as
q ¼ ðp1 − p2Þ=2 and the total momentum of the J=ψ as
pV ¼ 2p ¼ p1 þ p2. We then have the following relations
among the momenta:

p1 ¼ pþ q; p2 ¼ p − q; p · q ¼ 0;

p2
1 ¼ p2

2 ¼ m2
c; p2 ¼ E2;

q2 ¼ m2
c − E2 ¼ −m2

cv2: ð3Þ

To produce a J=ψ , the cc̄ pair must be produced in a
spin-triplet, color-singlet final state. We use a projection
operator [8,16] to enforce the production of this final state,

iMdirect ¼
ffiffiffiffiffiffiffiffiffi
2mJ

p
ϕ0ðJÞTr½ðiMcc̄γÞΠ1ðp; q; ϵ�Þ�; ð4Þ

where the projector is given by

Π1ðp; q; ϵ�Þ ¼
1

8
ffiffiffi
2

p
E2ðEþmcÞ

ðp2 −mcÞϵ�

× ðp1 þ p2 þ 2EÞðp1 þmcÞ

⊗
1ffiffiffiffiffiffi
Nc

p : ð5Þ

The amplitudeMcc̄γ is obtained by directly calculating the
Feynman diagrams from the left panel of Fig. 1 in QCD
perturbation theory. Summing the two diagrams that
contribute to the direct amplitude yields

iMcc̄γ ¼ ðigZεZðgcV − gcAγ5ÞÞ
ið−p2 − pγ þmcÞ
ðp2 þ pγÞ2 −m2

c
ð−ieQcÞε�γ

þð−ieQcÞε�γ
iðp1 þ pγ þmcÞ
ðp1 þ pγÞ2 −m2

c
ðigZεZðgcV −gcZγ5ÞÞ:

ð6Þ

The external spinors associated with the quark and anti-
quark appearing in the partonic amplitude have been
removed from this expression; they are replaced by the
projector of Eq. (5) when performing the trace indicated in
Eq. (4). We have included the NRQCD matrix element to
convert this into the J=ψ amplitude in Eq. (4), resulting in
the appearance of ϕ0ðJÞ, the J=ψ wave function at the
origin. The trace is over both the Dirac and color indices.
To obtain the nonrelativistic expression, we set q ¼ 0 in

Eq. (5). We note that this also sets v ¼ 0 upon using the
kinematic relations in Eq. (3). Since mJ=ψ ¼ 2mc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
,

this also has the affect of enforcing mJ=ψ ¼ 2mc in the
nonrelativistic limit. After a straightforward calculation
using these relations, we arrive at the result

Mð0Þ
J=ψ ;direct ¼ i

8
ffiffiffiffiffiffi
Nc

p
eQcgZgcAϕ0ðJÞ ffiffiffiffiffiffiffiffiffiffimJ=ψ

p
M2

Z

× ϵαμνρε
α
Zε

�μ
γ ε�νJ=ψp

ρ
γ : ð7Þ

The superscript denotes that neither relativistic corrections
nor higher-order perturbative QCD corrections have been
included. As noted earlier, we have kept only the leading
term in the m2

J=ψ=m
2
Z expansion. For the electromagnetic

coupling, e we use the value at zero momentum transfer, as
appropriate for an on-shell photon. Qc ¼ 2=3 is the charm-
quark charge. gZ denotes the overall coupling strength of
the Z boson to fermions, while gfV;A denote the vector and
axial couplings of the fermion f. We write these as

gZ ¼ 2 × 21=4
ffiffiffiffiffiffiffi
GF

p
MZ; gfV ¼ If3

2
−Qfsin2θW;

gA ¼ If3
2
; ð8Þ

where GF is the Fermi constant, sin θW is the sine of the
weak-mixing angle, and If3 ¼ �1=2 for up-type and down-
type quarks, respectively. We note that the amplitude is
proportional to the axial coupling of the charm quark. If this
quantity were zero, Furry’s theorem would require this
amplitude to be vanishing.

B. Relativistic corrections in NRQCD

To obtain the leading relativistic corrections to this
amplitude, we follow the approach outlined in Ref. [17].
We keep the q dependence in the projector of Eq. (5)

FIG. 1. Representative Feynman diagrams contributing to the
direct amplitude (left panel) and indirect amplitude (right panel)
for Z → J=ψ þ γ. Similar diagrams lead to the process Z →
ϕþ γ and Z → ϒþ γ. We note that the direct amplitude receives
contributions from two diagrams. The second diagram is obtained
by reversing the fermion flow in the diagram shown here.
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and expand the result in the parameter v2 introduced in
Eq. (3). We keep only theOðv2Þ correction. This correction
is a ratio of NRQCD matrix elements:

v2n → hv2ni ¼ 1

m2n
Q

hVðϵÞjψ†ð− i
2
∇
↔
Þ2nσ · ϵχj0i

hVðϵÞjψ†σ · ϵχj0i : ð9Þ

We begin by evaluating the trace over the projection
operator and partonic amplitude in Eq. (4) and averaging
over the spatial direction of the momentum q in the J=ψ
rest frame using the operation

Z
q̂
≡
Z

dΩq̂

4π
; ð10Þ

where we have defined q̂ ¼ q=jqj. Doing so, we find the
following four auxiliary integrals over q̂ that are needed for
this calculation:

I ¼
Z
q̂

p · pγ

ðp − qÞ · pγ
; ð11Þ

Iμ ¼
Z
q̂

p · pγ

ðp − qÞ · pγ
qμ; ð12Þ

Iμν ¼
Z
q̂

p · pγ

ðp − qÞ · pγ
qμqν: ð13Þ

The analytic expressions for these integrals have been
derived in Ref. [17], leading to the results

I0 ¼
1

2δ
log

1þ δ

1 − δ
;

Iμ ¼ 4E2ð1 − I0Þ
m2

H − 4E2
p̄μ
γ ≡ I1p̄

μ
γ ;

Iμν ¼ E2 −m2
QI0

2

�
−gμν þ pμpν

p2

�

þ 8E2½ðm2
Q þ 2E2ÞI0 − 3E2�
ðm2

H − 4E2Þ2 p̄μ
γ p̄ν

γ

≡ I2a

�
−gμν þ pμpν

p2

�
þ I2bp̄

μ
γ p̄ν

γ ; ð14Þ

where we have introduced the abbreviations

δ ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ; p̄γ ¼ pγ −
pγ · p

p2
p: ð15Þ

We note that the kinematic relations in Eq. (3) have been
used in arriving at the expression for δ. Since we are
expanding our amplitude in both v2 and m2

c=M2
Z, we need

to obtain only the leading terms in these small quantities.
We find

I0 ¼ 1þ v2

3
þOðv4Þ; I1 ¼−

4

3
v2

m2
c

M2
Z
þOðv4; m4

c=M4
ZÞ;

I2a ¼
1

3
v2m2

c þOðv4Þ; I2b ¼ Oðv4; m4
c=M4

ZÞ: ð16Þ

We arrive at the following result for the direct amplitude of
Eq. (4) expanded to Oðv2Þ in terms of these quantities:

Mv2
J=ψ ;direct ¼ i

8
ffiffiffiffiffiffi
Nc

p
eQcgZgcAϕ0ðJÞ ffiffiffiffiffiffiffiffiffiffimJ=ψ

p
M2

Z

× ϵαμνρε
α
Zε

�μ
γ ε�νJ=ψp

ρ
γ

�
I0

�
1 −

3v2

8

�
þ 5

8

I2a
m2

c

�
þOðv4; m2

c=M2
ZÞ: ð17Þ

We next use the replacement of Eq. (9) to convert the v2

appearing in this result into a ratio of NRQCD matrix
elements, the numerical values of which are known.
Incorporating this replacement and the integrals of
Eq. (16) yields our final result:

Mv2
J=ψ ;direct ¼ i

8
ffiffiffiffiffiffi
Nc

p
eQcgZgcAϕ0ðJÞ ffiffiffiffiffiffiffiffiffiffimJ=ψ

p
M2

Z

× ϵαμνρε
α
Zε

�μ
γ ε�νJ=ψp

ρ
γ

�
1þ hv2i

6

�
: ð18Þ

Although we will discuss numerics in more detail later in
our paper, we note that hv2i ¼ 0.20, leading to a 3% increase
in the direct amplitude from relativistic corrections.

C. LCDA approach to the Z → J=ψ þ γ decay

We note that, since MZ ≫ mJ=ψ , this process consists of
a photon recoiling against an energetic J=ψ , with both the
c and c̄ moving along the light-cone direction defined by
the J=ψ momentum. This picture allows us to use LCDA
techniques [10,11] to calculate the direct amplitude to
leading order in m2

J=ψ=M
2
Z. The advantage of this approach

is that the leadingOðαsÞ QCD corrections are known in the
LCDA approach and can be used to improve our prediction.
Furthermore, the LCDAs satisfy an evolution equation that
can be used to sum the leading-logarithmic corrections
arising from collinear gluon emission. Since we find that
the QCD corrections are small, we do not include this
renormalization-group improvement in our result.
We begin by introducing the following light-cone

momentum directions:

nμ ¼ ð1; 0; 0; 1Þ; n̄μ ¼ ð1; 0; 0;−1Þ: ð19Þ

We align n to lie along the J=ψ direction and n̄ to lie along
the photon direction. We can express all momenta in terms
of these directions:
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pμ
γ ¼

M2
Z −m2

J=ψ

2MZ
n̄μ; pμ

V ¼ MZ

2
nμ þm2

J=ψ

2MZ
n̄μ; ð20Þ

pμ
1 ¼ u

MZ

2
nμ þ m2

c

2uMZ
n̄μ; pμ

2 ¼ ū
MZ

2
nμ þ m2

c

2ūMZ
n̄μ:

ð21Þ

We have introduced the light-cone momentum fractions u
and ū that parametrize the fractions of the J=ψ light-cone
momentum carried by the c and c̄, respectively. We note
that ū ¼ 1 − u. These quantities satisfy the relation
m2

J=ψ ¼ m2
c=ðuūÞ.

To proceed with the LCDA approach, we expand these
kinematic relations to leading order in the ratios m2

J=ψ=M
2
Z

and m2
c=M2

Z, leading to the simplified expressions

pμ
γ ≈

MZ

2
n̄μ; pμ

V ≈
MZ

2
nμ;

pμ
1 ≈ u

MZ

2
nμ; pμ

2 ≈ ū
MZ

2
nμ: ð22Þ

The momentum fraction u takes on values in the range
[0,1]. We then compute the diagrams corresponding to the
direct amplitude in Fig. 1 using standard Feynman rules.

We then use projection operators [18] to extract the
amplitude for J=ψ production in terms of the appropriate
LCDAs. There are two relevant projection operators to
consider: one that describes the production of a transversely
polarized J=ψ and one that describes the production of a
longitudinally polarized J=ψ . We find that the production
of a transversely polarized J=ψ vanishes to leading order in
m2

J=ψ=M
2
Z. The production rate of a longitudinally polarized

J=ψ is not similarly suppressed. This agrees with the
intuition that the production of longitudinal particles should
be enhanced in the high-energy limit. The appropriate
projection operator that converts the partonic amplitude
for cc̄γ production into the production of a J=ψ and a
photon is [18]

MLCDA
J=ψ ;direct ¼ −

fJ=ψ
4

mJ=ψ

EJ=ψ

Z
1

0

duTr½ðMcc̄γÞpJ=ψv · ε�J=ψ �;

ð23Þ

where v ¼ ðnþ n̄Þ=2, fJ=ψ is the decay constant of the
J=ψ , and ϕ∥ðuÞ is the twist-2 LCDA of the J=ψ . We have
neglected higher-twist contributions to this projection
operator. The detailed algebraic steps indicate how the
expression in Eq. (23) is converted into its final form:

MLCDA
J=ψ ;direct ¼

Z
1

0

du
−eQcgZ

ūðM2
Z −m2

J=ψÞ
�
−
fJ=ψmJ=ψ

4EJ=ψ

�
ðv · ε�J=ψÞTr½εZðgcV − gcAγ5ÞðūpJ=ψ þ pγ −mcÞε�γpJ=ψ �

þ
Z

1

0

du
eQcgZ

uðM2
Z −m2

J=ψ Þ
�
−
fJ=ψmJ=ψ

4EJ=ψ

�
ðv · ε�J=ψ ÞTr½ε�γðupJ=ψ þ pγ þmcÞεZðgcV − gcAγ5ÞpJ=ψ �

¼ ieQcgZgcAfJ=ψmJ=ψ

M2
Z

Z
1

0

du

�
ϕ∥ðuÞ
ū

þ ϕ∥ðuÞ
u

�
ϵαμνρε

α
Zε

�μ
γ ε�νJ=ψp

ρ
γ

¼ ieQcgZgcAfJ=ψmJ=ψ

M2
Z

Z
1

0

du
ϕ∥ðuÞ
uū

ϵαμνρε
α
Zε

�μ
γ ε�νJ=ψp

ρ
γ : ð24Þ

In the second and fourth lines, we use the relations p1 ¼
upJ=ψ and p2 ¼ ūpJ=ψ , valid in the limit MZ ≫ mJ=ψ . In
the fifth line, we use the relation

ðv · ε�J=ψÞϵαμνρεαZε�μγ pν
J=ψp

ρ
γ ≃MZ

2
ϵαμνρε

α
Zε

�μ
γ ε�νJ=ψp

ρ
γ ; ð25Þ

also valid in the limit MZ ≫ mJ=ψ . Before proceeding, we
make a few comments on the region of validity of this
result. We have performed a light-cone expansion of all
momenta appearing in the problem. For example, p1 and p2

are assumed to lie along n, and components along n̄ and
perpendicular components are neglected. We have also
neglected higher-twist wave functions in the projector of
Eq. (23). Both effects are suppressed by powers of
m2

J=ψ=M
2
Z.

We have not yet used the fact that the quarks making up
the J=ψ are nonrelativistic in the J=ψ rest frame. This fact
implies a connection between the decay constant fJ=ψ , the
integral over ϕ∥ðuÞ, and the relativistic corrections found in
the previous section. This connection was derived in detail
in Refs. [19,20]. Converting the results of this reference
into our notation, we have

fJ=ψ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
Nc

mJ=ψ

s
ϕ0ðJÞ

�
1 −

hv2i
6

þOðv4Þ
�
;

Z
1

0

du
ϕ∥ðuÞ
uū

¼ 4

�
1þ hv2i

3
þOðv4Þ

�
: ð26Þ

Only the nonrelativistic limit of this expression is given in
Ref. [19,20]. We have reproduced this limit and also have
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derived the Oðv2Þ correction following the technique of
Ref. [17]. Inserting this result into Eq. (24), we reproduce
both the nonrelativistic limit and leading v2 correction
of Eq. (18).
The usefulness of considering the LCDA approach is that

the OðαsÞ corrections to the direct amplitude have been
calculated in Refs. [19,20] in the nonrelativistic limit and
can be included in our calculation. The correction factor is
given by

ΔQCDðμ; μ0Þ ¼
αsðμÞ
4π

CF

�
ð3 − 2 ln 2Þ

�
ln
μ2

μ20
− iπ

�

þ ln22 − ln 2 − 9 −
π2

3

�
: ð27Þ

The central values for the scales μ and μ0 are μ ∼Mz,
μ0 ∼mc. The logarithm comes from collinear-gluon emis-
sion. The hard scale for this logarithm is the hard scale of
the process, μ, while the low-scale μ0 denotes where the
collinear emissions are cut off. If desired, these logarithms
could be resummed using the evolution equation satisfied
by the LCDA. We note that the leading logarithmic
correction in Eq. (27) gives a 17% correction to the
amplitude. We can estimate the effect of higher-order
logarithmic corrections by exponentiating this correction.
This leads to an additional 1.5% shift beyond what has
already been calculated. Since this estimate turns out not to
be large, we do not include this resummation here.
Using this next-to-leading-order QCD correction, we can

write down our final expression for the direct amplitude,
including both relativistic and OðαsÞ improvements:

MJ=ψ ;direct ¼ Mð0Þ
direct

�
1þ hv2i

6
þ ΔQCDðμ; μ0Þ

�
: ð28Þ

We note that we have not included any mixed corrections of
the form Oðαsv2Þ in this expression. We will estimate later
the theoretical uncertainty arising from these missing terms,
as well as from other sources of error. To summarize, this
expression includes all OðαsÞ and Oðv2Þ corrections. All
terms of Oðm2

J=ψ=M
2
ZÞ, Oðα2sÞ, Oðv4Þ, and Oðαsv2Þ are

neglected.

D. Indirect amplitude

We now consider the indirect contribution to the J=ψ
channel that arises through the diagrams in the right panel
of Fig. 1. We begin by deriving the effective Zγγ� vertex
that mediates this process. This coupling is loop induced. It
was first considered for arbitrary fermions propagating in
the loop in Ref. [21]. In our notation, the amplitude for a
given internal fermion f is

Mf
αμνðZα → γμðpγÞγ�νðpVÞÞ

¼ ½−ie2Q2
fgZg

f
AN

f
c �p

2
V

π2
Iðmf;mJ=ψ ;MZÞϵαμνρpρ

γ ; ð29Þ

where Nf
c denotes the number of colors for the fermion f.

Iðmf;mJ=ψ ;MZÞ denotes the parametric integral

Iðmf;mJ=ψ ;MZÞ

¼ −
Z

1

0

dx
Z

1−x

0

dy

×
−yþ y2 þ xy

m2
f − yð1 − yÞm2

J=ψ − xyðM2
Z −m2

J=ψÞ
: ð30Þ

This function depends on the internal-fermion mass mf

and on mJ=ψ and MZ. We use directly this parametric
integral in our numerical results. The analytic expression
for Iðmf;mJ=ψ ;MZÞ is given in Ref. [21]; we do not
reproduce it here, although we have re-derived and con-
firmed it in several limits. For one check, we have
confirmed that our numerical result reproduces the follow-
ing analytic expression in the limit of zero internal fermion
mass:

Ið0; mJ=ψ ;MZÞ

¼ 1

M2
Z −m2

J=ψ

�
1þ M2

Z

M2
Z −m2

J=ψ

ln

�
m2

J=ψ

M2
Z

��
: ð31Þ

We note that in the limit of degenerate fermion masses
within an entire generation of fermions the amplitude
becomes proportional to

X
f

Mf
αμνðZ → γðpγÞγ�ðpVÞÞ ∝

X
f

Q2
fg

f
AN

f
c ¼ 0: ð32Þ

This expression vanishes because of anomaly cancellation
in the Standard Model.
To obtain the indirect amplitude for Z → J=ψ þ γ,

we combine the Zγγ� result with the transition amplitude
for γ� → J=ψ. This transition proceeds through the matrix
element

iMμ
JV

¼ −iehJ=ψðϵÞjJμVðx ¼ 0Þj0i ¼ −iegJ=ψγϵμ�; ð33Þ

where JV is the electromagnetic current,

JμVðxÞ ¼
X
q

Qqq̄ðxÞγμqðxÞ: ð34Þ

In Eq. (34), the sum is over all quark flavors. We can solve
for the magnitude of the effective coupling gJ=ψγ using the
decay width of the J=ψ into leptons:
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Γ½V → lþl−� ¼ 4πα2g2Vγ
3m3

V
: ð35Þ

To determine the phase of gVγ , we follow Ref. [4] and note
that to leading order in αs and v we have

gJ=ψγ ¼ −Qc

ffiffiffiffiffiffiffiffi
2Nc

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mJ=ψ

q
ϕ0ðJÞ: ð36Þ

This indicates that gJ=ψγ is negative.
1 We find the following

expression for the indirect amplitude:

MJ=ψ ;indirect ¼
ie3gZgJ=ψγ

π2
ϵαμνρε

α
Zε

�μ
γ ε�νJ=ψp

ρ
γ

×
X
f

Q2
fg

f
AN

f
cIðmf;mJ=ψ ;MZÞ: ð37Þ

The sum is over all fermions in the Standard Model.
We will study the numerical impact of this contribution in a
later section, but we make a few comments here. Since the
contributions are proportional to the mass splittings within
a generation, we find that the first generation gives a
negligible result. The integral Iðmf;mJ=ψ ;MZÞ goes like
1=m2

f for heavy fermions, and the contribution from the top
quark is therefore also small. Only the charm-quark,
bottom-quark, and tau-lepton contributions are numerically
important. These contributions can be expanded in the ratio
of the fermion masses overMZ. Since these ratios are small,
the indirect amplitude is small for this process. This is in
contrast to the Higgs decay [4], for which the indirect
amplitude gives a sizable contribution. The overall QED
coupling term e3 contains an e2 that comes from the
coupling of the off-shell γ� and a factor of e that comes
from the on-shell photon. We will therefore replace this
factor by the following combination of running coupling
constants in the M̄S scheme: e3 → e2ðmJ=ψÞ × eð0Þ. We do
not assign any theoretical error due to missing higher-order
corrections to the indirect amplitude, since it anyway gives
a small contribution to the branching ratio.

E. Summary of the J=ψ mode

To form the entire amplitude for Z → J=ψ þ γ, we sum
the direct and indirect amplitudes given in Eqs. (28)
and (37):

MZ→J=ψþγ ¼ MJ=ψ ;indirect þMJ=ψ ;direct: ð38Þ

We form the partial width for this mode as

ΓZ→J=ψþγ ¼
1

3

1

2MZ

M2
Z −m2

mJ=ψ

8πM2
Z

X
pols

jMZ→J=ψþγj2

¼ 1

48πMZ

X
pols

jMZ→J=ψþγj2: ð39Þ

On the right-hand side of the first equation, the first factor
1=3 comes from the Z-boson polarization averaging, the
second factor comes from the overall flux factor, and the
third factor comes from the phase space, which we have
expanded to leading order in m2

J=ψ=M
2
Z.

The sum is over the polarizations of all three particles
in the process. We have included a 1=3 from the Z-
polarization averaging in this expression and have expanded
the phase-space factor to leading order in m2

J=ψ=M
2
Z to

maintain consistency with our calculation of the amplitude.
Wewill discuss our numerical inputs into this partial width in
a later section. We note that the J=ψ states produced are
predominantly longitudinally polarized. Transverse polar-
izations are suppressed by a factor of m2

J=ψ=M
2
Z.

III. DECAY Z → ϕþ γ

In this section, we discuss the decay Z → ϕþ γ.
We assume that the ϕ meson is composed entirely of an
ss̄ pair. In the rest frame of the ϕ meson, the quarks are
energetic and boosted along the direction of the ϕ momen-
tum. We therefore use the LCDA approach of Sec. II C to
calculate the direct amplitude for this process. There is also
an indirect contribution that we calculate similarly as the
J=ψ indirect amplitude of Sec. II D.

A. Direct amplitude

We begin by discussing the direct amplitude. Denoting
the ϕ momentum as p and the photon momentum as q1,
we expand all momenta around the light-cone directions as
we did for the J=ψ in Eq. (20):

pμ
γ ¼

M2
Z −m2

ϕ

2MZ
n̄μ; pμ

V ¼ MZ

2
nμ þ m2

ϕ

2MZ
n̄μ; ð40Þ

pμ
1 ¼ u

MZ

2
nμ; pμ

2 ¼ ū
MZ

2
nμ: ð41Þ

We have neglected ms, the strange-quark mass, in writing
down the strange and antistrange momenta p1 and p2.
Since M2

Z ≫ m2
ϕ, we can further simplify these momenta

by dropping the explicit mϕ terms. We next calculate the
partonic direct-amplitude diagrams of Fig. 1 and use a
similar projector as in Eq. (23) to convert the partonic
amplitude into one for the ϕ-meson:

MLCDA
ϕ;direct ¼ −

fϕ
4

mϕ

Eϕ

Z
1

0

duTr½ðMss̄γÞpVv · ε�ϕ�: ð42Þ
1There is a small phase generated by high-order terms in the

NRQCD expansion that are negligible given other theoretical
uncertainties.
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Here, Mss̄γ is the partonic amplitude for the production of
ss̄γ. The transverse projector again gives zero to leading
order in m2

ϕ=M
2
Z, as for the J=ψ . A straightforward

calculation gives the result

MLCDA
ϕ;direct ¼

ieQsgZgsAfϕmϕ

M2
Z

Z
1

0

du
ϕ∥ðuÞ
uū

ϵαμνρε
α
Zε

�μ
γ ε�νϕ pρ

γ :

ð43Þ

Here, fϕ is the ϕ-meson decay constant, and ϕ∥ðuÞ is the
twist-2 longitudinal LCDA for the ϕmeson. It depends on a
renormalization scale μ that we have suppressed.
At this point, the calculation differs from the LCDA

calculation for the J=ψ . It is not possible to relate the decay
constant and ϕ∥ to NRQCDmatrix elements. fϕ can simply
be taken from data. The twist-2 distribution amplitudes can
be expanded in Geigenbaur polynomials [22]:

ϕ∥ðuÞ ¼ 6uū

�
1þ

X
n¼2

a∥nC
3=2
n ð2u − 1Þ

�
: ð44Þ

Here, the C3=2
n are Geigenbauer polynomials. We need the

n ¼ 0 and n ¼ 2 results for our calculation; they are

C3=2
0 ðuÞ ¼ 1; C3=2

2 ðuÞ ¼ 15

2
u2 −

3

2
: ð45Þ

We note that the this distribution amplitude is normalized
so that

Z
1

0

duϕ∥ðuÞ ¼ 1: ð46Þ

The quantities a∥n are scale dependent. We take their input
values at μ ¼ 1 GeV from Ref. [23]. These values are
obtained from an average of sum-rule and lattice determi-
nations. In our numerical results, we truncate the sum of
Eq. (44) at n ¼ 2. The higher n terms are not known. Since
a∥2 does not give a large contribution to the amplitude, we
expect that this truncation does not lead to a large error.
Given these expressions, it is straightforward to perform the
integrals over u in Eq. (43).
To include the leading-logarithmic corrections from

collinear gluon emission in the amplitude, we solve the
evolution equation for the a∥n to evolve them from the input
scale of 1 GeV to the hard scale μ ∼MZ of the process. The
solutions to the renormalization-group equation for the
coefficients are [22]

a∥nðμÞ ¼
�
αsðμÞ
αsðμ0Þ

� γ∥n
2β0a∥nðμ0Þ; ð47Þ

where

γ∥n ¼ 8CF

�Xnþ1

k¼1

1

k
−
3

4
−

1

2ðnþ 1Þðnþ 2Þ
�
: ð48Þ

We will use this renormalization-group improved expres-
sion in our numerical results.

B. Indirect amplitude

The calculation of the indirect amplitude for Z → ϕþ γ
proceeds identically to the calculation for Z → J=ψ þ γ
presented in Sec. II D. We simply take over the result from
Eq. (37), replacing all J=ψ-dependent quantities with their
ϕ analogs. We obtain

Mϕ;indirect ¼
ie3gZmϕf

ϕ
VQs

π2
ϵαμνρε

α
Zε

�μ
γ ε�νJ=ψp

ρ
γ

×
X
f

Q2
fg

f
AN

f
cIðmf;mϕ;MZÞ; ð49Þ

where we have used

hϕjJμVð0Þj0i ¼ fϕmϕε
μ
ϕ: ð50Þ

There is again no contribution in the limit of degenerate
fermion masses propagating inside the loop. The numeri-
cally relevant contributions come from the tau lepton,
charm quark, and bottom quark.

C. Summary for Z → ϕþ γ

The final expression for the Z → ϕþ γ amplitude comes
from summing the direct and indirect expressions of
Eqs. (43) and (49):

MZ→ϕþγ ¼ Mϕ;indirect þMϕ;direct: ð51Þ

We form the partial width for this mode as

ΓZ→ϕþγ ¼
1

48πMZ

X
pols

jMZ→ϕþγj2: ð52Þ

This expression is valid to leading order in m2
ϕ=M

2
Z and

includes the leading-logarithmic QCD corrections coming
from the evolution of the ϕ-meson twist-2 LCDA.

IV. NUMERICAL RESULTS

We discuss in this section our numerical results for
both the central values and theoretical errors for the
Z → J=ψ þ γ, Z → ϒð1SÞ þ γ, and Z → ϕþ γ decays.
We begin with the J=ψ process. For the direct amplitude,
we use the following values for the parameters that enter
the prediction:
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αð0Þ ¼ 1=137.036; ϕ0ðJÞ ¼ 0.270� 0.020 GeV3=2;

hv2i ¼ 0.201� 0.064: ð53Þ

The values for the J=ψ wave function at the origin, ϕ0ðJÞ,
and the matrix element hv2i are taken from Refs. [17,24].
We have made the replacement e →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παð0Þp

in Eq. (7), as
appropriate for an on-shell photon. When evaluating the
QCD correction presented in Eq. (27), we choose the
central scales μ ¼ MZ and μ0 ¼ mc. For numerical con-
sistency with the results of Ref. [17] that studies Higgs
decays, we convert the MS charm mass to the pole mass at
one-loop order. We use theMSmass and error coming from
the Particle Data Group (PDG) [12] as input, and to
perform the conversion to the pole mass, we use
RunDec [25]. We do the same for the bottom-quark mass,
which is needed in the evaluation of the indirect amplitude.
We find the following result for the pole masses:

mc ¼ 1.485� 0.026 GeV;

mb ¼ 4.579� 0.032 GeV: ð54Þ

For the indirect amplitude, we further need to specify
gJ=ψγ and the masses of the fermions that propagate in the
loop. The charm and bottom masses are given above. We
use the PDG value for the tau-lepton mass. All other
contributions are numerically negligible. For the coupling
gJ=ψγ , we use the result of Eq. (35) and take Γ½J=ψ → lþl−�
and its experimental error from the PDG. We obtain

gJ=ψγ ¼ −0.832� 0.010 GeV2: ð55Þ

For all other parameters that appear in the J=ψ amplitude,
we use the values from the PDG.
To estimate the theoretical errors on the J=ψ branching

ratio, we consider the following sources of uncertainty:
(i) We study parametric uncertainties arising from

ϕ0ðJÞ, hv2i, gJ=ψγ, mc, and mb.
(ii) We estimate the uncertainty coming from uncalcu-

lated Oðα2sÞ corrections by varying the scale μ in the
direct amplitude in the range μ ∈ ½MZ=2; 2MZ�.

(iii) We estimate the uncertainty from higher-order terms
in the NRQCD expansion by assigning a relative
uncertainty of hv2i2 to such corrections.

(iv) We estimate the uncertainty on mixed Oðαsv2Þ
corrections by assigning a relative uncertainty of
αs=ð4πÞ × hv2i to these corrections.

We will see that the indirect amplitude gives a small
contribution to the branching ratio, justifying our neglect
of a theoretical error on this term. All of these sources of
uncertainty are added in quadrature separately for both the
direct and indirect amplitudes to produce an uncertainty on
each contribution. Both the direct and indirect amplitudes
are then allowed to vary independently within their allowed

errors, and the envelope of these deviations is then taken to
produce a final error on the branching ratio prediction.
Using the prescriptions above, and taking the total width

of the Z boson from the PDG, we arrive at the following
prediction for the J/ψ branching ratio in the Standard
Model:

BSMðZ → J=ψ þ γÞ ¼ ð9.96� 1.86Þ × 10−8: ð56Þ

We make a few comments on this result. If the indirect
amplitude were set to zero, the central value of the
branching ratio would instead be 1.00 × 10−7. The indirect
amplitude interferes destructively with the direct amplitude
but leads to only a 0.4% decrease in the result. The largest
correction to the leading nonrelativistic result of Eq. (7)
comes from the v2 correction of Eq. (18). If this were turned
off, the branching ratio would decrease by 6%. The relative
error on the branching ratio is 18.7%. In order of impor-
tance, the three largest contributions to the error budget are
the parametric uncertainty on ϕ0ðJÞ, our estimate of the
missing v4 corrections, and the scale variation in the direct
amplitude. If the error on ϕ0ðJÞ is removed, the relative
uncertainty decreases to only 10.3%. This parametric
uncertainty dominates the error budget. If all three sources
of uncertainty are turned off, the relative uncertainty
becomes only 2.1%.
We study next the decay Z → ϒð1SÞ þ γ, which is very

similar to the J=ψ mode just considered. The primary
difference in this case is that the quarkonium mass effects
that we have neglected go like m2

ϒ=M
2
Z, which reaches the

percent level. Since this is still a small correction, we
continue to neglect such effects. We use the following
values for the parameters that enter the direct amplitude:

αðmϒÞ ¼ 1=131.87; ϕ0ðϒÞ ¼ 0.715� 0.024 GeV3=2;

hv2i ¼ −0.00920� 0.00348: ð57Þ

The values for wave function at the origin and the matrix
element hv2i are taken from Refs. [17,24]. For the indirect
amplitude, we further need to specify gϒγ. We use the result
of Eq. (35) and take Γ½ϒ → lþl−� and its experimental error
from the PDG. We obtain

gϒγ ¼ 2.212� 0.015 GeV2: ð58Þ

We consider the same sources of uncertainty as for the J=ψ .
We arrive at the following prediction:

BSMðZ → ϒð1SÞ þ γÞ ¼ ð4.93� 0.51Þ × 10−7: ð59Þ
The indirect amplitude again has a sub-1% effect on this
branching ratio. The largest sources of uncertainty are the
parametric error on ϕ0ðϒÞ and the scale variation.
We now consider the decay Z → ϕþ γ. The branching

ratio for this process additionally depends on the decay
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constant fϕ and the coefficient a
∥
2 that appears in the twist-2

LCDA. We take these quantities from Ref. [23]:

fϕ ¼ 0.235� 0.005 GeV;

a∥2ð1 GeVÞ ¼ 0.23� 0.08: ð60Þ

For our error estimate, we consider parametric uncertainties
coming from fϕ, a

∥
2, mc, and mb. We estimate missing

higher-order corrections in the direct amplitude by taking
μ ∈ ½MZ=2; 2MZ�. We find the result

BSMðZ → ϕþ γÞ ¼ ð1.17� 0.08Þ × 10−8: ð61Þ
The indirect amplitude has a small effect on this branching
ratio; setting it to zero leads to a 1% increase in the
branching ratio. However, the evolution of a∥2 from the
input scale of 1 GeV to μ ¼ MZ has a large effect on
the rate. Without this effect, the branching ratio would be
1.51 × 10−8, almost 30% larger. The dominant sources of
uncertainty are the parametric errors on fϕ and a∥2. If these
were removed, the remaining estimated error would drop
to the 1.3%.

V. CONCLUSIONS

In this manuscript, we have studied the rare decays
Z → J=ψ þ γ, Z → ϒþ γ, and Z → ϕþ γ. Our motivation
in considering these processes is that they serve as bench-
mark processes for similar rare decays of the Higgs boson
to mesons that may reveal whether the Yukawa structure in
nature is indeed that predicted by the Standard Model. We
have performed a detailed study of all contributions that
lead to these rare Z-boson decays, including both the direct
and indirect amplitudes. For the heavy quarkonium decays,
we utilized the NRQCD framework and included the

leading relativistic and OðαsÞ corrections. For the ϕ decay,
we used the LCDA approach and included the leading-
logarithmic QCD corrections. In both cases, we carefully
considered all sources of parametric and theoretical uncer-
tainties. The dominant uncertainties for both processes are
parametric in origin: for the J=ψ and ϒ modes, the largest
error is from knowledge of the wave functions, while for
the ϕ meson, the two largest sources are the decay constant
fϕ and the LCDA itself. If necessary, it may be possible to
reduce these in the future with a combination of improved
experimental data and lattice calculations.
Although small, there is a probability that the J=ψ andϒ

decays will be observed at Run II of the LHC. The final
state is clean, consisting of two leptons and a photon that
reconstruct to the Z mass peak if a leptonic decay of the
quarkonium is demanded. Although this further reduces the
branching ratio, the inclusive Z production cross section at
even the 8 TeV LHC is 34 nb [26]. Almost 109 Z bosons
were produced at the 8 TeV LHC run, and branching ratios
of 10−7 should soon be accessible. The observation of the ϕ
decay would require a new trigger, since the ϕ does not
have an appreciable leptonic decay. Given the importance
of this mode for the study of Higgs boson properties, we
believe that the development of this trigger should be
pursued by the LHC collaborations. We look forward to
these searches being performed in the coming run of
the LHC.
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