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We study decays of D0, Dþ, and Dþ
s mesons into two pseudoscalar mesons by expressing the decay

amplitudes in terms of topological amplitudes. Including consistently SUð3ÞF breaking to linear order, we
show how the topological-amplitude decomposition can be mapped onto the standard expansion using
reduced amplitudes characterized by SUð3Þ representations. The tree and annihilation amplitudes can be
calculated in factorization up to corrections which are quadratic in the color-counting parameter 1=Nc.
We find new sum rules connectingDþ → KSKþ, Dþ

s → KSπ
þ, and Dþ → Kþπ0, which test the quality of

the 1=Nc expansion. Subsequently, we determine the topological amplitudes in a global fit to the data,
taking the statistical correlations among the various measurements into account. We carry out likelihood
ratio tests in order to quantify the role of specific topological contributions. While the SUð3ÞF limit is
excluded with a significance of more than 5 standard deviations, a good fit (with Δχ2 < 1) can be obtained
with less than 28% of SUð3ÞF breaking in the decay amplitudes. The magnitude of the penguin amplitude
Pbreak, which probes the Glashow-Iliopoulos-Maiani mechanism, is consistent with zero; the hypothesis
Pbreak ¼ 0 is rejected with a significance of just 0.7σ. We obtain the Standard-Model correlation between
BðD0 → KLπ

0Þ and BðD0 → KSπ
0Þ, which probes doubly Cabibbo-suppressed amplitudes, and find

that BðD0 → KLπ
0Þ < BðD0 → KSπ

0Þ holds with a significance of more than 4σ. We finally predict
BðDþ

s → KLKþÞ ¼ 0.012þ0.006
−0.002 at 3σ C.L.
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I. INTRODUCTION

While there is a plethora of experimental information on
hadronic charm decays, no theoretical method for dynami-
cal, QCD-based predictions for the corresponding decay
amplitudes is known. The best theoretical approach uses
the approximate SUð3ÞF symmetry of the QCD Lagrangian
to relate the amplitudes of different decay modes to each
other. If one assumes this symmetry to be exact, one can
express the amplitudes of all measured decay modes in
terms of a smaller number of parameters, which are the
reduced amplitudes characterized by SUð3ÞF quantum
numbers. Then one can predict the less precisely measured
branching fraction on the basis of exact SUð3ÞF or assess
the validity of this assumption from the overall quality of
the fit [1–14]. SUð3ÞF is broken, because the masses mu;d;s

of the three lightest quarks are not equal. Comparing the
differences among these masses with a typical hadronic
scale one estimates SUð3ÞF breaking to be around 30%.
In practice the quality of SUð3ÞF symmetry can be much
better (e.g. in heavy-hadron spectroscopy) or much worse
(e.g. in heavy-quark fragmentation) and should be critically

assessed for each system to which it is applied. Linear (i.e.
first-order) SUð3ÞF breaking can be rigorously included
into the parametrization of the amplitudes, at the expense
of a larger number of reduced amplitudes. In the case of
D → PP0, where D ¼ D0, Dþ or Dþ

s and P, P0 represent
pseudoscalar mesons, such studies have been performed in
Refs. [15–28]. (Remarkably, one can find relations between
amplitudes which even hold to first order in SUð3ÞF
breaking [29].) Since there are fewer D → PP0 branching
fractions than real parameters, there is a multidimensional
space of solutions (all giving a perfect χ2) for the latter.
Many of these solutions involve reduced SUð3ÞF-breaking
amplitudes whose sizes are indeed of order 30% or less
than the SUð3ÞF-leading ones, giving evidence (but no
proof) that the SUð3ÞF expansion works. The redundancy
associated with the multidimensional space of solutions
poses a challenge for the numerical method to find the
best-fit solutions because of the many flat directions in the
space of reduced amplitudes.
An alternative way to parametrize decay amplitudes

involves topological amplitudes which are characterized by
the flavor flow in the decays [5,8–11,13–17,19,28,30–32].
The building blocks of this approach are shown in Table I
and Fig. 1. The topological amplitudes permit an easy
and intuitive implementation of SUð3ÞF relations. They
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further have the merit that they categorize the decays by
dynamical criteria (i.e. whether thevalence quark takes part in
theweak interaction and which meson picks it up) and permit
the combination of SUð3ÞF methods with other calculational
methods. In this paper we take a first step in this direction and
apply the 1=Nc expansion (first applied to D decays in
Ref. [33]) to the tree (T) and annihilation (A) amplitudes of
Table I. (Nc ¼ 3 is the number of colors.) T and A each
factorize into theproduct of a formfactor and a decay constant
up to corrections of order 1=N2

c. We further include linear

SUð3ÞF breaking in the topological-amplitude decomposi-
tion, similar to the study of B decays in Ref. [19]. For fixed
valuesofT andA (obtainedbyaddingachosen1=N2

c deviation
to the factorized expressions) the number of fitted complex
topological amplitudes is reduced from 17 to 9, so that the
problem of flat directions is substantially alleviated.
The purpose of this paper is a systematic determination

of the topological amplitudes including linear SUð3ÞF
breaking from a global fit to 16 D → PP0 branching
fractions and the measured strong-phase difference
δKþπ− . For each topological amplitude we quantify the
amount of SUð3ÞF breaking with statistical likelihood-ratio
tests using the statistical package myFITTER [34]. The latter
is especially convenient in order to include nonlinear
constraints in a frequentist analysis using the Sequential
Least Squares Programming (SLSQP) algorithm imple-
mented in SCIPY [35,36]. As a novel feature our statistical
analysis fully includes the statistical correlations between
the different experimental inputs. The ranges of the
topological amplitudes found by us are an important input
for the prediction of CP asymmetries. However, the latter
also involve quantities which cannot be extracted from
branching fractions [SUð3ÞF triplet amplitudes], so that
additional input is needed for this purpose. This is one
reason why we do not include measurements of CP
asymmetries in our fit input. The other reason is their
sensitivity to new physics, whose quantification should be
separated from the determination of hadronic parameters as
much as possible. In this paper we also do not consider
decays into final states with η or η0, which involve
additional parameters.
The paper is organized as follows: In Sec. II we present

the parametrization of D decay amplitudes using topologi-
cal amplitudes. We discuss the inclusion of linear SUð3ÞF
breaking and the appearing parametric redundancies in the
diagrammatic language. In Sec. III we combine the method
with 1=Nc counting and define our measures of SUð3ÞF
breaking. In Sec. IV we present the result of our fit. Finally,
we conclude.

II. DIAGRAMMATIC PARAMETRIZATION
OF CHARM DECAYS

A. Notation

We choose the following conventions for the meson
states:

TABLE I. SUð3ÞF-limit topological amplitudes.

Name Diagrams

T

A

C

E

Pd

FIG. 1. Penguin annihilation diagram.
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jKþi ¼ jus̄i; jK0i ¼ jds̄i; ð1Þ

jK−i ¼ −jsūi; jK̄0i ¼ jsd̄i; ð2Þ

jπþi ¼ jud̄i; jπ0i ¼ 1ffiffiffi
2

p ðjdd̄i − juūiÞ; ð3Þ

jπ−i ¼ −jdūi; jD0i ¼ −jcūi; ð4Þ

jDþi ¼ jcd̄i; jDþ
s i ¼ jcs̄i: ð5Þ

Here the “¼” sign means that the flavor quantum numbers
of the meson state on the left-hand side equal those of
the quark-antiquark state on the right-hand side. Table I
shows the topological (flavor-flow) amplitudes. The cross
denotes the W-boson exchange encoded in the ΔC ¼ 1
Hamiltonian. We write the Cabibbo-favored (CF), singly
Cabibbo-suppressed (SCS), and doubly Cabibbo sup-
pressed (DCS) decays as

ACFðdÞ ≡ V�
csVudAðdÞ ≡ V�

csVud

X
i

cdi T i; ð6Þ

ASCSðdÞ ≡ λsdAðdÞ ≡ λsd
X
i

cdi T i; ð7Þ

ADCSðdÞ ≡ V�
cdVusAðdÞ ≡ V�

cdVus

X
i

cdi T i: ð8Þ

Here, we defined

λsd ≔ ðλs − λdÞ=2 ≔ ðV�
csVus − V�

cdVudÞ=2; ð9Þ

where λsd ≃ λs ≃ −λd. T i is a topological amplitude (see
Tables I and II), cdi is the corresponding coefficient from
Table III, and d ¼ D → PP0 labels the decay mode. There
is a Cabibbo-Kobayashi-Maskawa (CKM)-suppressed part
∝ V�

cbVub in SCS amplitudes which can be safely neglected
in all branching ratios.
In the limit of unbroken SUð3ÞF symmetry only the tree

(T), annihilation (A), color-suppressed (C), and exchange
(E) amplitudes are needed to parametrize all D → PP0
decays. While the penguin amplitude Ps;d;b (labeled with
the quark flavor running in the loop) is also nonvanishing in
unbroken SUð3ÞF, it only appears in the combination

Pbreak ≡ Ps − Pd; ð10Þ

where we have adopted the notation of Ref. [27]. T, A, C,
and E are commonly fitted together with the penguin
amplitude Pbreak, which vanishes in the SUð3ÞF limit
[9–11,13,19,28,37]. The normalization of the amplitudes
is such that

BðD→P1P2Þ¼ jAXðD→P1P2Þj2×PðD;P1;P2Þ; ð11Þ

PðD;P1;P2Þ≡τD×
1

16πm3
D

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

D−ðmP1
−mP2

Þ2Þðm2
D−ðmP1

þmP2
Þ2Þ

q
;

ð12Þ
with X ¼ CF, SCS, DCS. In the following, we will only
make use of the notation AðdÞ without superscript; see
Eqs. (6)–(8).

B. SUð3ÞF-breaking
Any perturbative treatment starts with a subdivision of

the Hamiltonian H ¼ H0 þH1 into a piece H0 treated
without approximation and the perturbation H1. The
S-matrix element of the transition i → f triggered by H1 is

hfjT e−i
R

d4xH1ðxÞjii: ð13Þ
In our case H0 is the QCD Hamiltonian withmu and ms set
equal tomd.H1 consists of the weak jΔCj ¼ 1Hamiltonian
HW and the SUð3ÞF-breaking Hamiltonian

HSUð3ÞF ¼ ðms −mdÞs̄s; ð14Þ
where isospin breaking is neglected. With our choice of H0

the asymptotic states i; f are eigenstates of H0 which are
Dþ or D0 mesons or two-pion states. To first order in HW
and zeroth and first order in HSUð3ÞF the transition ampli-
tude in Eq. (13) becomes

hfj − i
Z

d4xHWðxÞjii

þ hfj − 1

2

ZZ
d4xd4yT HWðxÞHSUð3ÞFðyÞjii: ð15Þ

The second piece accounts for the differences of amplitudes
involving aDþ

s in the initial state or one or two kaons in the
final state from their unflavored counterparts. The Feynman
rule of HSUð3ÞF is an s̄s vertex which we denote by a cross
on the s-quark line. This approach is essentially identical to
the one of Ref. [19], where B decays have been considered.
HSUð3ÞF also leads to η-η0 mixing. Using an η-η0 mixing
angle in our diagrammatic method may lead to a double-
counting of SUð3ÞF-breaking effects, and we do not
consider final states with ηð0Þ’s in the final state in this
paper. The corresponding topological amplitudes are col-
lected in Table II. We combine our topological amplitudes
into a vector

p ≡ ðT; Tð1Þ
1 ; Tð1Þ

2 ; Tð1Þ
3 ; A; Að1Þ

1 ; Að1Þ
2 ; Að1Þ

3 ;

C; Cð1Þ
1 ; Cð1Þ

2 ; Cð1Þ
3 ; E; Eð1Þ

1 ; Eð1Þ
2 ; Eð1Þ

3 ; PbreakÞT: ð16Þ

Then we can write
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TABLE II. SUð3ÞF-breaking topological amplitudes corresponding to the amplitudes in Table III. The Feynman rule forHSUð3ÞF is the
cross placed on an s line.

Name s − d difference of topologies Denoted by Feynman rule

Tð1Þ
1

Tð1Þ
2

Tð1Þ
3

Að1Þ
1

Að1Þ
2

Að1Þ
3

Cð1Þ
1

Cð1Þ
2

Cð1Þ
3

Eð1Þ
1

Eð1Þ
2

Eð1Þ
3

Pbreak
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Mp ¼ A ð17Þ

with a 17 × 17 coefficient matrix M and A ¼
ðAðD0 → KþK−Þ;…;AðDþ

s → K0KþÞÞT subsuming the
decay amplitudes. The ith column of M contains the
coefficients cdi of Eqs. (6)–(8). Table III shows A in
the first column and lists the elements ofM as table entries.
We remark that the only final state with two identical
mesons is jπ0π0i. In D0ðpDÞ → π0ðp1Þπ0ðp2Þ two effects
must be taken into account: first, each topological ampli-
tude appears twice (with p1 and p2 interchanged, leading to
a proper Bose-symmetrized state). Second, in the sub-
sequent phase space integration one integrates the azimu-
thal angle over the interval ½0; π� rather than the usual
½0; 2π�, because the two pions are indistinguishable. The
resulting factor of 1=2 in the decay rate (compared to the
other listed decay rates) is accommodated through a factor
of 1=

ffiffiffi
2

p
on the amplitude level in Table III. For example,

the factor of 1=
ffiffiffi
2

p
multiplying E is the result of the

mentioned factors of 2 and 1=
ffiffiffi
2

p
and two factors of 1=

ffiffiffi
2

p
stemming from the jπ0i state in Eq. (3). Note that it would
be unwise to define the SUð3ÞF limit from some average of
s and d diagrams, since with this choice the asymptotic
states constructed from H0 would not correspond to
physical mesons. Furthermore, there would be far fewer
zeros among the coefficients in Table III which would
further complicate the analysis.

There is one more SUð3ÞF-breaking topological
amplitude, the penguin annihilation amplitude PAbreak ≡
PAs − PAd depicted in Fig. 1. While the dynamics
described by this amplitude is different from the ones
discussed so far, PAbreak enters the decay amplitudes in
such a way that it can be absorbed into other amplitudes.
Thus it is a redundant fit parameter, as explained in the
following section.

C. Redundancies

The relationship between physical and topological
amplitudes is not one-to-one. If no other dynamical
information on the latter is used, the determination of p
from A in Eq. (17) yields an infinite set of solutions
describing the data equally well. A priori this feature
renders fitted numerical values of T;…; Pbreak meaningless
and obscures the comparison of different analyses in
the literature. There are two ways to address this problem:
One can simply remove redundant parameters and quote
numbers for the linear combinations of the topological
amplitudes which are in one-to-one correspondence with
the physical ones. Or one can use further theoretical (and
experimental) input to constrain the topological amplitudes.
We determine redundancies among T;…; Pbreak in this
section and relegate the second approach to Sec. III.
The first redundancy is related to PAbreak of Fig. 1, which

appears in SCS decays with the coefficients in Table IV.
The listed column of coefficients is linearly dependent on

TABLE III. The coefficients of the decomposition of the physical amplitudes [including SUð3ÞF breaking] in terms of the topological
amplitudes as in Eqs. (6)–(8). The table entries are the elements of the coefficient matrix M in Eq. (17).

Decay ampl. AðdÞ T Tð1Þ
1 Tð1Þ

2 Tð1Þ
3

A Að1Þ
1 Að1Þ

2 Að1Þ
3

C Cð1Þ
1 Cð1Þ

2 Cð1Þ
3

E Eð1Þ
1 Eð1Þ

2 Eð1Þ
3

Pbreak

SCS
AðD0 → KþK−Þ 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1
AðD0 → πþπ−Þ −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1
AðD0 → K̄0K0Þ 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 0
AðD0 → π0π0Þ 0 0 0 0 0 0 0 0 − 1ffiffi

2
p 0 0 0 1ffiffi

2
p 0 0 0 − 1ffiffi

2
p

AðDþ → π0πþÞ − 1ffiffi
2

p 0 0 0 0 0 0 0 − 1ffiffi
2

p 0 0 0 0 0 0 0 0

AðDþ → K̄0KþÞ 1 1 1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 1
AðDþ

s → K0πþÞ −1 0 0 −1 1 1 1 0 0 0 0 0 0 0 0 0 1
AðDþ

s → Kþπ0Þ 0 0 0 0 − 1ffiffi
2

p − 1ffiffi
2

p − 1ffiffi
2

p 0 − 1ffiffi
2

p 0 0 − 1ffiffi
2

p 0 0 0 0 − 1ffiffi
2

p

CF
AðD0 → K−πþÞ 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
AðD0 → K̄0π0Þ 0 0 0 0 0 0 0 0 1ffiffi

2
p 1ffiffi

2
p 0 0 − 1ffiffi

2
p − 1ffiffi

2
p 0 0 0

AðDþ → K̄0πþÞ 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
AðDþ

s → K̄0KþÞ 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0
DCS

AðD0 → Kþπ−Þ 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
AðD0 → K0π0Þ 0 0 0 0 0 0 0 0 1ffiffi

2
p 0 1ffiffi

2
p 0 − 1ffiffi

2
p 0 − 1ffiffi

2
p 0 0

AðDþ → K0πþÞ 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
AðDþ → Kþπ0Þ 1ffiffi

2
p 0 1ffiffi

2
p 0 − 1ffiffi

2
p 0 − 1ffiffi

2
p 0 0 0 0 0 0 0 0 0 0

AðDþ
s → K0KþÞ 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0
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the four columns of coefficients of E, Eð1Þ
1;2;3 in Table III.

That is, we can absorb PAbreak into the exchange

amplitudes by redefining E ¼ Ê − PAbreak, Eð1Þ
1;2;3 ¼

Êð1Þ
1;2;3 þ PAbreak. In Table III this redefinition is implicitly

already performed, so that PAbreak is not shown there

anymore. The physical meaning of E, Eð1Þ
i changes

accordingly, to be read as Ê, Êð1Þ
i with the penguin

annihilation mechanism included. However, jPAbreakj is
expected to be negligibly small: The corresponding Wilson
coefficient in HW is small and the momentum flowing
through the penguin loop is large (of order of the D0 mass)
so that the Glashow-Iliopoulos-Maiani (GIM) [38] sup-
pression will be effective.
Further redundancies are related to the fact that our

coefficient matrix M in Eq. (17) does not have maximal
rank. Considering first the SUð3ÞF limit ignoring

Tð1Þ
i ; Að1Þ

i ; Cð1Þ
i , and Eð1Þ

i one observes that the remaining
matrix in Table III linking T, C, A, and E to the physical
amplitudes has only rank three. That is, one of T, C, A, and
E is redundant.
Redundancies of the diagrammatic approach in the

SUð3ÞF limit are also discussed in Ref. [9], comparing
to the SUð3ÞF parametrization in Ref. [7]. The correspond-
ing matching for B decays is done in Ref. [10]. Note that
the redundancies change when taking ηð0Þ final states into
account [14,23], leading to more parameters but also
additional sum rules [29].
Including SUð3ÞF breaking, the 17 × 17 matrix M in

Table III has rank 11. Consequently p in Eq. (16) con-
tains six redundant complex parameters. The remaining
parametric redundancy contained in Table III can be
systematically found and removed as follows. It is encoded
in the six-dimensional kernel of the coefficient matrix.
The 17-dimensional basis vectors of the kernel are given
in columns 2 to 7 of Table V. If we redefine p in Eq. (16) as

pnew ≡ pþ
X
i

cini; ci ∈ C; ð18Þ

this will not change Mp in Eq. (17); i.e. the ni define the
“flat directions” in parameter space which correspond to
the sameA. One can remove this redundancy by redefining
the topological amplitudes and choosing 11 of them as new
independent parameters. For example, we can set

~pnew ≡ p − Pbreakn1 ð19Þ

which gives the result in the first column after the double
line in Table V. Subsequently, we can redefine the param-
eters in order to eliminate Pbreak. In order to remove all
redundancies in one step one can choose

p̂new ≡ p − Pbreakn1 − Eð1Þ
3 n2 − Eð1Þ

2 n3

− An4 − Að1Þ
3 ðn4 þ n5Þ − Cð1Þ

3 n6 ð20Þ

and then perform redefinitions of the other parameters in
order to remove

Pbreak; E
ð1Þ
3 ; Eð1Þ

2 ; A; Að1Þ
3 ; Cð1Þ

3 ð21Þ

from the parametrization. Note the special form of n4

which encodes the redundancy present in the SUð3ÞF limit.
n4 forces us to eliminate one of T, C, E, or A, while the
other five eliminations involve SUð3ÞF-breaking ampli-
tudes [e.g. those in Eq. (21)]. The elimination of A only is
also shown in Table V. Additionally, from n5 we see that

the coefficient vector of Að1Þ
3 is linearly dependent on the

other annihilation coefficient vectors. Consequently, Að1Þ
3

can be absorbed by redefining annihilation amplitudes only,
as shown also explicitly in Table V.
Note further that the ni are linearly independent also

when removing all but the first six elements. This means it
is not possible to perform redefinitions without touching
the tree or annihilation diagrams. Equivalently, the sub-
matrix obtained by removing tree and annihilation dia-
grams from Table III has rank nine, which in this case
equals the number of remaining parameters, i.e. the lower
nine components of p. This observation guides us to the
approach of Sec. III: calculating tree and annihilation
amplitudes will also remove the redundancies.
After absorbing some topological amplitudes [e.g. those

in Eq. (21)] into others, the new amplitudes have lost their
original meaning in terms of QCD dynamics. An important
question in charm physics is the level of GIM cancellation
between an s loop and a d loop. In this paper we encounter
Pbreak as a quantity probing the GIM mechanism. A naive
quark-level calculation involves a suppression factor of
m2

s=m2
c and renders Pbreak negligibly small. Thus any

information on the actual size of jPbreakj may give insight
into a possible nonperturbative enhancement of GIM-
suppressed amplitudes. However, as shown above and
exemplified in Table V the fit to topological amplitudes

TABLE IV. The coefficients of the topological amplitude

PAbreak which is absorbed into E, Eð1Þ
1;2;3 in Table III as explained

in Sec. II C.

Decay d PAbreak

SCS
D0 → KþK− 1
D0 → πþπ− 1
D0 → K̄0K0 −1
D0 → π0π0 − 1ffiffi

2
p

Dþ → π0πþ 0
Dþ → K̄0Kþ 0
Dþ

s → K0πþ 0
Dþ

s → Kþπ0 0

SARAH MÜLLER, ULRICH NIERSTE, AND STEFAN SCHACHT PHYSICAL REVIEW D 92, 014004 (2015)

014004-6



alone cannot give this information, becausePbreak cannot be
separated from the other parameters fitted from the data.
As we have seen above, the calculation of the kernel

gives a method to remove redundant parameters. In the
same way, the cokernel of M gives us information on
“redundant” amplitudes, i.e. six sum rules fulfilled by the
latter, all of which were found in Ref. [29]. In other words:
if one did a Gaussian elimination to determine p from
Eq. (17), one would end up with a 6 × 17 block of zeros in
the transformed coefficient matrix M and linear combina-
tions of physical amplitudes in the corresponding six
entries of A. These linear combinations vanish by the
SUð3ÞF sum rules of Ref. [29]. Thus the discussed
redundancies are not the consequence of missing exper-
imental information but of the symmetry relations under-
lying these sum rules. It is instructive to rederive these sum
rules with our diagrammatic method, which is particularly
straightforward and intuitive. We do this in Appendix D.
We checked that after the removal of all redundancies,

the diagrammatic parametrization and the common expan-
sion in terms of SUð3ÞF representations can be mapped
onto each other; i.e. one can calculate one set of parameters
when given the other one. The mapping can be obtained
explicitly by inverting either the reduced coefficient matrix
M or its counterpart in the SUð3ÞF method. Note that in the
SUð3ÞF parametrization unphysical degrees of freedom are
present in the very same way. Analogously, it is possible to
redefine SUð3ÞF matrix elements in order to obtain a
physical basis [23]. In Appendix B we give the inverse
of the SUð3ÞF coefficient matrix of [23] and show the result

of the extraction of the corresponding SUð3ÞF matrix
elements for an example fit point of our diagrammatic
analysis. So far our discussion of redundancies has
assumed that the amplitudes in A are known. In practice,
there is no information on most of their complex phases
(and not all of them are physical). This feature introduces
additional flat directions in the space of our fit parameters
and is equally present in the SUð3ÞF method.
The discussion above has made clear that the topologi-

cal-amplitude method is complete in the sense that it
contains the full information contained in an SUð3ÞF
analysis including SUð3ÞF breaking to linear order. It is
also worthwhile to study this question from the viewpoint
of QCD dynamics: are there any dynamical mechanisms
which cannot be mapped onto topological amplitudes? As a
first topic we discuss final-state rescattering, i.e. decays
D → f0 → f passing through an on-shell intermediate
state f0. The flavor flow for such a rescattering process
is always a deformation of a diagram in Table I or Fig. 1
and is therefore included in the corresponding topological
amplitude. Rescattering effects cannot be isolated from the
“direct” D → f decay, because the dispersive part of
AðD → f0 → fÞ cannot be separated from that of
AðD → fÞ in a meaningful way. (Neglecting CP violation
we can choose phase conventions such that the dispersive
and absorptive parts of some amplitude equal its real and
imaginary parts, respectively.) By the optical theorem the
absorptive part of AðD → fÞ can be related to AðD → f0Þ
and the f0 → f scattering amplitude, with summation over
all intermediate states f0. This feature holds true for the

TABLE V. The parameter vector p as defined in Eq. (16), vectors ni spanning the kernel of the coefficient matrix M in Table III, and
several redefined parameter vectors; see Eqs. (18)–(20).

p n1 n2 n3 n4 n5 n6 p − Pbrkn1 p − An4 p − Að1Þ
3 n5

T 1 1 0 1 0 0 T − Pbrk T − A T

Tð1Þ
1

−1 −1 1 0 0 0 Tð1Þ
1 þ Pbrk Tð1Þ

1 Tð1Þ
1

Tð1Þ
2

−1 0 −1 0 0 0 Tð1Þ
2 þ Pbrk Tð1Þ

2 Tð1Þ
2

Tð1Þ
3

0 0 0 0 0 −1 Tð1Þ
3 Tð1Þ

3 Tð1Þ
3

A 0 0 0 1 −1 0 A 0 Aþ Að1Þ
3

Að1Þ
1

0 0 1 0 0 −1 Að1Þ
1 Að1Þ

1 Að1Þ
1

Að1Þ
2

0 1 −1 0 1 0 Að1Þ
2 Að1Þ

2 Að1Þ
2 − Að1Þ

3

Að1Þ
3

0 0 0 0 1 0 Að1Þ
3 Að1Þ

3
0

C −1 −1 0 −1 0 0 Cþ Pbrk Cþ A C

Cð1Þ
1

1 1 −1 0 0 0 Cð1Þ
1 − Pbrk Cð1Þ

1 Cð1Þ
1

Cð1Þ
2

1 0 1 0 0 0 Cð1Þ
2 − Pbrk Cð1Þ

2 Cð1Þ
2

Cð1Þ
3

0 0 0 0 0 1 Cð1Þ
3 Cð1Þ

3 Cð1Þ
3

E 0 −1 0 −1 0 0 E Eþ A E

Eð1Þ
1

0 1 −1 0 0 0 Eð1Þ
1 Eð1Þ

1 Eð1Þ
1

Eð1Þ
2

0 0 1 0 0 0 Eð1Þ
2 Eð1Þ

2 Eð1Þ
2

Eð1Þ
3

0 1 0 0 0 0 Eð1Þ
3 Eð1Þ

3 Eð1Þ
3

Pbrk 1 0 0 0 0 0 0 Pbrk Pbrk
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topological amplitudes as well. The imaginary parts of the
topological amplitudes found in our fit in Sec. IV are
therefore a measure of the size of rescattering. The second
topic of QCD dynamics addresses the proper description of
meson states. The state of e.g. an energetic kaon can be
expanded as

jK0i ¼ jds̄i þ jds̄gi þ jds̄qq̄i þ � � � ; ð22Þ

where the notation implicitly contains convolution integrals
over the kaon momentum fraction carried by the indicated
partons. Our graphical description of the topological
amplitudes only catches the first term in Eq. (22). The
higher Fock states jds̄gi; jds̄uūi;…, are suppressed with
powers of the kaon energy, but in view of the small energy
release in D decays this suppression is unlikely to be
realized numerically. We may wonder whether the con-
tributions with additional qq̄ pairs in Eq. (22) will require
the introduction of further amplitude topologies, with extra
quark lines connected with “sea” quarks in the mesons.
An example is shown in Fig. 2. However, it is easy to see
that such diagrams are always obtained by forking a quark
line of one of the topological amplitudes considered so far.
For instance, the diagram in Fig. 2 is contained in Pbreak.

III. THEORETICAL INPUT ON
DIAGRAMMATIC SUð3ÞF BREAKING

The great advantage of the flavor-flow parametrization
over the plain SUð3ÞF approach is the opportunity to add
dynamical input to constrain individual topologies. We use
two different such inputs which are presented below.

A. 1=Nc counting

The 1=Nc expansion [39] has first been applied to charm
physics in Ref. [33]. We will apply 1=Nc counting to the
tree and annihilation topologies, which are leading in 1=Nc.
Here we exemplify the method for T:

T ¼ Tfac þ δT; ð23Þ

Tfac ≡ GFffiffiffi
2

p a1fπðm2
D −m2

πÞFDπ
0 ðm2

πÞ: ð24Þ

Here a1 ¼ C2 þ C1=Nc ¼ 1.06 in terms of the usualWilson
coefficientsC1;2 ofHW and the quoted value corresponds to
next-to-leading order in the naive dimensional regulariza-
tion (NDR) scheme at a scale of 1.5 GeV. It is important to
note that the color exchange between the two quark lines in
theT diagram in Table I is penalized by two powers of 1=Nc.
We parametrize this 1=N2

c correction by the complex
parameter δT in Eq. (23). Also the renormalization scale
and scheme dependences of a1 are suppressed by 1=N2

c. By
using Eq. (23) and the equivalent formulas for the other tree

amplitudes T þ Tð1Þ
1 ;…, we trade four parameters for a

single parameter δT with jδT=Tfacj ≤ 0.15. SUð3ÞF breaking
in this small parameter is neglected, because it is smaller
than the neglected second-order SUð3ÞF-breaking effects.
FDπ
0 ðm2

πÞ entering Tfac is measured in semileptonic D
decays, and therefore the 1=Nc method uses additional
experimental input, too. Also the A amplitudes factorize
up to corrections of order 1=N2

c. The factorization formulas
for all tree and annihilation amplitudes can be found in
Appendixes C 1 and C 2, respectively. In analogy to δT we
define the complex parameter

δA ¼ A − Afac ð25Þ

for theOð1=N2
cÞ corrections.Afac depends on the form factor

FKπ
0 ðm2

DðsÞ Þ; see Appendix C 2 for details.

E, C, and Pbreak are formally suppressed by one power of
1=Nc with respect to T. However, E and C are enhanced by
short-distance QCD effects residing in the Wilson coef-
ficients: we write HW∝C1Q1þC2Q2¼ðC1þC2=NcÞQ1þ
2C2Q8 with the octet×octet operator Q8 ≡
ūγμTacq̄0γμTaq and note that hPP0jQ8jDi is 1=Nc sup-
pressed. However, the Wilson coefficient 2C2 ¼ 2.4 almost
exactly offsets the 1=Nc suppression, so that E and C can
be almost as large as T. We therefore do not place a
numerical constraint on jEj, jCj, or jPbreakj in our fit but
rather keep them general.
With the added 1=Nc input the diagrammatic analysis

becomes more constrained compared to the plain SUð3ÞF
approach. Factorization fixes the sizes of the tree and
annihilation amplitudes within roughly ∼15% of Tfac, i.e.
the size of the 1=N2

c corrections. In the case of A the 1=N2
c

corrections quantified by δA include final-state rescattering
effects [24,40–44], which are not proportional to the decay
constant fD which enters Afac. We therefore do not normal-
ize δA to Afac, but instead allow jδAj to be as large as jδT j.
Factorization has also been used in Refs. [28,45], but only
to estimate SUð3ÞF breaking. We instead use it to constrain
the overall sizes of T and A. Note that we treat Tfac and Afac

beyond linear SUð3ÞF breaking, so that these factorized
amplitudes violate the Grossman-Robinson SUð3ÞF sum
rules [29].
The parameters δT and δA replace the first eight entries of

p in Eq. (16) as fit parameters. We use

FIG. 2. Example for a SUð3ÞF-breaking diagram involving sea
quarks which can be absorbed into Pbreak; see Table II.

SARAH MÜLLER, ULRICH NIERSTE, AND STEFAN SCHACHT PHYSICAL REVIEW D 92, 014004 (2015)

014004-8



p0 ≡ ðδT; δA; C; Cð1Þ
1 ; Cð1Þ

2 ; Cð1Þ
3 ; E; Eð1Þ

1 ; Eð1Þ
2 ; Eð1Þ

3 ; PbreakÞT;
ð26Þ

comprising 11 parameters in total. We next derive the
equivalent of Eq. (17) for this new set of parameters. To this
end we define

~AðdÞ ≡ AðdÞ −AfacðdÞ; ð27Þ

AfacðdÞ ≡ TfacðdÞ þ AfacðdÞ: ð28Þ

The 17 × 11 coefficient matrix linking p0 to ~A ¼
ð ~AðD0 → KþK−Þ;…; ~AðDþ

s → K0KþÞÞT has only rank
ten. This has two implications: First, there is still a
redundant parameter. Second, there is a new sum rule
among the physical amplitudes. Addressing the first point,
the kernel has the 11-dimensional basis vector

n ¼ ð−1;−1; 1; 0; 0; 0; 1; 0; 0; 0; 0ÞT; ð29Þ

where the order of the entries is the same as in Eq. (26). The
redefinition

p00 ≡ p0 þ δAn ð30Þ

with n as in Eq. (29) absorbs δA into C, E, and δT : setting

~C ¼ Cþ δA; ð31Þ

~E ¼ Eþ δA; ð32Þ

one observes that the physical amplitudes only depend on
~C, ~E, and δT − δA. Writing

~p≡ ðδT − δA; ~C;C
ð1Þ
1 ;Cð1Þ

2 ;Cð1Þ
3 ; ~E;Eð1Þ

1 ;Eð1Þ
2 ;Eð1Þ

3 ;PbreakÞT;
ð33Þ

the desired equivalent of Eq. (17) reads

eM ~p ¼ ~A; ð34Þ

with the amplitudes of Eq. (27) on the right-hand side. The
resulting 17 × 10 coefficient matrix eM with rank ten is
shown in Table VI. Addressing the second point, we find
the new sum rule

~AðDþ → K̄0KþÞ − ~AðDþ
s → K0πþÞ

− 2
ffiffiffi
2

p
~AðDþ → Kþπ0Þ ¼ 0; ð35Þ

from the cokernel of eM. It tests the 1=Nc counting and is
violated by terms which are linear in SUð3ÞF breaking, but
suppressed by two powers of 1=Nc.

TABLE VI. Coefficients of the parameters ðδT − δA;…; PbreakÞ for the amplitudes ~AðdÞ, which are obtained fromAðdÞ by subtracting
the factorized part; see Eq. (27). The table entries are the elements of the coefficient matrix eM in Eq. (34).

Decay ampl. ~AðdÞ δT − δA ~C ≡ Cþ δA Cð1Þ
1 Cð1Þ

2 Cð1Þ
3

~E ≡ Eþ δA Eð1Þ
1 Eð1Þ

2 Eð1Þ
3

Pbreak

SCS
~AðD0 → KþK−Þ 1 0 0 0 0 1 1 1 0 1
~AðD0 → πþπ−Þ −1 0 0 0 0 −1 0 0 0 1
~AðD0 → K̄0K0Þ 0 0 0 0 0 0 −1 −1 1 0
~AðD0 → π0π0Þ 0 − 1ffiffi

2
p 0 0 0 1ffiffi

2
p 0 0 0 − 1ffiffi

2
p

~AðDþ → π0πþÞ − 1ffiffi
2

p − 1ffiffi
2

p 0 0 0 0 0 0 0 0

~AðDþ → K̄0KþÞ 1 0 0 0 0 0 0 0 0 1
~AðDþ

s → K0πþÞ −1 0 0 0 0 0 0 0 0 1
~AðDþ

s → Kþπ0Þ 0 − 1ffiffi
2

p 0 0 − 1ffiffi
2

p 0 0 0 0 − 1ffiffi
2

p

CF
~AðD0 → K−πþÞ 1 0 0 0 0 1 1 0 0 0
~AðD0 → K̄0π0Þ 0 1ffiffi

2
p 1ffiffi

2
p 0 0 − 1ffiffi

2
p − 1ffiffi

2
p 0 0 0

~AðDþ → K̄0πþÞ 1 1 1 0 0 0 0 0 0 0
~AðDþ

s → K̄0KþÞ 0 1 1 0 1 0 0 0 0 0
DCS

~AðD0 → Kþπ−Þ 1 0 0 0 0 1 0 1 0 0
~AðD0 → K0π0Þ 0 1ffiffi

2
p 0 1ffiffi

2
p 0 − 1ffiffi

2
p 0 − 1ffiffi

2
p 0 0

~AðDþ → K0πþÞ 0 1 0 1 0 0 0 0 0 0
~AðDþ → Kþπ0Þ 1ffiffi

2
p 0 0 0 0 0 0 0 0 0

~AðDþ
s → K0KþÞ 1 1 0 1 1 0 0 0 0 0
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The 1=N2
c corrections parametrized by δT;A are varied in

smaller ranges than the other fit parameters. If we consider
them fixed, there remain nine unknown complex param-
eters in Eq. (26) and a corresponding coefficient matrix
with rank nine, implying a new sum rule. We combine the
new rule with the one in Eq. (35) as

~AðDþ → K̄0KþÞ − ~AðDþ
s → K0πþÞ ¼ 2ðδT − δAÞ; ð36Þ

~AðDþ → Kþπ0Þ ¼ 1ffiffiffi
2

p ðδT − δAÞ: ð37Þ

The amplitudes in Eq. (35) are related to those with KS;L
in the final state as

AðDþ → KS;LKþÞ ¼ ∓ 1ffiffiffi
2

p AðDþ → K̄0KþÞ; ð38Þ

AðDþ
s → KS;Lπ

þÞ ¼ 1ffiffiffi
2

p AðDþ
s → K0πþÞ. ð39Þ

The corresponding branching ratios read

BðDþ → KS;LKþÞ
¼ jλsdj2PðDþ; K0; KþÞ
× jAfacðDþ → K̄0KþÞ þ ðδT − δAÞ þ Pbreakj2; ð40Þ

BðDþ
s → KS;Lπ

þÞ
¼ jλsdj2PðDþ

s ; K0; πþÞ
× jAfacðDþ

s → K0πþÞ − ðδT − δAÞ þ Pbreakj2; ð41Þ

BðDþ → Kþπ0Þ
¼ jV�

cdVusj2PðDþ; Kþ; π0Þ
× jAfacðDþ → Kþπ0Þ þ ðδT − δAÞj2; ð42Þ

with PðD;P1; P2Þ as defined in Eq. (12). Equations (40)–
(42) permit one to probe our combined SUð3ÞF and 1=Nc
expansion quantitatively, since a too large value of
jδT − δAj extracted from Eqs. (40)–(42) would falsify the
method. Furthermore, the size of jPbreakj gives insight into
an important issue of QCD dynamics, the size of the
GIM suppression in the difference between strange and
down loops.
In Table VII we show example fits to the branching ratios

Eqs. (40)–(42) only, testing the dependence of the fit result
on the 1=N2

c corrections and the broken penguin.
In the first place, we illustrate that the data can easily be

accommodated for realistic values of δT , δA, and Pbreak
(point 0). Taking these parameters out of the fit (point 1)
results in a bad description of the data which is rejected at
7σ. It is possible to describe the data with an enhanced
broken penguin only (point 2) but also with Pbreak ¼ 0 and

adjusting δT and δA (point 3). A better knowledge of the
form factor FKπ

0 ðm2
DðsÞ Þ (see Appendix C 2) is crucial in

order to disentangle an enhanced penguin from 1=N2
c

corrections. This could be provided by future high statistics
measurements of τ decays [49,50].

B. Measuring diagrammatic SUð3ÞF breaking

In order to describe SUð3ÞF breaking in the framework
of the diagrammatic approach, we introduce the following
measures in analogy to Ref. [23]. We define

δ0;TX ≡ maxd

����AT
X ðdÞ
AðdÞ

����; ð43Þ

where T ¼ C;E; Pbreak and AT
X ðdÞ is the part of the

amplitude of decay d stemming from the corresponding
SUð3ÞF-breaking parameter(s) only. AðdÞ denotes the full
amplitude of decay d. The parameters defined in Eq. (43)
give a measure for the maximal SUð3ÞF-breaking contri-
bution to the full amplitude from each topology.
A measure of the maximal SUð3ÞF breaking residing in

any of the topologies C, E, and Pbreak is therefore

δ0;topoX ≡ maxd

����
P

T A
T
X ðdÞ

AðdÞ
����: ð44Þ

Note that the SUð3ÞF breaking stemming from our calcu-
lation of the T and A topologies using factorization is not
included in the definition Eq. (44).
Furthermore, we quantify the relative SUð3ÞF breaking

of C and E topologies by the measures

δ
Cð1Þ
i = ~C

X ≡
����Cð1Þ

i

~C

����; δ
Eð1Þ
i = ~E

X ≡
����Eð1Þ

i

~E

����; ð45Þ

respectively. In the fit we always demand all the above
measures to be ≤ 50%. In δ0;EX and δ0;topoX we ignore
BðD0 → K̄0K0Þ when taking the maximum, because this

branching ratio vanishes in the SUð3ÞF limit. Note that Eð1Þ
3

appears in the omitted channel D0 → K̄0K0 only, and

therefore δ0;EX ¼ 0 is insensitive to the size of Eð1Þ
3 ≠ 0.

Furthermore, in case an amplitude vanishes at some point in
parameter space we also exclude it from the calculation of
the maxima in Eqs. (43) and (44).

IV. FIT TO BRANCHING RATIO
MEASUREMENTS

In our global fit we use the available measured branching
fractions and the strong phase difference δKþπ− and impose
the theoretical constraints quoted in Sec. III. 18 of the fit
parameters are related to topological amplitudes:
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j ~C=Tfacj; argð ~CÞ; j ~E=Tfacj; argð ~EÞ;
jCð1Þ

i j; argðCð1Þ
i Þ; jEð1Þ

i j; argðEð1Þ
i Þ;

jPbreak=Tfacj; argðPbreakÞ;

with i ¼ 1; 2; 3 and Tfac is calculated from Eq. (24). We
normalize to Tfac rather than T ¼ Tfac þ δT , because our fit
is only sensitive to the combination δT − δA and therefore
leaves δT undetermined. These 18 quantities are supplied
by four parameters measuring the 1=N2

c corrections to the
tree and annihilation diagrams:

jδT j=Tfac; argðδTÞ; jδAj=Tfac; argðδAÞ:
In addition we need five parameters related to form factors:

FDsK
0 ð0Þ=FDπ

0 ð0Þ; FDK
0 ð0Þ; FDπ

0 ð0Þ;
jFKπ

0 ðm2
DÞj; argðFKπ

0 ðm2
DÞÞ;

and set FKπ
0 ðm2

Ds
Þ ¼ FKπ

0 ðm2
DÞ. Altogether these are 27 real

parameters, which are fitted to 16 measured branching
ratios and one strong phase. The experimental input values,

including the respective correlations, are listed in
Appendix A. The number of parameters is larger than
the number of observables. However, the 27 parameters are
subject to ten constraints on the maximal size of linear
SUð3ÞF breaking (see Sec. III B) and the bounds
jδT;Aj ≤ 0.15Tfac. At the global minimum we obtain
χ2 ¼ 0.0; i.e., the parametrization and theoretical input is

TABLE VII. Fits to the branching ratios BðDþ → KSKþÞ, BðDþ
s → KSπ

þÞ, BðDþ → Kþπ0Þ only, without taking correlations and
additional constraints on SUð3ÞF breaking (see Sec. III B) into account. The form factors are varied as described in Sec. IV and
Appendixes C 1 and C 2. The χ2 is the one taking into account the three given branching ratios and form factors only. ν are the number of
degrees of freedom compared to the fit scenario of point 0. The significance of rejection takes point 0 as null hypothesis (n/a refers not
applicable).

Example fit point with minimal χ2: Point 0 Point 1 Point 2 Point 3 Exp. data
Applied conditions: None Pbreak ¼ δT ¼ δA ¼ 0 δT ¼ δA ¼ 0 Pbreak ¼ 0 n/a

jPbreak=T facj 0.25 0 0.54 0 n/a
argðPbreakÞ −1.95 0 2.21 0 n/a
jδT j=Tfac 0.11 0 0 0.15 n/a
argðδTÞ 3.07 0 0 −2.74 n/a
jδAj=Afac 0.09 0 0 0.11 n/a
argðδAÞ 0.67 0 0 0.00 n/a
FDsK
0 ð0Þ=FDπ

0 ð0Þ 0.96 1.01 0.95 0.97 n/a

FDK
0 ð0Þ 0.74 0.72 0.74 0.74 n/a

FDπ
0 ð0Þ 0.64 0.64 0.64 0.64 n/a

jFKπ
0 ðm2

DðsÞ Þj 2.39 1.99 4.50 1.62 n/a

argðFKπ
0 ðm2

DðsÞ ÞÞ 1.71 −1.29 −1.15 −2.36 n/a

Tfac=10−6 GeV 2.52 2.52 2.52 2.52 n/a
TfacðDþ → K̄0KþÞ=10−6 GeV 3.40 3.34 3.40 3.40 n/a
TfacðDþ

s → K0πþÞ=10−6 GeV −2.53 −2.68 −2.51 −2.57 n/a
TfacðDþ → Kþπ0Þ=10−6 GeV 2.22 2.22 2.22 2.22 n/a
AfacðDþ

s → K0πþÞ=10−6 GeV −0.18þ i1.22 0.28 − i0.99 0.94 − i2.12 −0.59 − i0.59 n/a
AfacðDþ → Kþπ0Þ=10−6 GeV 0.10 − i0.68 −0.16þ i0.55 −0.53þ i1.19 0.33þ i0.33 n/a
BðDþ → KSKþÞ=10−3 2.83 4.04 2.85 2.83 2.83� 0.16 [46]
BðDþ

s → KSπ
þÞ=10−3 1.22 1.22 1.23 1.22 1.22� 0.06 a[46–48]

BðDþ → Kþπ0Þ=10−4 1.83 1.83 1.72 1.83 1.83� 0.26 [46]
χ2 0.00 63.93 0.20 0.00 n/a
ν n/a 5 3 2 n/a
Significance of rejection n/a 7.0σ 0.03σ 0.0σ n/a

aOur average.

TABLE VIII. Results of several likelihood ratio tests. Shown
are the obtained χ2, the relative degrees of freedom (dof) of the
hypothesis compared to the null hypothesis, which is the full fit,
and the significance at which the hypothesis can be rejected.

Hypothesis
Significance
of rejection Δχ2 Dof

Pbreak ¼ 0 0.7σ 1.3 2

Pbreak ¼ Eð1Þ
i ¼ Cð1Þ

i ¼ 0 ∀ i >5σ 431.4 14

Eð1Þ
i ¼ 0 ∀ i 3.0σ 20.3 6

E ¼ Eð1Þ
i ¼ 0 ∀ i >5σ 156.4 8

Cð1Þ
i ¼ 0 ∀ i 4.3σ 31.6 6

C ¼ Cð1Þ
i ¼ 0 ∀ i >5σ 267 × 103 8
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(a) (b)

(c) (d)

(e) (f)

FIG. 3 (color online). SUð3ÞF limit topologies. In (e) and (f) the dashed (solid) line denotes the 68% (95%) C.L. contour.
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in perfect agreement with the data. Thus the data are both
compatible with our chosen bound on SUð3ÞF breaking
(i.e. all measures defined in Sec. III B are smaller than 50%)
and the six Grossman-Robinson SUð3ÞF sum rules [29].
In order to study the relative importance of the topologi-

cal amplitudes for the description of the data, we perform
likelihood ratio tests. We look at several scenarios where
some of the parameters of our fit are fixed. In order to keep
the fit simple, we assume the validity of Wilks’ theorem
[51]; i.e. we calculate the p-value according to [34,46]

p ¼ 1 − Pν=2ðΔχ2=2Þ; ð46Þ

with the normalized lower incomplete Gamma function
Pν=2 depending on the number ν of relatively fixed
parameters compared to the full fit. For a general discussion
of the assumptions underlying Eq. (46) see Ref. [34].
The results of our likelihood ratio tests are shown in

Table VIII. This table shows at which significance we can
reject a certain hypothesis. For example, we can reject
Pbreak ¼ 0 at only ∼0.7σ, implying that Pbreak ¼ 0 is well
consistent with the data. However, the fit shows a clear need

for SUð3ÞF breaking: the SUð3ÞF-limit fit with Pbreak ¼
Eð1Þ
i ¼ Cð1Þ

i ¼ 0 ∀ i is rejected at >5σ. Looking at the
SUð3ÞF breaking in specific topological amplitudes we find

(a) (b)

(c) (d)

FIG. 4 (color online). Δχ2 profile of the parameters δ0;C;E;Pbreak
X measuring SUð3ÞF-breaking in C, E, and Pbreak (a), (b), (c) and of δ

0;topo
X

defined in Eq. (44), which quantifies the overall SUð3ÞF-breaking (d).
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a slight tendency toward a stronger SUð3ÞF breaking in the
color-suppressed tree than in the exchange diagrams.
In Figs. 3–7 we show plots of the fit parameters,

measures of SUð3ÞF breaking, and fit predictions for
observables. We see that in the multiparameter space the
best-fit solutions cover broad regions and typically several
disconnected best-fit regions exist. Considering that there
are more parameters than fitted quantities the large degen-
eracy of the best-fit region is not surprising. It is moot to
quote best-fit values for the parameters, because one can
move in a wide valley with Δχ2 ¼ 0. We suspect that the
alternative approach of a Bayesian analysis would single
out a small portion of this Δχ2 ¼ 0 valley as a consequence

of the Bayesian prior placed on the fit parameters and the
central limit theorem of statistics. Therefore frequentist
analyses like ours are more adequate to the problem.
The phase of ~C significantly deviates from 0 and �π

[see Fig. 3(b)], which points to large rescattering effects.
The fit results for j ~C=Tfacj and j ~E=Tfacj (see Fig. 3) show
disconnected regions at 95% C.L. ~C and ~E are suppressed
by 1=Nc but involve a large Wilson coefficient ∼2.4
as discussed in Sec. III A. Thus only solutions with
j ~C=Tfacj; j ~E=Tfacj ≲ 1 are consistent with 1=Nc counting,
which singles out one of the three regions in the
j ~C=Tfacj-j ~E=Tfacj plane.

(a) (b)

(c) (d)

FIG. 5 (color online). SUð3ÞF-breaking color-suppressed tree (a), (b) and exchange (c), (d) topologies.
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The needed maximum size of total SUð3ÞF breaking on
the amplitude is given by δ0;topoX ∼ 30% in agreement with
Ref. [23], as can be read off Fig. 4(d). Note that δ0;topoX as
well as δ0;TX do not measure the average but the maximal
size of SUð3ÞF breaking in one of the 17 decay channels
except for D0 → K̄0K0; see Sec. III B. Thus, these mea-
sures are very conservative and could in principle be biased
by a single channel. However, the need for SUð3ÞF
breaking in individual parameters can be considerably

smaller than 30%; e.g. jEð1Þ
i j ∼ 0, jCð1Þ

2;3j ∼ 0 is well allowed
at 1σ [see Figs. 5(a) and 5(c), respectively]. Also a
jPbreak=Tj below 5% already gives very good fits [see
Fig. 6(a)]. In Fig. 4(c) we see that the same is consistently
the case for δ0;Pbreak

X .
From Figs. 4(a) and 4(b) we again see the slight tendency

for larger SUð3ÞF breaking in the color-suppressed tree
topologies compared to the exchange diagrams.
As illustrated in Table VII discussed in Sec. III A around

Eqs. (40)–(42), the broken penguin Pbreak is correlated with
the parameter δT − δA quantifying 1=N2

c corrections to
factorizable amplitudes. This feature can be verified in
Fig. 6(c) which shows this correlation. Avanishing penguin
Pbreak ∼ 0 is allowed at the price of 1=Nc breaking
corrections of order ≳15%. Note again that this correlation
heavily depends on the poorly measured form factor
FKπ
0 ðm2

DðsÞ Þ. Interestingly, the fit result for FKπ
0 ðm2

DðsÞ Þ
(see Fig. 7) is not completely flat, showing its nontrivial
influence on the branching ratios of charm decays. The
branching ratio BðDþ → Kþπ0Þ depends on no topological
parameters besides δT and δA. Its fit result, which is given in
Fig. 8(a), shows that our assumptions on the ranges
for δT and δA are loose enough to accommodate the
measured branching fraction. However, large fit results
for BðDþ → Kþπ0Þ are slightly disfavored.
We may next ask whether we can use our fit output to

predict individual branching fractions better than they are

currently measured. Our general finding is as in Fig. 8(a);
the fit output for the Δχ2 profiles essentially tracks the fit
input. To find nontrivial predictions for future measure-
ments we must study correlations between at least two
observables. A nice result is shown in Fig. 8(b) revealing
the correlation of BðD0 → KLπ

0Þ and BðD0 → KSπ
0Þ. In

the SUð3ÞF limit the branching ratios are strongly corre-
lated through their parametric dependence1

FIG. 7 (color online). The form factor FKπ
0 ðm2

DðsÞ Þ.

(a) (b) (c)

FIG. 6 (color online). The broken penguin (a), (b) and its correlation to parameters measuring the 1=Nc corrections (c). In (c) the
dashed (solid) line denotes the 68% (95%) C.L. contour and the region to the right of the contours is allowed.

1In order to find the correct relative signs in Eqs. (47) and (48)
one must define KS;L correctly. Equations (1) and (2)
comply with jK0i ¼ CjK̄0i ¼ −CPjK̄0i entailing jKSi≃
ðjK0i − jK̄0iÞ= ffiffiffi

2
p

. We have checked our results by studying

the full decay chain D0 → K0
ð−Þ

½→ πþπ−�π0, from which the K0

sign conventions drop out.
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(a) (b)

FIG. 8 (color online). (a) Δχ2 profile of BðBþ → Kþπ0Þ and (b) correlation between BðD0 → KLπ
0Þ and BðD0 → KSπ

0Þ. In (a) the
red dashed (solid) line indicates the 1σ (2σ) experimental error. In (b) the dashed (solid) lines are the 68% (95%) C.L. contours of our fit
and the dark (light) gray shading denotes the 68% (95%) C.L. region of the measurements. Here, the solid red line corresponds to
BðD0 → KLπ

0Þ ¼ BðD0 → KSπ
0Þ.

(a) (b)

(c) (d)

(e)

FIG. 9 (color online). Blue: Our results for several observables probing doubly Cabibbo-suppressed amplitudes [see Eqs. (49) and (50)].
The lines correspond to 1σ (dashed), 2σ (solid), and 3σ (dashed-dotted) confidence intervals, respectively. The experimental error inRðD0Þ
is obtained byGaussian error propagation fromTableX.The results fromother groups [52–55] are shown in black. In case of (a)RðD0Þ and
(b) j ADCSðD0→K0π0Þ

ACFðD0→K̄0π0Þ j no errors are given in Refs. [52–55]. (a) Black: prediction of Refs. [52–55]. Red (below the black point): experimental

error. (b) Black: prediction of Refs. [52–55]. (c) Black: 1σ range predicted in Ref. [55]. (d) Black: 1σ range predicted in Ref. [55].
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BðD0 → KSπ
0Þ ∼ jE − Cj2 þ 2λ2jE − Cj2; ð47Þ

BðD0 → KLπ
0Þ ∼ jE − Cj2 − 2λ2jE − Cj2; ð48Þ

which implies BðD0 → KLπ
0Þ≲ BðD0 → KSπ

0Þ. This
relation is a priori absent once SUð3ÞF-breaking effects
are included, because the latter can be larger than jE − Cj.
However, the global fit rejects this possibility: in
Fig. 8(b) the region corresponding to 95% C.L. entirely
satisfies BðD0 → KLπ

0Þ < BðD0 → KSπ
0Þ. Performing a

dedicated likelihood ratio test we find that BðD0 →
KLπ

0Þ < BðD0 → KSπ
0Þ holds with a significance of

more than 4σ. Our fit excludes a large region of the
BðD0 → KSπ

0Þ-BðD0 → KLπ
0Þ plane which is still

allowed by the individual measurements. To quantify our
findings further we define

RðD0Þ ≡ BðD0 → KSπ
0Þ − BðD0 → KLπ

0Þ
BðD0 → KSπ

0Þ þ BðD0 → KLπ
0Þ ð49Þ

and quote the confidence intervals in the first row of
Table IX. The ratio of the magnitudes of the DCS and CF
amplitudes is listed in the third row of this table. Figure 9
visualizes these confidence intervals and also shows the
prediction of Refs. [52–55], which is the black dot
corresponding to RðD0Þ ¼ 2tan2θC (where θC is the
Cabibbo angle). The result is quoted without uncertainty
in these papers, and Refs. [53–55] argue that corrections
from SUð3Þ breaking to these relations are small.
References [54,55] arrive at this conclusion by calculating
the amplitudes in QCD factorization [56,57], which is a
calculational method valid for values of mc much larger
than the hadronic scale governing the infrared structure of
the decays. Our fit permits sizable corrections to RðD0Þ ¼
2 tan2 θC from the SUð3Þ breaking contributions, so that
future measurements will give insight into the size of
SUð3Þ breaking and the viability of QCD factorization in
charm physics.
Another test of doubly Cabibbo-suppressed contribu-

tions involves the decays Dþ
s → KS;LKþ. We study

RðDþ
s Þ ≡ BðDþ

s → KSKþÞ − BðDþ
s → KLKþÞ

BðDþ
s → KSKþÞ þ BðDþ

s → KLKþÞ ð50Þ

and predict the not yet measured observables RðDþ
s Þ and

BðDþ
s → KLKþÞ; see Table IX and Fig. 9. Again compar-

ing our result with the prediction in Ref. [55] we find much
larger uncertainties. Thus also in Dþ

s → KS;LKþ future
data will test the accuracy of QCD factorization assumed
in Ref. [55].

V. CONCLUSION

We have studied the decay amplitudes of D mesons into
two pseudoscalar mesons with the topological-amplitude
approach. To this end we have incorporated linear SUð3ÞF
breaking into the method and have shown that the topo-
logical amplitude method can be mapped onto the standard
decomposition of the decay amplitudes in terms of reduced
amplitudes characterized by SUð3ÞF representations.
Unlike plain SUð3ÞF analyses the topological-amplitude
method permits the use of a 1=Nc expansion to calculate
the factorizable tree and annihilation amplitudes in terms of
form factors and decay constants, up to corrections of order
1=N2

c. This additional theoretical input has led us to a new
sum rule between the branching fractions of Dþ → KSKþ,
Dþ

s → KSπ
þ, and Dþ → Kþπ0. This sum rule correlates

the nonfactorizable 1=N2
c terms with the penguin amplitude

Pbreak. The latter quantity is of prime interest to understand
the dynamics of flavor-changing neutral current transitions
in the charm sector, because Pbreak is suppressed by the
GIM mechanism and vanishes in the limit ms ¼ md.
We have then performed a global fit using all available

branching ratios and the experimental information on the
strong phase difference δKþπ− . In our analysis we have
included the information on correlations between exper-
imental errors. It is possible to find a perfect fit, with a large
parameter region satisfying χ2 ¼ 0. This means that current
data comply with (i) the Grossman-Robinson sum rules
[29], (ii) our chosen upper bound of 50% on SUð3ÞF
breaking, and (iii) our assumption that the 1=N2

c corrections
to the factorizable amplitudes are smaller than 15% of the
factorized tree amplitude. The main phenomenological
results of our paper are various likelihood ratio tests
addressing the sizes of the topological amplitudes and
their SUð3ÞF breaking (Table VIII and Figs. 3–6).
Importantly, we find that there is no evidence for an
enhanced broken penguin. The hypothesis Pbreak ¼ 0
is rejected at below 1σ only, i.e., insignificantly.
Improvements of BðDþ → KSKþÞ, BðDþ

s → KSπ
þÞ,

BðDþ → Kþπ0Þ, and especially the form factor
FKπ
0 ðm2

DðsÞ Þ could advance our knowledge of the GIM

mechanism in charm by pinning down the proportions
of broken penguin and 1=N2

c corrections. The current status
is summarized in Fig. 6(c). While the SCS branching ratios
BðDþ → KSKþÞ and BðDþ

s → KSπ
þÞ are known at a

TABLE IX. Fit results for several observables probing doubly
Cabibbo-suppressed amplitudes. The corresponding plots are
shown in Fig. 9.

Observable �1σ �2σ �3σ

RðD0Þ 0.09þ0.04
−0.02 0.09þ0.07

−0.04 0.09þ0.09
−0.05

RðDþ
s Þ 0.11þ0.04

−0.14 0.11þ0.06
−0.18 0.11þ0.06

−0.20
BðDþ

s → KLKþÞ 0.012þ0.004
−0.001 0.012þ0.005

−0.002 0.012þ0.006
−0.002

jADCSðD0→K0π0Þ
ACFðD0→K̄0π0Þ j 0.05þ0.02

−0.01 0.05þ0.03
−0.03 0.05þ0.04

−0.03

jADCSðDþ
s →K0KþÞ

ACFðDþ
s →K̄0KþÞ j 0.08þ0.02

−0.06 0.08þ0.03
−0.06 0.08þ0.04

−0.07
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precision of ≲6%, the relative uncertainty of the DCS
branching ratio BðDþ → Kþπ0Þ is about ∼14% and
leaves room for improvement. As the latter is the only
charm decay into kaons and pions which depends on
factorizable contributions only, it is very important to
improve its measurement. With a simultaneously improved
FKπ
0 ðm2

DðsÞ Þ the branching ratio BðDþ → Kþπ0Þ serves as
a test of factorization in charm decays.
We observe a slightly larger SUð3ÞF breaking in color-

suppressed tree than in exchange diagrams. In no channel
more than∼30% SUð3ÞF breaking is needed to describe the
data [not considering D0 → KSKS, which is forbidden in
the SUð3ÞF limit]; this finding agrees with the plain
SUð3ÞF analysis of Ref. [23]. However, as a matter of
principle one cannot decide whether the actual SUð3ÞF
breaking is larger than this. This can potentially only be
achieved by future QCD calculations on the lattice [58].
In the data, there is no indication of this to be the case.
With our topological-amplitude fit it is further possible to

make predictions for branching fractions which can be
probed by future measurements. Despite our conservative
ranges for the SUð3ÞF breaking parameters, we find a
correlation between BðD0 → KLπ

0Þ and BðD0 → KSπ
0Þ

probing the doubly Cabibbo-suppressed contributions to
these modes: Fig. 8 entails the prediction BðD0 →KLπ

0Þ<
BðD0→KSπ

0Þ at more than 4σ.
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APPENDIX A: INPUT DATA

We give the input data used in the fits, including the
correlation coefficients, in Tables X–XIV. For details on
the input values for the form factors see Appendixes C 1
and C 2.

TABLE X. Input data for charm meson branching ratios and the strong phase difference δKπ used in our fit. Note that as we incorporate
the correlations reported in Ref. [46], for consistency we do not take into account the experimental updates of the following branching
fractions: BðD0 → K−πþÞ [61] and BðDþ → KSπ

þÞ [61]. For the correlation coefficients see Tables XI, XII, and XIII. Note that
BðDþ

s → Kþπ0Þ and BðDþ
s → KSπ

þÞ are not part of the PDG fit; i.e., there are no correlation coefficients given for these decay modes.
We therefore have no correlation matrix forDþ

s decays. The value for BðD0 → Kþπ−Þ=BðD0 → K−πþÞ is taken from the Heavy Flavor
Averaging Group (HFAG) in order to take its correlation with δKπ into account; see Table XIII.

Observable Measurement References

SCS branching ratios
BðD0 → KþK−Þ ð3.96� 0.08Þ × 10−3 [46]
BðD0 → πþπ−Þ ð1.402� 0.026Þ × 10−3 [46]
BðD0 → KSKSÞ ð0.17� 0.04Þ × 10−3 [46]
BðD0 → π0π0Þ ð0.820� 0.035Þ × 10−3 [46]
BðDþ → π0πþÞ ð1.19� 0.06Þ × 10−3 [46]
BðDþ → KSKþÞ ð2.83� 0.16Þ × 10−3 [46]
BðDþ

s → KSπ
þÞ=BðDþ

s → KSKþÞ ð8.12� 0.28Þ × 10−2 [46]
BðDþ

s → Kþπ0Þ=BðDþ
s → KSKþÞ ð4.2� 1.4Þ × 10−2 [46]

CF branching ratios
BðD0 → K−πþÞ ð3.88� 0.05Þ × 10−2 [46]
BðD0 → KSπ

0Þ ð1.19� 0.04Þ × 10−2 [46]
BðD0 → KLπ

0Þ ð1.00� 0.07Þ × 10−2 [46]
BðDþ → KSπ

þÞ ð1.47� 0.07Þ × 10−2 [46]
BðDþ → KLπ

þÞ ð1.46� 0.05Þ × 10−2 [46]
BðDþ

s → KSKþÞ ð1.50� 0.05Þ × 10−2
a[47,48]

DCS branching ratios
BðD0 → Kþπ−Þ=BðD0 → K−πþÞ 0.00349� 0.00004 [62]
BðDþ → Kþπ0Þ ð1.83� 0.26Þ × 10−4 [46]

Kþπ− strong phase difference
δKπ ð6.45� 10.65Þ° b[62]

aOur average.
bOur symmetrization of uncertainties.
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APPENDIX B: MAPPING OF THE
TOPOLOGICAL ON THE SUð3ÞF

PARAMETRIZATION

As discussed in Sec. II C the topological flavor-flow
parametrization and the linear SUð3ÞF expansion can be
mapped onto each other after the removal of redundancies
in each parametrization. In Tables XVand XVI we give two

numerical examples for the mapping. Both redundant
parameters and redundant decay amplitudes have to be
removed in order to obtain two corresponding 11 × 11
regular coefficient matrices. Then, the mapping can be
calculated by inverting one or the other coefficient matrix.
We choose to omit the redundant amplitudes

D0 → π0π0; D0 → K−πþ; D0 → Kþπ−; ðB1Þ

D0 → K0π0; Dþ → K0πþ; Dþ → Kþπ0; ðB2Þ

TABLE XI. Correlation coefficients for D0 branching ratios
[46] used in our fit. We abbreviate Bf

i ≡ Bði → fÞ. Note that
BðD0 → KLπ

0Þ is not part of the PDG fit and is used without
correlations to the other modes.

BKþK−

D0 Bπþπ−
D0 BKSKS

D0 Bπ0π0

D0 BK−πþ
D0 BKSπ

0

D0

BKþK−

D0
1.00 0.38 0.03 0.09 0.60 0.21

Bπþπ−
D0

0.38 1.00 0.03 0.09 0.62 0.22

BKSKS

D0
0.03 0.03 1.00 0.01 0.05 0.03

Bπ0π0

D0
0.09 0.09 0.01 1.00 0.14 0.05

BK−πþ
D0

0.60 0.62 0.05 0.14 1.00 0.35

BKSπ
0

D0
0.21 0.22 0.03 0.05 0.35 1.00

TABLE XII. Correlation coefficients for Dþ branching ratios
[46] used in our fit; see the caption of Table XI for the notation
used. Note that BðDþ → KLπ

þÞ and BðDþ → π0πþÞ are not part
of the PDG fit and are used without correlations to the other
modes.

BKSKþ

Dþ BKSπ
þ

Dþ BKþπ0
Dþ

BKSKþ

Dþ 1.00 0.75 0.05

BKSπ
þ

Dþ 0.75 1.00 0.06

BKþπ0
Dþ 0.05 0.06 1.00

TABLE XIII. Correlation between BðD0 → Kþπ−Þ=BðD0 →
K−πþÞ and δKπ [62] used in our fit.

δKπ BðD0→Kþπ−Þ
BðD0→K−πþÞ

δKπ 1.000 0.404
BðD0→Kþπ−Þ
BðD0→K−πþÞ

0.404 1.000

TABLE XIV. Numerical input for the form factors. The form
factor FDsK

0 ð0Þ is varied flatly within the theory uncertainty [63].
Table adapted from [64].

FDK
0 ð0Þ 0.737� 0.005 a[65–69]

FDπ
0 ð0Þ 0.638� 0.012 a[65–68]

FDsK
0 ð0Þ ð1� 5%Þ × FDπ

0 ð0Þ [70,71]

aOur average.

TABLE XV. Fit example point I and corresponding point in the
SUð3ÞF decomposition with linear SUð3ÞF breaking. The values
quoted for ~Ai

j and ~Bi
j in the last column are normalized to the

largest SUð3ÞF limit matrix element. The fit is only sensitive to δT
and δA in the combination ðδT − δAÞ=Tfac ¼ 0.29e−3.02i.

Topological parameter Value SUð3ÞF matrix element Value

jδAj=Tfac 0.14 j ~A15
27j 0.32

jδT j=Tfac 0.15 j ~A15
8 j 0.22

argðδA=T facÞ 0.17 j ~A6̄
8j 1.00

argðδT=T facÞ −3.06 j ~B3
1j 0.67

jFKπ
0 ðm2

DðsÞ Þj 3.54 j ~B3
8j 0.22

FDK
0 ð0Þ 0.74 j ~B6̄1

8 j 0.36

FDπ
0 ð0Þ 0.64 j ~B151

8 j 0.39

FDsK
0 ð0Þ=FDπ

0 ð0Þ 0.95 j ~B152
8 j 0.29

argðFKπ
0 ðm2

DðsÞ ÞÞ −1.74 j ~B151
27 j 0.18

j ~C=Tfacj 1.10 j ~B152
27 j 0.07

j ~E=T facj 0.46 j ~B241
27 j 0.13

jPbreak=T facj 0.05 argðA15
27Þ 1.44

argð ~CÞ 2.47 argðA15
8 Þ −2.53

argðCð1Þ
1 Þ −1.50 argðA6̄

8Þ 0.20

argðCð1Þ
2 Þ −1.40 argðB3

1Þ −0.53

argðCð1Þ
3 Þ 0.00 argðB3

8Þ −0.96

argð ~EÞ 1.49 argðB6̄1
8 Þ −2.11

argðEð1Þ
1 Þ −0.65 argðB151

8 Þ −1.35

argðEð1Þ
2 Þ −0.93 argðB152

8 Þ −2.30

argðEð1Þ
3 Þ −1.16 argðB151

27 Þ 2.56

argðPbreakÞ 0.18 argðB152
27 Þ 3.10

jCð1Þ
1 = ~Cj 0.07 argðB241

27 Þ 0.00

jCð1Þ
2 = ~Cj 0.16

jCð1Þ
3 = ~Cj 0.19

jEð1Þ
1 = ~Ej 0.50

jEð1Þ
2 = ~Ej 0.50

jEð1Þ
3 = ~Ej 0.05

δ0;topoX
0.50

δ0;CX 0.50

δ0;EX 0.31

δ0;Pbreak
X

0.07

χ2 0.27
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using the sum rules presented in Appendix D. We next
calculate the redefined SUð3ÞF matrix elements in terms of
the remaining decay amplitudes by inverting the SUð3ÞF
coefficient matrix given in Tables I and Vof Ref. [23]. The
result for this inverse matrix is given in Table XVII. In order
to illustrate how to read Table XVII, we exemplify

A15
27¼

2
ffiffiffi
2

p

3
AðDþ→ K̄0πþÞþ

ffiffiffi
2

p

3
AðDþ

s →K0KþÞ: ðB3Þ

Inserting the expansions of AðDþ → K̄0πþÞ and
AðDþ

s → K0KþÞ in terms of topological amplitudes into

TABLE XVI. Fit example point II and corresponding point in
the SUð3ÞF decomposition with linear SUð3ÞF breaking. Com-
pare with Table XV for the notation. The fit is only sensitive to δT
and δA in the combination ðδT − δAÞ=Tfac ¼ 0.30e−1.88i.

Topological parameter Value SUð3ÞF matrix element Value

jδAj=Tfac 0.15 j ~A15
27j 0.35

jδT j=Tfac 0.15 j ~A15
8 j 1.00

argðδA=T facÞ 1.27 j ~A6̄
8j 0.19

argðδT=T facÞ −1.88 j ~B3
1j 0.36

jFKπ
0 ðm2

DðsÞ Þj 4.50 j ~B3
8j 0.10

FDK
0 ð0Þ 0.74 j ~B6̄1

8 j 0.15

FDπ
0 ð0Þ 0.64 j ~B151

8 j 0.49

FDsK
0 ð0Þ=FDπ

0 ð0Þ 0.95 j ~B152
8 j 0.06

argðFKπ
0 ðm2

DðsÞ ÞÞ −1.50 j ~B151
27 j 0.17

j ~C=Tfacj 1.17 j ~B152
27 j 0.21

j ~E=T facj 2.05 j ~B241
27 j 0.06

jPbreak=T facj 0.39 argðA15
27Þ 0.94

argð ~CÞ 2.23 argðA15
8 Þ −0.60

argðCð1Þ
1 Þ −1.06 argðA6̄

8Þ 1.47

argðCð1Þ
2 Þ 1.48 argðB3

1Þ 2.15

argðCð1Þ
3 Þ 0.22 argðB3

8Þ 0.55

argð ~EÞ 2.57 argðB6̄1
8 Þ −2.04
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Eq. (B3) gives the desired expression of the SUð3ÞF matrix
element A15

27 in terms of the topological amplitudes.
Note that in the matching we implicitly disregard higher
order SUð3ÞF-breaking effects which are included in
the approximate factorization formulas. Strictly speaking,
these invalidate the linear SUð3ÞF sum rules; see also
Sec. III A. However, this can be safely neglected as we
only aim at a description of the data at linear SUð3ÞF
breaking here.
While the exemplified topological-amplitude fit points

respect the SUð3ÞF power counting, the SUð3ÞF breaking
matrix elements can nevertheless be quite large, like
j ~B3

1j ∼ 0.7 in Table XV in case of example point I. This
shows that several small SUð3ÞF breaking parameters of the
topological-amplitude fit can add up to a larger SUð3ÞF
breaking matrix element of the group-theoretical approach.
However, as demonstrated by the example point II in
Table XVI, there are also solutions where both
diagrammatic and group theoretic languages give
SUð3ÞF breaking ≲50%.

APPENDIX C: APPROXIMATE
FACTORIZATION FORMULAS

Below, we give the 1=Nc-leading expressions for the
tree and annihilation diagrams. Corrections of higher order
in the 1=Nc expansion are parametrized by δT and δA
introduced in Sec. III A.

1. Factorization of tree amplitudes

We use the following expressions for the 1=Nc-leading
contributions to the tree diagrams. SUð3ÞF breaking in the
1=N2

c corrections is of higher order in our power counting
and neglected; i.e. we use a flavor-universal correction
parameter δT. In our fit we vary

0 ≤ jδT j ≤ 0.15Tfac; ðC1Þ

−π ≤ argðδTÞ ≤ π; ðC2Þ

with Tfac defined in Eq. (24) and δT ¼ T − Tfac; see
Eq. (23). The 1=Nc-leading, factorizable contributions to
the SCS tree amplitudes are altogether given as

Tfac
D0→KþK− ¼ GFffiffiffi

2
p a1fKðm2

D −m2
KÞFDK

0 ðm2
KÞ; ðC3Þ

Tfac
D0→πþπ− ¼ −

GFffiffiffi
2

p a1fπðm2
D −m2

πÞFDπ
0 ðm2

πÞ; ðC4Þ

Tfac
Dþ→πþπ0 ¼ −

GFffiffiffi
2

p 1ffiffiffi
2

p a1fπðm2
D −m2

πÞFDπ
0 ðm2

πÞ; ðC5Þ

Tfac
Dþ→KþK̄0 ¼ GFffiffiffi

2
p a1fKðm2

D −m2
KÞFDK

0 ðm2
KÞ; ðC6Þ

Tfac
Dþ

s →πþK0 ¼ −
GFffiffiffi
2

p a1fπðm2
Ds

−m2
KÞFDsK

0 ðm2
πÞ: ðC7Þ

The 1=Nc-leading, factorizable contributions to the CF
tree amplitudes are given as

Tfac
D0→K−πþ ¼ GFffiffiffi

2
p a1fπðm2

D −m2
KÞFDK

0 ðm2
πÞ; ðC8Þ

Tfac
Dþ→K̄0πþ ¼ GFffiffiffi

2
p a1fπðm2

D −m2
KÞFDK

0 ðm2
πÞ: ðC9Þ

The 1=Nc-leading, factorizable contributions to the DCS
tree amplitudes are given as

Tfac
D0→Kþπ− ¼ GFffiffiffi

2
p a1fKðm2

D −m2
πÞFDπ

0 ðm2
KÞ; ðC10Þ

Tfac
Dþ→Kþπ0 ¼

GFffiffiffi
2

p 1ffiffiffi
2

p a1fKðm2
D −m2

πÞFDπ
0 ðm2

KÞ; ðC11Þ

Tfac
Dþ

s →K0Kþ ¼ GFffiffiffi
2

p a1fKðm2
Ds

−m2
KÞFDsK

0 ðm2
KÞ: ðC12Þ

The matrix element of the vector current can be para-
metrized by the vector and scalar form factors as [71]

hPjVμjDi ¼ FD→Pþ ðq2Þ
�
pμ
D þ pμ

P −
m2

D −m2
K

q2
qμ
�

þ FD→K
0 ðq2Þm

2
D −m2

K

q2
qμ; ðC13Þ

with the vector form factor FD→Pþ and the scalar form factor
FD→K
0 obeying [71]

hPjSjDi ¼ FD→P
0 ðq2Þm

2
D −m2

P

mc −mp
: ðC14Þ

Here the same renormalization scheme and scale must be
used for S and mc −mp.
We calculate the form factors that appear in the tree

amplitudes using the overall scaling factor appearing in the
z-parametrization, i.e., a pole factor [71,72]

FDK
0 ðm2

PÞ ¼
FDK
0 ð0Þ

1 −m2
P=m

2
D�

s0
ð2317Þ� ; ðC15Þ

FDsK
0 ðm2

PÞ ¼
FDsK
0 ð0Þ

1 −m2
P=m

2
D�

0
ð2400Þ� ; ðC16Þ
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FDπ
0 ðm2

PÞ ¼
FDπ
0 ð0Þ

1 −m2
P=m

2
D�

0
ð2400Þ� ; ðC17Þ

with the scalar resonances [46]

mD�
s0
ð2317Þ� ¼ ð2317.8� 0.6Þ MeV; ðC18Þ

mD�
0
ð2400Þ� ¼ ð2403� 40Þ MeV: ðC19Þ

The used input values for FDK
0 ð0Þ, FDsK

0 ð0Þ, and FDπ
0 ð0Þ are

given in Table XIV.
As we assume isospin symmetry in the topological-

amplitude decomposition, we ignore the smallish isospin
breaking between charged and neutral masses of kaons
and pions for consistency. We use the neutral masses in
all amplitudes. However, in the phase space factors of
the branching ratios we take the isospin mass splittings
into account.

2. Factorization of annihilation amplitudes

We use the following expressions for the 1=Nc-leading
contributions to the annihilation diagrams. As in the case of
tree amplitudes we vary δA of Eq. (25) as

0 ≤ jδAj ≤ 0.15Tfac; ðC20Þ

−π ≤ argðδAÞ ≤ π: ðC21Þ

The 1=Nc-leading, factorizable contributions [33] to the
SCS annihilation amplitudes are given as

Afac
Dþ→K̄0Kþ ¼ 0; ðC22Þ

Afac
Dþ

s →K0πþ ¼ GFffiffiffi
2

p a1fDs
FKπ
0 ðm2

Ds
Þðm2

K −m2
πÞ; ðC23Þ

Afac
Dþ

s →Kþπ0 ¼ −
GFffiffiffi
2

p 1ffiffiffi
2

p a1fDs
FKπ
0 ðm2

Ds
Þðm2

K −m2
πÞ: ðC24Þ

The 1=Nc-leading, factorizable contribution to the CF
annihilation amplitude is given as

Afac
Dþ

s →K̄0Kþ ¼ 0: ðC25Þ

The 1=Nc-leading, factorizable contributions to the DCS
annihilation amplitudes are given as

Afac
Dþ→K0πþ ¼ GFffiffiffi

2
p a1fDFKπ

0 ðm2
DÞðm2

K −m2
πÞ; ðC26Þ

Afac
Dþ→Kþπ0 ¼ −

GFffiffiffi
2

p 1ffiffiffi
2

p a1fDFKπ
0 ðm2

DÞðm2
K −m2

πÞ: ðC27Þ

Note that the 1=Nc-leading SCS annihilation amplitude
Afac
Dþ→K̄0Kþ and the 1=Nc-leading CF annihilation amplitude

Afac
Dþ

s →K̄0Kþ can be neglected due to isospin symmetry [73].

However, the corresponding 1=N2
c corrections are of course

taken into account (as for the others) and specified in
Table VI.
Constraints on jFKπ

0 ðm2
DðsÞ Þj can be taken from τ decays.

In order to accommodate the measurements of τ → KSπ
−ντ

from Belle [49] we vary the form factor in the interval

1≲ jFKπ
0 ðm2

DðsÞ Þj ≲ 4.5; ðC28Þ

−π ≲ arg ðFKπ
0 ðm2

DðsÞ ÞÞ≲ π; ðC29Þ

setting

FKπ
0 ðm2

Ds
Þ ¼ FKπ

0 ðm2
DÞ: ðC30Þ

APPENDIX D: DIAGRAMMATIC
REPRESENTATION OF SUM RULES

In Tables XVIII–XXIII we give the diagrammatic
representation of the six Grossman-Robinson SUð3ÞF
sum rules which hold to linear order in SUð3ÞF
breaking [29].

TABLE XVIII. Diagrammatic representation of sum rule I, 1ffiffi
2

p AðD0 → πþπ−Þ þAðD0 → π0π0Þ −AðDþ → π0πþÞ ¼ 0.

Decay amplitude T C E Pbreak

þ 1ffiffi
2

p AðD0 → πþπ−Þ 0

þAðD0 → π0π0Þ 0

−AðDþ → π0πþÞ 0 0
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TABLE XIX. Diagrammatic representation of sum rule II, 1ffiffi
2

p AðD0 → K−πþÞ þAðD0 → K̄0π0Þ − 1ffiffi
2

p AðDþ → K̄0πþÞ ¼ 0.

Decay amplitude T Tð1Þ
1

C Cð1Þ
1

E Eð1Þ
1

1ffiffi
2

p AðD0 → K−πþÞ 0 0

þAðD0 → K̄0π0Þ 0 0

− 1ffiffi
2

p AðDþ → K̄0πþÞ 0 0

TABLE XX. Diagrammatic representation of sum rule III, AðD0 → Kþπ−Þ þ ffiffiffi
2

p
AðD0 → K0π0Þ −AðDþ → K0πþÞ−ffiffiffi

2
p

AðDþ → Kþπ0Þ ¼ 0.

Decay amplitude T Tð1Þ
2

A Að1Þ
2

C Cð1Þ
2

E Eð1Þ
2

AðD0 → Kþπ−Þ 0 0 0 0

ffiffiffi
2

p
AðD0 → K0π0Þ 0 0 0 0

−AðDþ → K0πþÞ 0 0 0 0

−
ffiffiffi
2

p
AðDþ → Kþπ0Þ 0 0 0 0

TABLE XXI. Diagrammatic representation of sum rule IV, AðD0 → K−KþÞ −AðD0 → πþπ−Þ −AðD0 → K−πþÞ −
AðD0 → Kþπ−Þ ¼ 0.

Decay amplitude T Tð1Þ
1 Tð1Þ

2
E Eð1Þ

1 Eð1Þ
2

Pbreak

AðD0 → KþK−Þ

−AðD0 → πþπ−Þ 0 0 0 0

−AðD0 → K−πþÞ 0 0 0

−AðD0 → Kþπ−Þ 0 0 0
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TABLE XXII. Diagrammatic representation of sum rule V, −AðDþ → K̄0KþÞ þAðDþ
s → K0πþÞ þAðDþ → K̄0πþÞ −AðDþ

s → K̄0KþÞ −AðDþ → K0πþÞþ
AðDþ

s → K0KþÞ ¼ 0.

Decay amplitude T Tð1Þ
1 Tð1Þ

2 Tð1Þ
3

A Að1Þ
1 Að1Þ

2 Að1Þ
3

C Cð1Þ
1 Cð1Þ

2 Cð1Þ
3

Pbreak

−AðDþ→K̄0KþÞ 0 0 0 0 0 0 0

AðDþ
s →K0πþÞ 0 0 0 0 0 0 0

AðDþ→K̄0πþÞ 0 0 0 0 0 0 0 0 0

−AðDþ
s →K̄0KþÞ 0 0 0 0 0 0 0

−AðDþ→K0πþÞ 0 0 0 0 0 0 0 0 0

AðDþ
s →K0KþÞ 0 0 0 0 0 0 0

TABLE XXIII. Diagrammatic representation of sum rule VI, þ ffiffiffi
2

p
AðDþ → π0πþÞ −AðDþ → K̄0KþÞ − ffiffiffi

2
p

AðDþ
s → Kþπ0Þ þAðDþ → K̄0πþÞ−

AðDþ
s → K̄0KþÞ þ ffiffiffi

2
p

AðDþ → Kþπ0Þ ¼ 0.

Decay amplitude T Tð1Þ
1 Tð1Þ

2
A Að1Þ

1 Að1Þ
2 Að1Þ

3
C Cð1Þ

1 Cð1Þ
2 Cð1Þ

3
Pbreakffiffiffi

2
p

AðDþ → π0πþÞ 0 0 0 0 0 0 0 0 0 0

−AðDþ → K̄0KþÞ 0 0 0 0 0 0

−
ffiffiffi
2

p
AðDþ

s → Kþπ0Þ 0 0 0 0 0 0

AðDþ → K̄0πþÞ 0 0 0 0 0 0 0 0

−AðDþ
s → K̄0KþÞ 0 0 0 0 0 0

þ ffiffiffi
2

p
AðDþ → Kþπ0Þ 0 0 0 0 0 0 0 0
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