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We present next-to-leading order (NLO) perturbative-QCD calculations of the cross sections for
lN → hX and lN → jetX. The main feature of these processes is that the scattered lepton is not observed,
so that the hard scale that makes them perturbative is set by the transverse momentum of the hadron or jet.
Kinematically, the two processes thus become direct analogs of single-inclusive production in hadronic
collisions which, as has been pointed out in the literature, makes them promising tools for exploring
transverse spin phenomena in QCD when the incident nucleon is transversely polarized. We find that the
NLO corrections are sizable for the spin-averaged cross section. We also investigate in how far the
scattering is dominated by the exchange of almost real (Weizsäcker-Williams) photons. We present
numerical estimates of the cross sections for present-day fixed target experiments and for a possible future
electron-ion collider.
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I. INTRODUCTION

There has been growing interest recently, both experi-
mentally [1–4] and theoretically [5–10], in the processes
lN → hX and lN → jetX, the single-inclusive production
of a hadron or jet at large transverse momentum in lepton-
nucleon scattering. In contrast to the far more customary
process lN → l0hX [11], for lN → hX the scattered lepton
in the final state is not observed, so that the process is truly
one-hadron (or one-jet) inclusive. The reason for the interest
in lN → hX comes from the study of single-transverse-spin
phenomena in hadronic scattering processes. It iswell known
that large single-spin asymmetries have been observed [12]
for the process pp↑ → hX, where p↑ denotes a transversely
polarized proton. To explain the large size of the asymme-
tries, and their persistence all the way from fixed-target to
collider energies, has posed a major challenge to theory.
Although a lot has been learned, it is fair to say that a
fully satisfactory understanding has yet to be obtained.
Measurements of corresponding asymmetries in the
kinematically equivalent, but much simpler, processes
lN↑ → hX, lN↑ → jetX have the promise of shedding
new light on the mechanisms for single-spin asymmetries
inQCD.First fairly precise experimental data forlN↑ → hX
have recently been released by the HERMES [2,3] and
Jefferson Lab Hall A [4] collaborations.
We note that at first sight one might consider the related

process lN↑ → l0X [which is just the standard inclusive
deep-inelastic scattering (DIS) process] to be equally suited
for transverse-spin studies in lepton scattering. However,

the analysis of the corresponding single-spin asymmetry is
considerably more complex because higher-order QED
effects are required for the asymmetry to be nonvanishing
[13–17]. In the same spirit as lN↑ → hX, also the processes
~lN↑ → hX [18] with longitudinal polarization of the lepton
andlN → Λ↑X [19]with a transversely polarizedΛ hyperon
were considered in the literature recently.
The proven method for analyzing single-inclusive proc-

esses such as pp → hX or lN → hX at large transverse
momentum rests on QCD perturbation theory and collinear
factorization. For single-transverse-spin observables, this
involves a twist-3 formalism in terms of three-parton
correlation functions of the nucleon or the fragmentation
process [20–29]. Interestingly, the recent study [29] sug-
gests that the twist-3 fragmentation effects could be the
dominant source of the observed large transverse-spin
asymmetries in pp↑ → hX. An alternative approach for
describing the single-spin asymmetry in inclusive hadron
production in pp↑ → hX was devised in the context of a
“generalized” parton model in which the dependence of
parton distributions and fragmentation functions on trans-
verse momentum is kept [30–32]. Although no such
factorization in transverse momentum is known to be valid
for a single-inclusive cross section, the approach has
enjoyed considerable phenomenological success.
Both the collinear twist-3 approach and the generalized

parton model have been used to obtain predictions for the
spin asymmetry in lN↑ → hX. In Ref. [7] a leading order
(LO) twist-3 analysis has been presented in terms of parton
correlation functions that were previously extracted from
data for pp↑ → hX. The results obtained in this way fail to
describe the HERMES data [2,3] for the spin asymmetries
in lN↑ → hX. A comparison of perturbative calculations to
the corresponding JLab data [4] is not possible as the data
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are for hadrons with transverse momenta below 1 GeV. The
LO generalized parton model approach, on the other hand,
appears to give results quite consistent with the HERMES
data [8–10].
In our view it is premature to draw any conclusions from

these findings at LO. Given the kinematics (and the
precision) of the present data, one may expect higher-order
QCD corrections to the cross sections and the asymmetry to
be important [7] for a meaningful comparison of data and
theory. At least next-to-leading order (NLO) corrections
should be included. We stress that the twist-3 formalism,
although so far only developed to LO, offers a well-defined
framework for a perturbative study of the transverse-spin
asymmetry in lN↑ → hX. This is in contrast to the
generalized parton model, for which there is likely no
systematic way of going to higher orders in perturbation
theory. That said, NLO calculations within the twist-3
formalism are technically very challenging, and only a few
NLO calculations have been performed for the simpler
Drell-Yan [33] and semi-inclusive DIS cases [34].
In the present paper, we take a first step toward a NLO

calculation of the transverse-spin asymmetry for lN↑ →
hX by computing the NLO corrections to the spin-averaged
cross section for the process, which constitutes the denom-
inator of the spin asymmetry. We present analytical results
for the NLO partonic cross sections. To our knowledge,
despite the vast amount of work performed for lepton
proton scattering in the literature (see, for example
[35–41]), this calculation has not been presented so far.
We also present similar NLO calculations for the process
lN → jetX. We note that the process lN → jetX has also
been extensively studied in terms of the concept of
“1-jettiness” [42,43]. Here one additionally writes the cross
section differential in a variable τ1 that characterizes the
hadronic final state that is not associated with the produced
jet or the nucleon beam remnant. In Ref. [43] the full NLO
corrections for the 1-jettiness were computed, where a fully
numerical approach was adopted. In principle, it should be
possible to recover our NLO results by performing a
(numerical) integration over τ1 of the results of [43].
Because of the propagator of the exchanged photon, the

cross section for lN↑ → hX will contain contributions for
which the photon is almost on shell. This is not yet the
case at LO where the high transverse momentum of the
produced hadron requires the photon to be highly virtual.
Starting from NLO, however, it may happen that the
incoming lepton radiates the photon almost collinearly.
This may then be followed by a 2 → 2 scattering process of
the photon with a parton in the nucleon, which is perfectly
capable of producing the hadron at high Ph⊥. In processes
where the scattered lepton is observed, such as
lN → l0hX, one can in fact select such contributions by
requiring the scattered lepton to have a low scattering angle.
The incoming lepton then effectively acts merely as a
source of quasireal photons, and the process may be very

accurately described in terms of a (perturbative) distribu-
tion function for photons in leptons known as the
Weizsäcker-Williams (WW) distribution [11,44–47]. This
approach has been widely used with much success in the
HERA physics program [11].
In the context of our NLO calculation for lN → hX it

is therefore interesting to investigate whether also in this
case the contributions by almost real photons dominate
and the NLO corrections may be well approximated by a
Weizsäcker-Williams-type distribution. Since it is much
easier to compute the latter contribution than the full NLO
correction, this would mean that one could also obtain
approximate NLO results for the transversely polarized
cross section within the twist-3 framework by simply
considering real photons. Given the complexity of a full
NLO calculation for the twist-3 case, this would be a
tremendous advantage. We note that the contributions to
the spin-dependent cross sections for lN → jetX for real
photons were discussed in [6], including the twist-3
contributions for the single-transverse-spin case. Actual
LO calculations for the twist-2 longitudinal spin-dependent
cross section were presented in Ref. [48] for quasireal
photons. We will closely examine the contributions by
quasireal photons also in our paper. Their relevance will of
course also depend on the lepton species that is used,
because the lepton mass leads to a lower limit on the
virtuality of the photon.
Our paper is structured as follows. In Sec. II we present

our NLO calculations for the partonic cross sections for
lN↑ → hX and lN → jetX. We also discuss in some detail
the Weizsäcker-Williams contribution and how the calcu-
lation can be done keeping a finite lepton mass. Section III
presents numerical predictions for the NLO cross section to
be expected at various fixed-target experiments and at a
future electron-ion collider (EIC). Finally, we summarize
our results in Sec. IV.

II. NLO CALCULATION

A. General framework

In this section we present our derivation of the analytical
NLO results for the processes lN → hX and lN → jetX.
The transverse momentum of the produced hadron or jet
sets a hard scale, so that perturbative methods may be used
for treating the cross sections. We first consider
lðlÞ þ NðPÞ → hðPhÞ þ X, where we have introduced
our notation for the four-momenta. It is useful to introduce
the Mandelstam variables as S ¼ ðPþ lÞ2, T ¼ ðP − PhÞ2
and U ¼ ðl − PhÞ2. Furthermore, we label the energy of
the detected hadron as Eh and its three-momentum by ~Ph.
In collinear leading-twist perturbative QCD the hadronic

cross section is approximated by convolutions of hard
partonic scattering cross sections and parton distribution/
fragmentation functions. The momenta of the incoming
parton, kμ, and of the fragmenting parton, pμ, which appear
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in the calculation of the partonic cross sections, are
approximated as kμ ≃ xPμ and pμ ≃ Pμ

h=z, respectively.
It is then convenient to work with the partonic Mandelstam
variables

s ¼ ðkþ lÞ2 ¼ xS;

t ¼ ðk − pÞ2 ¼ x
z
T;

u ¼ ðl − pÞ2 ¼ U
z
: ð1Þ

The general form of the factorized cross section for the
inclusive hadron production process then is

Eh
d3σlN→hX

d3Ph
¼ 1

S

X
i;f

Z
1

0

dx
x

Z
1

0

dz
z2

fi=Nðx; μÞ

×Dh=fðz; μÞσ̂i→fðs; t; u; μÞ; ð2Þ

where fi=Nðx; μÞ is the parton distribution function (PDF)
for the incoming parton i in the nucleon N and Dh=fðz; μÞ
the corresponding fragmentation function for parton f
fragmenting into hadron h, both evaluated at a factorization
scale μ. We choose the factorization scales to be the
same for the initial and the final state, and also equal to
the renormalization scale. In Eq. (2), σ̂i→f is the partonic
cross section for the lepton-parton scattering process,
lþ i → f þ x, with x an unobserved partonic final state.
The sum in Eq. (2) runs over the different species of
partons, quarks, gluons and antiquarks. We note that the
expression in Eq. (2) holds up to corrections that are
suppressed by inverse powers of the produced hadron’s
transverse momentum Ph⊥.
The partonic cross sections σ̂i→f in Eq. (2) can be

calculated in QCD perturbation theory. One may write
their expansion in the strong coupling as

σ̂i→f ¼ σ̂i→f
LO þ αs

π
σ̂i→f
NLO þOðα2sÞ: ð3Þ

At lowest order only the tree-level process lq → ql shown
in Fig. 1 contributes. The calculation of its cross section is
straightforward. One finds

σ̂q→q
LO ¼ 2α2eme2q

s2 þ u2

t2
δðsþ tþ uÞ; ð4Þ

where αem is the fine structure constant and eq is the
quark’s fractional charge.
At NLO, Oðαsα2em), both virtual (Fig. 2) and real-

emission diagrams [Figs. 3(a)–3(c)] contribute. We will
address these in turn in the following subsections. One can
see from Figs. 3(b) and 3(c) that beyond LO there are also
new contributions where a gluon fragments or where an
initial gluon enters the hard scattering process.
As is well known, all types of NLO contributions

develop singularities at intermediate stages of the calcu-
lations, which we make manifest by using dimensional
regularization with D ¼ 4 − 2ε space-time dimensions.
The subsequent treatment of the singularities is standard
in perturbative QCD (pQCD) calculations. The only
nonstandard feature arises for the incoming lepton. If we
assume for the moment that we have an incoming quark
instead of a lepton in the diagrams in Fig. 3(a) and an
exchanged gluon instead of a photon, then the diagram
would make a NLO contribution to, say, pp → hX. Being
treated as massless, the initial quark would produce a
singularity when it radiates the gluon collinearly. As is well
understood, this singularity may be absorbed (“factorized”)
into the proton’s quark PDF, exactly in the same way as for
the incoming quark at the bottom of the diagram. In the
case of an incoming lepton, on the other hand, the lepton’s
mass ensures that no collinear singularity arises when the
lepton radiates a collinear photon that subsequently par-
ticipates in the hard scattering. In fact, keeping the lepton
mass ml, the cross section will develop a logarithmic term
of the form αem logðΛ=mlÞ, where Λ represents a hard scale
of the problem, and in the limit ml → 0 this logarithm
precisely produces the required collinear singularity. In
principle we should therefore perform the NLO calculation
keeping the lepton mass finite. This is technically very
cumbersome, and in fact not needed. We can adopt two
different, and equivalent, approaches instead: In the first
approach we neglect the lepton’s mass and regularize the
ensuing collinear pole in dimensional regularization. The
pole is then subtracted (for example, in the MS scheme) and
absorbed into a “parton” distribution function for photons
in a lepton. This distribution may be evaluated perturba-
tively in first-order QED, giving rise essentially to the well-
known “Weizsäcker-Williams” distribution. This approach
may in principle be extended to higher order in QED. In the
second approach, we calculate the cross section for a
massive lepton, keeping however only the leading terms

k

p

l

FIG. 1. LO diagram for lepton-quark scattering.

k

p

l

+ +

FIG. 2 (color online). Virtual diagrams at NLO. Self-energy
diagrams (right and middle graph) contribute in Feynman gauge.
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in ml which are of the form αem½logðΛ=mlÞ þ constant�.
This is justified by the fact that all terms beyond this
approximation are suppressed as powers of ml over the
hard scale and hence numerically tiny. We note that
although the logarithm can become large (as ml is small
compared to typical QCD hard scales), the smallness of αem
will usually make the term α logðΛ=mlÞ small enough to be
regarded as a perturbative correction. We will present our
main calculation for the case of massless leptons and
comment on the use of a finite lepton mass in the calculation
later.
It is convenient to rewrite the x and z integrals in Eq. (2)

in terms of new variables v ¼ 1þ t=s and w ¼ −u=ðsþ tÞ.
Using (1), we have

x ¼ 1 − v
vw

U
T
; z ¼ −T

ð1 − vÞS ; ð5Þ

and Eq. (2) becomes

Eh
d3σlN→hX

d3Ph
¼

�
−U
S2

�X
i;f

Z
1þT

S

U
TþU

dv
vð1 − vÞ

Z
1

1−v
v

U
T

dw
w2

×Hifðv; wÞσ̂i→fðv; w; μÞ; ð6Þ

where we have defined

Hifðv; wÞ≡ fi=Nðx; μÞ
x

Dh=fðz; μÞ
z2

����
x¼1−v

vw
U
T;z¼ −T

ð1−vÞS

: ð7Þ

For ease of notation, we have kept the symbol σ̂i→f also for
the cross section when expressed in terms of the new
variables. We note that the invariant mass of the unobserved
recoiling partonic final state is given by sþ tþ u ¼
svð1 − wÞ. The function δðsþ tþ uÞ ∝ δð1 − wÞ in the
LO cross section (4) expresses the fact that at LO the recoil
consists of a single parton.

B. Virtual contributions at NLO

At the NLO level, the virtual contributions shown in
Fig. 2 contribute through their interference with the Born
diagram. The virtual contributions thus have Born kin-
ematics and are proportional to δð1 − wÞ. Since we are only
interested in QCD virtual corrections, only the quark line is

affected, and we may adopt the result directly from the
corresponding calculation in Ref. [49] for the basic photon-
quark scattering diagrams in DIS. This gives

σ̂q→q
NLO;vir ¼

CFαsðμÞ
2π

Γð1 − εÞ2Γð1þ εÞ
Γð1 − 2εÞ

×

�
4πμ2

−t

�
ε
�
−

2

ε2
−
3

ε
− 8

�
σ̂q→q
LO;ε; ð8Þ

where

σ̂q→q
LO;ε ¼ 2α2eme2q

1

sv

�
1þ v2

ð1 − vÞ2 − ε

�
δð1 − wÞ ð9Þ

is the Born cross section computed in 4 − 2ε dimensions.
Furthermore, CF ¼ ðN2

c − 1Þ=2Nc, with Nc being the
number of colors.

C. Real-emission corrections at NLO

The real diagrams have 2 → 3 topology. To obtain the
desired contribution to an inclusive-parton cross section we
need to integrate over the phase space of the lepton and the
“unobserved” parton in the final state. This can be done in
4 − 2ε dimensions using the standard techniques available
in the literature [50–52].
After phase space integration, the result for the real-

emission contribution for the q → q channel takes the form

σ̂q→q
NLO;real ¼ σ̂q→q

A ðv; w; μ; εÞ þ σ̂q→q
B ðv; w; μ; εÞ
ð1 − wÞ1þ2ε ; ð10Þ

where both functions σ̂q→q
A and σ̂q→q

B carry a 1=ε pole, but
are well behaved in the limit w → 1. Obviously, the second
term in (10) requires special care in this limit since the
denominator would lead to a nonintegrable behavior for
ε ¼ 0. We deal with this limit by means of the expansion

ð1−wÞ−1−2ε¼−
1

2ε
δð1−wÞþ 1

ð1−wÞþ
−2ε

�
lnð1−wÞ
1−w

�
þ

þOðε2Þ; ð11Þ

where the plus distribution is defined in the usual
way by

2

k

p

l

+

(a)

2

k

p

l

+

(b)

2

k

p

l

+

(c)

FIG. 3 (color online). NLO real-emission diagrams. There are three partonic channels at NLO: (a) q → q, (b) q → g, (c) g → q.
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Z
1

0

dwfðwÞ½gðwÞ�þ ¼
Z

1

0

dw½fðwÞ − fð1Þ�gðwÞ: ð12Þ

This expansion makes the singularities in 1=ε explicit.
When combined with the pole terms in σ̂q→q

B , the term ∝
δð1 − wÞ in (11) leads to a double pole term that cancels
against the double pole in the virtual correction in Eq. (8).
This well-known behavior reflects the cancellation of
infrared singularities in partonic observables. The channels
q → g and g → q in Figs. 3(b) and 3(c) are infrared finite
at NLO.

D. Collinear subtraction for parton distribution
functions and fragmentation functions

After the cancellation of infrared singularities between
real and virtual contribution, the partonic cross sections still
exhibit single poles that reflect collinear singularities
arising when an “observed” parton (either the incoming
one or the one that fragments) becomes collinear with the
unobserved parton. The factorization theorem states that
these poles may be absorbed into the parton distribution
functions or into the fragmentation functions. This pro-
cedure may be formulated in terms of renormalized parton
densities and fragmentation functions (see, e.g., Ref. [53]).
In fact, naive definitions of “bare” parton densities and
fragmentation functions contain ultraviolet singularities
that can be dealt with as well by using dimensional
regularization. At NLO, the corresponding ultraviolet
1=ε poles that appear can be removed in the MS scheme
by introducing renormalized functions in the form

fq=Nbare ðx;μÞ¼ fq=Nren ðx;μÞþαsðμÞ
2π

Sε
ε
ðPqq ⊗ fq=Nren Þðx;μÞ

þαsðμÞ
2π

Sε
ε
ðPqg⊗ fg=Nren Þðx;μÞþOðα2sÞ; ð13Þ

Dh=q
bareðz;μÞ¼Dh=q

ren ðz;μÞþαsðμÞ
2π

Sε
ε
ðPqq ⊗Dh=q

ren Þðz;μÞ

þαsðμÞ
2π

Sε
ε
ðPgq⊗Dg=N

ren Þðz;μÞþOðα2sÞ; ð14Þ

where we have the usual splitting functions

PqqðyÞ ¼ CF

�
1þ y2

ð1 − yÞþ
þ 3

2
δð1 − yÞ

�
; ð15Þ

PqgðyÞ ¼ TR½y2 þ ð1 − yÞ2�; ð16Þ

PgqðyÞ ¼ CF
1þ ð1 − yÞ2

y
; ð17Þ

(with TR ¼ 1=2), and where the ⊗ symbol indicates the
convolution

ðP ⊗ fÞðxÞ≡
Z

1

x

dy
y
PðyÞf

�
x
y

�
: ð18Þ

The constant Sε ≡ ð4πÞε=Γð1 − εÞ in (13) and (14) corre-
sponds to the usual MS scheme. Inserting the bare
distributions into the LO expression for the hadronic cross
section, we obtain additional Oðαsα2emÞ contributions.
These precisely cancel the collinear poles associated with
the observed partons in the NLO partonic cross sections, for
all three channels.
Even after this procedure, one type of collinear singu-

larity remains. It is generated by a momentum configura-
tion where the exchanged photon is collinear to the
incoming lepton. As discussed at the beginning of this
section, the presence of this singularity is an artifact of
neglecting the lepton’s mass. In the following two sub-
sections we discuss our treatment of this issue.

E. Weizsäcker-Williams contribution

One approach for dealing with the collinear lepton
singularity is to introduce bare and renormalized QED
parton distributions for the lepton, very analogous to the
procedure that we discussed in the previous section for the
nucleon’s parton distributions. The only differences are that
for leptons the partons are the lepton itself and the photon,
and that we can safely compute their distributions in QED
perturbation theory. To lowest order in QED, we just have
fl=lðyÞ ¼ δð1 − yÞ, corresponding to the Born contribu-
tion in Fig. 1. The hard process involving an incoming
lepton will always require two electromagnetic interactions
and hence be of order α2em, as seen explicitly in Eq. (4). This
is different for a hard process with an incoming photon such
as γq → qg, which is of order αemαs. This implies that at
NLO in QCD (at order α2emαs) there will be contributions
generated by the photon acting as a parton of the lepton and
participating in the hard process. A generic picture for such
types of contributions, known as Weizsäcker-Williams
contributions, is shown in Fig. 4. In essence, the lepton
merely serves as a source of real photons for the contri-
butions shown in the figure. Like its nucleon counterpart,
the corresponding photon-in-lepton distribution fγ=lðyÞ
will require renormalization. Following (13) we may write

P

l

k

p
Ph

hard

q

FIG. 4 (color online). General Weizsäcker-Williams contribu-
tion at NLO. The quasireal photon entering the hard scattering
part is treated as a parton in the lepton.
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fγ=lbareðy;μÞ¼ fγ=lren ðy;μÞþαem
2π

Sε
ε
ðPγl ⊗ fl=lren Þðy;μÞþ…

ð19Þ

where Pγl ¼ Pgq=CF and the ellipses denote a term
involving a photon-to-photon splitting that makes contri-
butions beyond the order in αem we consider here. Within
the same reasoning, we can set fl=lren ðyÞ ¼ δð1 − yÞ in (19).
The bare photon-in-lepton distribution fγ=lbare in Eq. (19)

can be defined analogously to the gluon distribution in a
nucleon in terms of the matrix element (see also [6])

ΩμνðyÞ≡ nρnσ

Z
∞

−∞

dλ
2πy

eiλyhljFσν
emð0ÞU½0; λn�Fρμ

emðλnÞjli;

¼ −gμν⊥
2ð1 − εÞ f

γ=l
bareðy; μÞ: ð20Þ

In this definition n is a light-cone vector conjugate to
the lepton momentum l, with n2 ¼ 0 and l · n ¼ 1.
Furthermore, Fμν

em ¼ ∂μAν − ∂νAμ is the electromagnetic
field-strength tensor, and we have inserted a (straight)
Wilson lineU½0; λn� that ensures the electromagnetic gauge
invariance of the matrix element. The transverse projector
in (20) is given as gμν⊥ ¼ gμν − lμnν − lνnμ.
Since the matrix element in (20) contains electromag-

netic fields and elementary leptons in the in- and out-states
we can compute it to LO in QED. In this calculation we
keep a nonvanishing lepton mass ml in order to obtain an
infrared-finite result. To order OðαemÞ we find,

fγ=lbareðy;μÞ ¼
αem
2π

PγlðyÞSε
�
1

ε
þ ln

�
μ2

y2m2
l

�
− 1

�
þOðα2emÞ;

ð21Þ

where, as before, Sε ≡ ð4πÞε=Γð1 − εÞ. In close analogy to
parton distributions of the nucleon we can perform an MS
renormalization of the distribution and obtain

fγ=lren ðy;μÞ ¼ fγ=lbareðy;μÞ−
αem
2π

PγlðyÞ
Sε
ε
þOðα2emÞ

¼ αem
2π

PγlðyÞ
�
ln

�
μ2

y2m2
l

�
− 1

�
þOðα2emÞ: ð22Þ

This renormalized distribution is closely related to the
“classic” Weizsäcker-Williams distribution [44–47]. The
logarithm in (22) may be derived from an integration over
the photon’s virtuality −q2 (where q is the photon momen-
tum). For the standard Weizsäcker-Williams distribution one
performs this integration from the lower kinematic limit
m2

ly
2=ð1 − yÞ to an upper limit Q2

max fixed by the exper-
imental condition imposed on the scattered lepton. This
gives rise to a term αem

2π PγlðyÞ lnðQ2
maxð1 − yÞ=ðy2m2

lÞÞ in
the photon spectrum, which can be recovered by an
appropriate choice of the scale μ in (22).

For the contribution related to fγ=lren the photon virtuality
is then neglected everywhere else in the hard scattering.
One thus considers scattering diagrams with a real incom-
ing photon. We thus write the generic factorized cross
section for the contribution as

Eh
d3σlN→hX

WW

d3Ph
¼ 1

S

X
i;f

Z
1

0

dx
x

Z
1

0

dz
z2

Z
1

0

dyδ

�
yþ t

sþ u

�

× fi=Nðx; μÞDh=fðz; μÞfγ=lren ðy; μÞσ̂γi→f;

ð23Þ
with the cross sections σ̂γi→f describing the scattering γi →
fx of the photon off parton i in the nucleon (to be given
below). At OðαsÞ we encounter three channels with an
incoming photon: γq → qðgÞ, γq → gðqÞ, and γg → qðq̄Þ
(the partons in parentheses are not observed). The relevant
diagrams are as shown in Figs. 3(a)–3(c), but with the
lepton lines removed and the virtual photon replaced by a
real photon. Being 2 → 2 diagrams, their calculation is
straightforward. Inserting now the bare WW distribution
we generate precisely the pole terms required to cancel
the lepton collinear divergences discussed at the end of
Sec. II D. This happens in the same way for all partonic
channels. We note that the dependence on the scale μ
associated with the lepton also disappears. This has to be
the case, since for a finite lepton mass there would never be
any lepton collinear divergences in the first place.

F. Calculation with ml ≠ 0

As we noted earlier, the presence of collinear singular-
ities associated with lepton-photon splitting is really an
artifact of neglecting the lepton’s mass. In principle we
should therefore perform a full calculation in which the
lepton’s mass is kept finite. This is trivial for the virtual
diagrams, since the QCD corrections do not affect the
lepton line. However, inclusion of a lepton mass consid-
erably complicates the phase space integrations for the real
diagram. Nevertheless, it is possible to compute the
relevant integrals using the results given in Ref. [51].
One may then expand the result in powers of the lepton
mass and neglect terms suppressed by powers ofOðmlÞ. In
this way, the “would-be” collinear singularity is regularized
by the lepton mass and shows up as a term ∼ lnðm2

lÞ. Terms
independent of ml are also kept. All other parts of the
calculation proceed as before, and the partonic cross
section thus has the structure

σ̂i→f
NLOðv; w;ml; μÞ ¼ σ̂i→f

log ðv; w; μÞ lnðm2
l=sÞ

þ σ̂i→f
0 ðv; w; μÞ þOðm2

l lnðm2
lÞÞ:

ð24Þ
for each channel.
We have checked explicitly for all three channels that our

two approaches for treating the initial lepton are equivalent:
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The full result obtained using the WW contribution in the
previous subsection agrees with that for ml ≠ 0, as long as
we only keep the leading terms as discussed in Eq. (24).
The equivalence of the two approaches serves as an
important check of our calculation and also explicitly
demonstrates the universality of the WW distribution.

G. Final results for single-inclusive hadron production

We now present our final results for the full partonic
cross sections in analytic form. Combining the cross
section (6) for massless leptons with the Weizsäcker-
Williams contribution (23), we may write the full NLO
cross section as

Eh
d3σlN→hX

d3Ph
¼

�
−U
S2

�X
i;f

Z
1þT

S

U
TþU

dv
vð1 − vÞ

Z
1

1−v
v

U
T

dw
w2

Hifðv; wÞ
�
σ̂i→f
LO ðvÞ þ αsðμÞ

π
σ̂i→f
NLOðv; w; μÞ

þ fγ=lren

�
1 − v
1 − vw

; μ

�
αsðμÞ
π

σ̂γi→f
LO ðv; wÞ

�
; ð25Þ

where Hifðv; wÞ has been defined in Eq. (7). The LO contribution, present only for the channel q → q with an incoming
quark that also fragments, was already given in (4). For the NLO term in this channel we find

σ̂q→q
NLOðv; w; μÞ ¼

α2eme2qCF

svw

�
Aq→q
0 δð1 − wÞ þ Aq→q

1

�
lnð1 − wÞ
1 − w

�
þ
þ 1

ð1 − wÞþ

�
Bq→q
1 ln

�
1 − v

vð1 − vð1 − wÞÞ
�

þ Bq→q
2 lnð1 − vð1 − wÞÞ þ Bq→q

3 ln

�
sv2

μ2

��
þ Cq→q

1 lnðvð1 − wÞÞ þ Cq→q
2 ln

�ð1 − vÞw
1 − vw

�

þ Cq→q
3 ln

�
1 − v

ð1 − vwÞð1 − vð1 − wÞÞ
�
þ Cq→q

4 ln
�
s
μ2

�
þ Cq→q

5

�
; ð26Þ

where the coefficients Aq→q
i , Bq→q

i , Cq→q
i are functions of v

and w and may be found in the Appendix. The channels
q → g and g → q have simpler expressions:

σ̂q→g
NLOðv; w; μÞ ¼

α2eme2qCF

svw

�
Cq→g
1 lnð1 − vð1 − wÞÞ

þ Cq→g
2 ln

�
1 − v

ð1 − vwÞð1 − vð1 − wÞÞ
�

þ Cq→g
3 ln

�
vð1 − wÞs

μ2

�
þ Cq→g

4

�
; ð27Þ

σ̂g→q
NLOðv; w; μÞ ¼

α2eme2qTR

svw

�
Cg→q
1 ln

�ð1 − vÞw
1 − vw

�

þ Cg→q
2 ln

�
vð1 − wÞs

μ2

�
þ Cg→q

3

�
: ð28Þ

The coefficients Cq→g
i and Cg→q

i are again given in the
Appendix.
We finally list the partonic cross sections for the

Weizsäcker-Williams contributions:

σ̂γq→q
LO ðv; wÞ ¼ CFαeme2q

2sð1 − vÞ
1þ v2w2

vw
;

σ̂γq→g
LO ðv; wÞ ¼ CFαeme2q

2sð1 − vÞ
1þ ð1 − vwÞ2

1 − vw
;

σ̂γg→q
LO ðv; wÞ ¼ TRαeme2q

2sð1 − vÞ
v2w2 þ ð1 − vwÞ2

vwð1 − vwÞ : ð29Þ

H. Single-inclusive jet production

Having computed the inclusive hadron production
cross section at NLO the extension to single-inclusive
jet production is straightforward. The cross section for
lN → jetX may be written as

EJ
d3σlN→jetX

d3PJ
¼ 1

S

X
i

Z
1

−U
SþT

dw
w

fi=N
�
x ¼ −U

wðSþ TÞ ; μ
�

× σ̂i→jet

�
v ¼ 1þ T

S
; w; μ;R

�
; ð30Þ

where EJ and ~PJ are the energy and three-momentum of the
jet and the hadronic Mandelstam variables are defined as
before, now in terms of the jet momentum. The form of this
expression follows from (6) by setting the fragmentation
functions to δð1 − zÞ. Of course, beyond LO, the partonic
cross sections σ̂i→jet for jet production differ from the ones
for single-inclusive hadron production. This is evident from
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the fact that the latter are computed as “inclusive-parton”
cross sections σ̂i→f which, as we saw in Sec. II D, require
collinear subtraction. This is in contrast to a jet cross
section which is by itself infrared safe, as far as the final
state is concerned. Instead, it depends on the algorithm
adopted to define the jet, as we have indicated by the
dependence on a generic jet (size) parameter R in (30).
As was discussed in Refs. [54–56], even at NLO one

may still go rather straightforwardly from the single-
inclusive parton cross sections σ̂i→f to the σ̂i→jet, for any
infrared-safe jet algorithm. The key is to properly account
for the fact that at NLO two partons can fall into the same
jet, so that the jet needs to be constructed from both. In fact,
assuming the jet to be relatively narrow, one can determine
the relation between σ̂i→f and σ̂i→jet analytically [54]. This
“narrow jet approximation” (NJA) formally corresponds to
the limit R → 0 but turns out to be accurate even at values
R ∼ 0.4–0.7 relevant for the experiments. We follow this
approach in this work. In the NJA, the structure of the NLO
jet cross section is of the formA logðRÞ þ B; corrections to
this are of OðR2Þ and are neglected. We note that to the
order α2emαs we consider in this paper, the Weizsäcker-
Williams terms only contribute to the R-independent piece
B. This is because for almost real exchanged photons it is at
this order not possible to have two coalescing partons in the
final state.

III. NUMERICAL RESULTS

We now present phenomenological results for the NLO
single-inclusive pion production cross section in lepton-
proton scattering. As mentioned before, data on the trans-
verse single-spin asymmetry for this reaction have been
released by HERMES [2] and the Jefferson Lab Hall A
Collaboration [4]. Unfortunately, corresponding cross sec-
tions were not presented, and we will therefore provide
predictions for these. Furthermore, we will also present
predictions for COMPASS at CERN, for a future EIC, and
for experiments at Jefferson Lab after the CEBAF upgrade
to 12 GeV beam energy. Finally, at the end of this section
we show some phenomenological results for the inclusive
production of jets at the EIC.
As we saw in the previous subsections [see Eq. (25)], our

NLO result can be formulated in such a way that it contains
contributions involving the photon-in-lepton distribution
fγ=lren and LO photon-parton cross sections. These represent
the contributions by quasireal photons to the cross section.
An interesting question is whether this part of the cross
section dominates the NLO corrections, at least for a
suitable choice of the scale μ in (22). We recall that the
logarithm in (22) may be obtained by an integration over
the photon’s virtuality where only the 1=q2 propagator is
kept for the photon, while q2 is neglected everywhere else
in the hard scattering. We now consider the cross section

Eh
d3σlN→hX

d3Ph
¼

�
−U
S2

�X
i;f

Z
1þT

S

U
TþU

dv
vð1 − vÞ

Z
1

1−v
v

U
T

dw
w2

Hifðv; wÞ
�
σ̂i→f
LO ðvÞ þ fγ=lren

�
1 − v
1 − vw

; μ0

�
αsðμÞ
π

σ̂γi→f
LO ðv; wÞ

�
; ð31Þ

which essentially corresponds to the full NLO one in (25),
but with the terms σ̂i→f

NLO dropped. In other words, we use the
LO term and add the Weizsäcker-Williams contribution.
For the latter, we choose the upper limit on

ffiffiffiffiffiffiffiffi
−q2

p
in the

photon spectrum as a large scale in the problem, μ0 ∼ Ph⊥
or even μ0 ∼

ffiffiffi
S

p
=2. This constitutes an attempt to obtain an

approximation to the full NLO correction by assuming that
the 1=q2 behavior of the hard cross sections is valid over
most of the kinematical regime. In our studies we examine
in this way the importance of the Weizsäcker-Williams
contribution. As discussed in the Introduction, if the
contribution plays a dominant role for the NLO corrections,
this opens the door to approximate NLO calculations also
for the spin-dependent case.
For all our calculations we use the CTEQ6.6M [57] set

of parton distribution functions and the fragmentation
functions of [58].

A. HERMES

Figures 5(a) and 5(b) present our results for πþ pro-
duction at HERMES at

ffiffiffi
S

p ¼ 7.25 GeV. We fix the
renormalization and factorization scales at μ ¼ Ph⊥.

In order to match the conventions used in pp↑ → hX,
HERMES presents the spin asymmetry results in terms of
the hadron’s transverse momentum Ph⊥ and Feynman’s
xF ¼ 2Pz

h=
ffiffiffi
S

p
, where Pz

h is the z component of the hadron
momentum in the center-of-mass frame of the collision, and
where positive xF is counted in the direction of the lepton
beam. We have

d2σep→πX

dxFdPh⊥
¼ 2πPh⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2F þ x2T
p Eh

d3σep→πX

d3Ph
; ð32Þ

where xT ¼ 2Ph⊥=
ffiffiffi
S

p
. The hadronic Mandelstam varia-

bles read

T ¼ −
S
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ x2T

q
þ xF

�
;

U ¼ −
S
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ x2T

q
− xF

�
: ð33Þ

Figure 5(a) shows the cross section as a function of xF,
integrated over 1 GeV < Ph⊥ < 2.2 GeV. This is the only
Ph⊥ bin used in Ref. [2] with Ph⊥ > 1 GeV. In Fig. 5(b) we
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examine the Ph⊥ dependence of the cross section for
0.3 < xF < 0.55. In both cases we find large NLO cor-
rections; the NLO cross section is almost twice as large as
the LO one. As discussed above, we also examine in how
far the Weizsäcker-Williams contribution drives the NLO
corrections, using Eq. (31) with μ0 ¼ Ph⊥ (dotted) and
μ0 ¼

ffiffiffi
S

p
=2 (dot dashed). As one can see from the figures,

the Weizsäcker-Williams contribution does lead to an
increase over LO, but provides only about 50% to 70%
of the NLO correction. This is likely to be attributed to the
fact that the overall c.m. energy is rather low. The result
with μ0 ¼

ffiffiffi
S

p
=2 provides a slightly better description of

the full NLO, although the differences are minor. We note
that the WW approximation appears to work better for
smaller transverse hadron momenta Ph⊥ and for larger xF.
The latter feature perhaps is at first sight surprising since
positive xF of the hadron imply on average backward
scattering of the lepton, whereas the WW approximation
should work better if the lepton is scattered in the forward
direction. One can roughly understand this shift of the WW
approximation towards positive xF from the fact that jTj ≫
jUj for xF → 1 in Eq. (33). Since the dominant real-photon
process γq → qðgÞ in (29) has a 1=su behavior in contrast
to the 1=t2 behavior of the LO process, the WW approxi-
mation favors the region xF > 0. The full NLO partonic
cross section inherits the 1=t2 behavior of the LO one, so
that the Weizsäcker-Williams contribution can approximate
it well only for xF > 0.

B. Scattering with the 12 GeV beam at
the Jefferson Lab

Our NLO predictions for the cross section for l3He →
πþX in 12 GeV scattering at the Jefferson Lab are shown in
Figs. 6(a) and 6(b). For the xF distribution on the left we

have assumed a fixed transverse momentum Ph⊥ ¼
1.5 GeV. On the right we show the Ph⊥ dependence of
the cross section in the region −0.4 < xF < 0.4. Again, the
renormalization scale is fixed to the transverse hadron
momentum, μ ¼ Ph⊥. Note that the rather modest c.m.
energy available limits the possible size of Ph⊥ severely.
For collisions using the present 6 GeV beam only trans-
verse momenta outside the hard scattering regime are
possible, which is the reason why we cannot present any
results for this case.
We again observe in Figs. 6(a) and 6(b) that the NLO

corrections are very large. The Weizsäcker-Williams con-
tribution is clearly insufficient to match the NLO result here.

C. COMPASS

The results of our NLO analysis for COMPASS kinemat-
ics are shown in Figs. 7(a) and 7(b). COMPASS uses a muon
beam with energy 160 GeV, resulting in

ffiffiffi
S

p ¼ 17.4 GeV.
Following the choice made by COMPASS, we use here the
c.m. pseudorapidity η of the produced hadron rather than its
Feynman xF. Pseudorapidity is counted as positive in the
forward direction of the incident muon. We have

d2σμp→π0X

dηdPh⊥
¼ 2πPh⊥Eh

d3σμp→π0X

d3Ph⊥
; ð34Þ

where the hadronic Mandelstam variables read

T ¼ −Ph⊥
ffiffiffi
S

p
eþη;

U ¼ −Ph⊥
ffiffiffi
S

p
e−η: ð35Þ

The COMPASS spectrometer roughly covers the region
−0.1 < η < 2.38. From the η dependence shown in Fig. 7(a)

(a) (b)

FIG. 5 (color online). Cross section for lp → πþX at HERMES, (a) as a function of xF for 1 GeV < Ph⊥ < 2.2 GeV and (b) as a
function of Ph⊥ for 0.3 < xF < 0.55. The dashed line gives the LO prediction and the solid line the NLO one. The dotted and dot-dashed
lines show the approximation (31) of the NLO cross section, using μ0 ¼ Ph⊥ and μ0 ¼

ffiffiffi
S

p
=2, respectively.
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for a fixed transverse momentum Ph⊥ ¼ 2 GeV we observe
that the NLO corrections are significant but not as large
as for HERMES and JLab. They amount to an increase over
LO of roughly 30%–40%. Strikingly, the Weizsäcker-
Williams contribution is very small here, even for the choice
μ0 ¼

ffiffiffi
S

p
=2. This may be understood from the fact that the

muon mass is about 200 times larger than the electron mass,
resulting in a much smaller logarithm in the expression (22)
for the photon spectrum, which then is largely canceled by
the nonlogarithmic term.
For the Ph⊥ spectrum shown in Fig. 7(b) we also show

the results for a different choice of the factorization and

renormalization scales, μ ¼ 2Ph⊥. As one can see, the scale
dependence decreases somewhat when going from LO to
NLO but remains fairly sizable.

D. Electron-ion collider

We finally also discuss the cross section for single-
inclusive pion production in electron-proton collisions at a
proposed future EIC [59] with

ffiffiffi
S

p ¼ 100 GeV. Thanks to
the higher energy of an EIC it will become possible to
probe much larger transverse hadron momenta, where
pQCD is expected to work better. Figure 8(a) shows the
η dependence of the cross section for a fixed transverse

(a) (b)

FIG. 6 (color online). Same as Figs. 5(a) and 5(b), but for l3He scattering at beam energy 12 GeV after the CEBAF upgrade at
Jefferson Lab. For the cross section as a function of xF we have used a fixed Ph⊥ ¼ 1.5 GeV, while for the Ph⊥ dependence we have
integrated over −0.4 ≤ xF ≤ 0.4.

(a) (b)

FIG. 7 (color online). Cross section for μp → π0X at COMPASS, (a) as a function of hadron pseudorapidity for fixed Ph⊥ ¼ 2 GeV
and (b) as a function of Ph⊥ for −0.1 ≤ η ≤ 2.38. As before, the solid lines give the NLO results and the dashed lines the LO ones.
The dotted and dot-dashed lines show the approximation (31) of the NLO cross section, using μ0 ¼ Ph⊥ and μ0 ¼

ffiffiffi
S

p
=2, respectively.

In (b) we also present the LO and NLO results for the scale μ ¼ 2Ph⊥.
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momentum Ph⊥ ¼ 10 GeV. Again we count positive η in
the forward direction of the incoming lepton. The Ph⊥
dependence of the cross section is shown in Fig. 8(b),
integrated over jηj ≤ 2. The renormalization scale has again
been fixed to the transverse hadron momentum, μ ¼ Ph⊥.
As for COMPASS we found that the scale dependence
slightly decreases for EIC kinematics when going from LO
to NLO but remains relatively large.
We again find sizable NLO corrections. Overall, the

Weizsäcker-Williams approximation works much better
here than in the fixed-target regime. It describes the
NLO cross section especially well when the hadron is
produced in the electron forward direction. At midrapidity

and negative rapidity the approximation tends to fall short
of the full NLO result. From Fig. 8(b) we observe that the
Weizsäcker-Williams also works better for smaller Ph⊥.

E. Jet production at an EIC

Given the high energy of an EIC, also jet observables
will be of much interest there [6]. For example, combined
analysis of data for the transverse-spin asymmetries for
ep↑ → hX and ep↑ → jetX from a future EIC should allow
for a clean separation of twist-3 parton correlations in the
nucleon and in fragmentation. We therefore close this
section by presenting predictions for the cross section

(a) (b)

FIG. 8 (color online). Cross section for ep → πþX at an EIC with
ffiffiffi
S

p ¼ 100 GeV, (a) as a function of η at fixed pT ¼ Ph⊥ ¼ 2 GeV
and (b) as a function of Ph⊥ integrated over jηj ≤ 2. The lines are as in the previous figures.

(a) (b)

FIG. 9 (color online). Cross section for single-inclusive jet production at the EIC, (a) as a function of pseudorapidity ηJ at a fixed
transverse jet momentum PJ⊥ ¼ 10 GeV and (b) as a function of PJ⊥, integrated over jηJj ≤ 2. We have used the NJA [54,55] and the
anti-kt jet algorithm [60]. The solid and dotted lines show NLO predictions for two different values of the jet size parameter, R ¼ 0.7 and
R ¼ 0.2, respectively. The dashed lines present the LO results, and the dotted ones the result for the approximation (31) of the NLO
cross section, using μ0 ¼ PJ⊥ and (on the left) also μ0 ¼

ffiffiffi
S

p
=2.
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for single-inclusive jet production, ep → jetX. Here we use
the NJA formalism outlined in Sec. II H to convert the
single-hadron cross section into a jet one. We adopt the
anti-kt jet algorithm of [60]. In Fig. 9(a) we present
the dependence of the cross section on the jet pseudor-
apidity ηJ for a fixed transverse jet momentum of
PJ⊥ ¼ 10 GeV.We find once again that NLO contributions
are large. We also observe that, compared to the case of
hadron production considered in Fig. 8(a), the NLO cross
section is much more peaked in the forward electron region.
The reason is that at large positive pseudorapidity jTj ≫
jUj in Eq. (35). Since the minimal value for the incoming
parton’s momentum fraction is xmin ¼ −U=ðSþ TÞ in (30)
rather small values of x are probed at large pseudorapidity
where in turn the nucleon’s parton distributions are large.
On the other hand the fragmentation process suppresses the
forward and backward regions in hadron production due to
the large z values probed, whereas in jet production the
forward electron region is enhanced due to the absence of
fragmentation.
In Figs. 9(a) and 9(b), we show results for two different

jet size parameters, R ¼ 0.7 and R ¼ 0.2. Dependence on
R first occurs at NLO. As discussed at the end of Sec. II H,
the first-order Weizsäcker-Williams contribution does not
depend on R. It hence cannot give an accurate approxi-
mation of NLO in general. As the figure shows, the WW
result happens to be rather close to the result for R ¼ 0.7;
this agreement, however, is essentially fortuitous.

IV. CONCLUSIONS AND OUTLOOK

We have performed next-to-leading order calculations of
the partonic cross sections for the processes lN → hX and
lN → jetX, for which the scattered lepton in the final state
is not detected. We have derived our results for a finite
lepton mass, neglecting terms that are suppressed as powers
of the mass over a hard scale. The results have been
obtained in twoways. We have first set the mass to zero. We
have regularized the ensuing collinear singularity in dimen-
sional regularization and then subtracted it by introducing a
Weizsäcker-Williams type photon distribution in the lepton.
The latter can be computed in QED perturbation theory and
effectively reinstates the leading lepton mass dependence,
which is logarithmic plus constant. In the second approach,
we have kept the lepton mass in the calculation directly,
expanding all phase space integrals in such a way that the
leading mass dependence is obtained. Both approaches give
the same result.
We have presented phenomenological NLO predictions

for various experimental setups, from fixed-target experi-
ments (HERMES, JLab, COMPASS) to collider experi-
ments at an EIC. We have found that the NLO corrections
are large. We note that in the fixed-target regime the bulk of
the corrections comes from the plus distribution terms in
Eq. (26), especially at negative xF or rapidity. As is well
known, the distributions are associated with the emission of

soft gluons. Since they recur with increasing power at every
higher order of perturbation theory, it may be worthwhile
for future work to address their resummation to all orders,
similar to what was done for the photoproduction case
lN → l0hX in [61].
The rather large size of the corrections that we find

suggests that also the cross section with transverse polari-
zation of the initial nucleon may be subject to large NLO
corrections. This would likely have ramifications for
analyses of spin asymmetry data for lN↑ → hX in terms
of twist-3 parton correlation functions. As full NLO
calculations for transverse single-spin observables are
difficult, we have also investigated how far it is possible
to match our full NLO result for the spin-averaged cross
section by adding just the Weizsäcker-Williams contribu-
tion to the LO one. We have found that this simplified
approach does not appear to work well quantitatively. In
other words, the NLO corrections do not appear to be
dominated by quasireal photons. Nonetheless, in order to
obtain a first estimate of higher-order effects for the
transverse-spin asymmetry, it may be worthwhile to use
the Weizsäcker-Williams contribution for the case of
transversely polarized nucleons, which is much simpler
to do than the full NLO calculation and was already
discussed in Ref. [6].
We again emphasize that our results suggest that con-

tributions by quasireal photons to the cross sections for the
single-inclusive processes lN → hX and lN → jetX are
not the dominant contributions, at least for large transverse
hadron momenta Ph⊥ > 1 GeV. In other words, an exper-
imental setup where the final state lepton is not observed in
lepton-nucleon collisions does not automatically imply that
one measures an (approximated) quasireal photoproduction
process. However, although quasireal photons do not
dominate, they typically do play a non-negligible role
for the NLO corrections. As is well known, high-energy
real photons may also exhibit their own partonic structure,
in which case they are referred to as “resolved” photons
(see Ref. [11]). The corresponding resolved-photon con-
tributions are formally of the same order as the Weizsäcker-
Williams contribution we have considered here. They are
typically suppressed in the fixed-target regime. It may be
interesting to address this contribution in future work, also
in order to study its impact on the transverse single-spin
asymmetries. The concept of “virtual photon structure”
may also prove useful in this context (see, for exam-
ple, Ref. [62]).
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APPENDIX: NLO COEFFICIENTS

Here we present the NLO coefficients in Eqs. (26), (27) and (28) for the different channels.
(a) q → q channel:

Aq→q
0 ¼ 1þ v2

ð1 − vÞ2
�
ð3þ 2 lnðvÞÞ ln

�
sð1 − vÞ

μ2

�
þ ln2ðvÞ − 8

�
;

Aq→q
1 ¼ 8w

1þ v2

ð1 − vÞ2 ;

Bq→q
1 ¼ 4w

1 − vð1 − wÞ þ v2ð1 − wð1 − wÞÞ
ð1 − vÞ2 ;

Bq→q
2 ¼ 2w

ð1 − vÞ2ð1 − vð1 − wÞÞ ½ð1 − 2vð1 − wÞ þ v2ð1 − 2wþ 2w2Þð2 − 2vð1 − wÞ þ v2ð1 − wÞ2Þ�;

Bq→q
3 ¼ 4w

1þ v2

ð1 − vÞ2 : ðA1Þ

Cq→q
1 ¼ 1

ð1 − vÞ2ð1 − vwÞð1 − vð1 − wÞÞ ½2 − w − 2vð1þ 4wÞ þ v2ð2þ 9w − 10w2 þ w3Þ − 2v3ð1 − wþ w2 − 4w3Þ

þ v4wð2 − 2w − 7w2 þ 8w3Þ − 2v5w2ð1 − 3wþ 4w2 − 2w3Þ�;

Cq→q
2 ¼ 2ð1þ v2ð1þ 2w2ÞÞ

ð1 − vÞ2 ;

Cq→q
3 ¼ −2vwð3 − 2vð1 − wÞ þ v2ð1 − 2wþ 2w2ÞÞ

ð1 − vÞ2 ;

Cq→q
4 ¼ 1

ð1 − vÞ2ð1 − vwÞð1 − vð1 − wÞÞ ½2 − w − 2vð1þ 2wÞ þ v2ð2þ 5w − 6w2 þ w3Þ − 2v3ð1 − wþ w2 − 2w3Þ

þ v4wð2 − 2w − 3w2 þ 4w3Þ − 2v5w2ð1 − 3wþ 4w2 − 2w3Þ�;
Cq→q
5 ¼ w

ð1 − vÞ2ð1 − vwÞð1 − vð1 − wÞÞ ½2 − w − 2vð2 − wÞ þ v2ð4 − w − 2w2 þ w3Þ − 2v3 þ v4wð2 − w2Þ

− 2v5w2ð1 − 2wþ 2w2 − w3Þ�: ðA2Þ

(b) q → g channel:

Cq→g
1 ¼ 2vwð1þ v2ð1 − wÞ2Þ

ð1 − vÞ2ð1 − vð1 − wÞÞ2 ð1 − 2vð1 − wÞ þ v2ð1 − 2wð1 − wÞÞÞ;

Cq→g
2 ¼ vwð6 − 4vwþ 2v2ð1 − 2wð1 − wÞÞÞ

ð1 − vÞ2 ;

Cq→g
3 ¼ vw

ð1 − vÞ2ð1 − vwÞ2ð1 − vð1 − wÞÞ2 ½3 − 2vð3þ wÞ þ v2ð6þ 4w − w2Þ − 2v3ð3 − 3wþ 5w2 − 2w3Þ

þ v4ð3 − 4wþ 5w2 − 2w3Þ − 2v5wð2 − 6wþ 9w2 − 7w3 þ 2w4Þ þ 2v6ð1 − wÞ2w2ð1 − 2wþ 2w2Þ�;
Cq→g
4 ¼ vw

ð1 − vÞ2ð1 − vwÞ2ð1 − vð1 − wÞÞ2 ½2 − 2vð5 − 3wÞ þ v2ð16 − 3w − 11w2Þ − v3ð10þ 15w − 27w2 þ 2w3Þ

þ v4ð2þ 17w − 23w2 þ 7w3 − 3w4Þ − v5wð5 − 5w − w2 þ 3w3 − 2w4Þ þ 2v6ð1 − wÞ2w2ð1 − wþ w2Þ�:
ðA3Þ
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(c) g → q channel:

Cg→q
1 ¼ 2ð1þ vð4vw2 − 2wð1þ vÞ þ vÞÞ

ð1 − vÞ2 ;

Cg→q
2 ¼ 1

ð1 − vÞ2ð1 − vwÞ2 ½2ð1 − wþ w2Þ − 2vwð3 − 2wþ 2w2Þ þ v2ð2 − 4wþ 11w2 − 2w3 þ 2w4Þ

− 4v3wð1 − 2wþ 3w2Þ − 3v4w2ð1 − 2wþ 2w2Þ�;

Cg→q
3 ¼ 1

ð1 − vÞ2ð1 − vwÞ2 ½1þ 4w − 6w2 − 2vð1þ 3wþ w2 − 6w3Þ þ v2ð1þ 9wþ 4w2 − 8w3 − 6w4Þ

− v3wð3þ 9w − 4w2 − 6w3Þ þ v4w2ð1þ 4w − 4w2Þ�: ðA4Þ

[1] P. L. Anthony et al. (E155 Collaboration), Inclusive hadron
photoproduction from longitudinally polarized protons and
deuterons, Phys. Lett. B 458, 536 (1999).

[2] A. Airapetian et al. (HERMES Collaboration), Transverse
target single-spin asymmetry in inclusive electroproduction
of charged pions and kaons, Phys. Lett. B 728, 183 (2014).

[3] C. Van Hulse (HERMES Collaboration), Recent HERMES
results from inclusive and semi-inclusive hadron produc-
tion, EPJ Web Conf. 85, 02020 (2015).

[4] K. Allada et al. (Jefferson Lab Hall A Collaboration), Single
spin asymmetries of inclusive hadrons produced in electron
scattering from a transversely polarized 3He target, Phys.
Rev. C 89, 042201(R) (2014).

[5] Y. Koike, Single transverse-spin asymmetry in pp↑ → πX
and ep↑ → πX, AIP Conf. Proc. 675, 449 (2003); Single
transverse spin asymmetry in p↑p → πX and ep↑p → πX,
Nucl. Phys. A721, C364 (2003);

[6] Z. B. Kang, A. Metz, J. W. Qiu, and J. Zhou, Exploring the
structure of the proton through polarization observables in
lp → jetX, Phys. Rev. D 84, 034046 (2011).

[7] L. Gamberg, Z. B. Kang, A. Metz, D. Pitonyak, and A.
Prokudin, Left-right spin asymmetry in lN↑ → hX, Phys.
Rev. D 90, 074012 (2014).

[8] M. Anselmino, M. Boglione, J. Hansson, and F. Murgia,
Predictions for single spin asymmetries in lp↑ → πX
and γ�p↑ → πX, Eur. Phys. J. C 13, 519 (2000).

[9] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F.
Murgia, and A. Prokudin, Single spin asymmetries in
lp → hX processes: A test of factorization, Phys. Rev. D
81, 034007 (2010).

[10] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F.
Murgia, and A. Prokudin, Single spin asymmetries in
lp↑ → hX processes and transverse momentum dependent
factorization, Phys. Rev. D 89, 114026 (2014).

[11] For a review, see M. Klasen, Theory of hard photoproduc-
tion, Rev. Mod. Phys. 74, 1221 (2002).

[12] For a review, see C. A. Aidala, S. D. Bass, D. Hasch, and
G. K. Mallot, The spin structure of the nucleon, Rev. Mod.
Phys. 85, 655 (2013).

[13] N. Christ and T. D. Lee, Possible tests of Cst and Tst

invariances in l� þ N → l� þ Γ and A → Bþ eþ þ e−,
Phys. Rev. 143, 1310 (1966).

[14] A. Metz, M. Schlegel, and K. Goeke, Transverse single spin
asymmetries in inclusive deep-inelastic scattering, Phys.
Lett. B 643, 319 (2006).

[15] A. Afanasev, M. Strikman, and C. Weiss, Transverse target
spin asymmetry in inclusive DIS with two-photon
exchange, Phys. Rev. D 77, 014028 (2008).

[16] A. Metz, D. Pitonyak, A. Schafer, M. Schlegel, W.
Vogelsang, and J. Zhou, Single-spin asymmetries in in-
clusive deep inelastic scattering and multiparton correlations
in the nucleon, Phys. Rev. D 86, 094039 (2012).

[17] M. Schlegel, Partonic description of the transverse target
single-spin asymmetry in inclusive deep-inelastic scattering,
Phys. Rev. D 87, 034006 (2013).

[18] K. Kanazawa, A. Metz, D. Pitonyak, and M. Schlegel,
Longitudinal–transverse double-spin asymmetries in single-
inclusive leptoproduction of hadrons, Phys. Lett. B 742, 340
(2015).

[19] K. Kanazawa, A. Metz, D. Pitonyak, and M. Schlegel,
Single-spin asymmetries in the leptoproduction of trans-
versely polarized hyperons, Phys. Lett. B 744, 385 (2015).

[20] J. W. Qiu and G. F. Sterman, Single Transverse Spin
Asymmetries, Phys. Rev. Lett. 67, 2264 (1991); Single
transverse spin asymmetries in direct photon production,
Nucl. Phys. B378, 52 (1992).

[21] Y. Kanazawa and Y. Koike, Chiral odd contribution to single
transverse spin asymmetry in hadronic pion production,
Phys. Lett. B 478, 121 (2000).

[22] C. Kouvaris, J. W. Qiu, W. Vogelsang, and F. Yuan, Single
transverse-spin asymmetry in high transverse momentum
pion production in pp collisions, Phys. Rev. D 74, 114013
(2006).

[23] Z. B. Kang, F. Yuan, and J. Zhou, Twist-three fragmentation
function contribution to the single spin asymmetry in pp
collisions, Phys. Lett. B 691, 243 (2010).

[24] K. Kanazawa and Y. Koike, A phenomenological study on
single transverse-spin asymmetry for inclusive light-hadron
productions at RHIC, Phys. Rev. D 83, 114024 (2011).

PATRIZ HINDERER, MARC SCHLEGEL, AND WERNER VOGELSANG PHYSICAL REVIEW D 92, 014001 (2015)

014001-14

http://dx.doi.org/10.1016/S0370-2693(99)00589-4
http://dx.doi.org/10.1016/j.physletb.2013.11.021
http://dx.doi.org/10.1051/epjconf/20158502020
http://dx.doi.org/10.1103/PhysRevC.89.042201
http://dx.doi.org/10.1103/PhysRevC.89.042201
http://dx.doi.org/10.1063/1.1607176
http://dx.doi.org/10.1016/S0375-9474(03)01070-4
http://dx.doi.org/10.1103/PhysRevD.84.034046
http://dx.doi.org/10.1103/PhysRevD.90.074012
http://dx.doi.org/10.1103/PhysRevD.90.074012
http://dx.doi.org/10.1007/s100520050714
http://dx.doi.org/10.1103/PhysRevD.81.034007
http://dx.doi.org/10.1103/PhysRevD.81.034007
http://dx.doi.org/10.1103/PhysRevD.89.114026
http://dx.doi.org/10.1103/RevModPhys.74.1221
http://dx.doi.org/10.1103/RevModPhys.85.655
http://dx.doi.org/10.1103/RevModPhys.85.655
http://dx.doi.org/10.1103/PhysRev.143.1310
http://dx.doi.org/10.1016/j.physletb.2006.11.009
http://dx.doi.org/10.1016/j.physletb.2006.11.009
http://dx.doi.org/10.1103/PhysRevD.77.014028
http://dx.doi.org/10.1103/PhysRevD.86.094039
http://dx.doi.org/10.1103/PhysRevD.87.034006
http://dx.doi.org/10.1016/j.physletb.2015.02.005
http://dx.doi.org/10.1016/j.physletb.2015.02.005
http://dx.doi.org/10.1016/j.physletb.2015.04.011
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1016/0550-3213(92)90003-T
http://dx.doi.org/10.1016/S0370-2693(00)00261-6
http://dx.doi.org/10.1103/PhysRevD.74.114013
http://dx.doi.org/10.1103/PhysRevD.74.114013
http://dx.doi.org/10.1016/j.physletb.2010.07.003
http://dx.doi.org/10.1103/PhysRevD.83.114024


[25] H. Beppu, K. Kanazawa, Y. Koike, and S. Yoshida, Three-
gluon contribution to the single spin asymmetry for light
hadron production in pp collision, Phys. Rev. D 89, 034029
(2014).

[26] A. Metz and D. Pitonyak, Fragmentation contribution to
the transverse single-spin asymmetry in proton-proton
collisions, Phys. Lett. B 723, 365 (2013).

[27] F. Yuan and J. Zhou, Collins Fragmentation and the Single
Transverse Spin Asymmetry, Phys. Rev. Lett. 103, 052001
(2009).

[28] K. Kanazawa and Y. Koike, Contribution of twist-3 frag-
mentation function to single transverse-spin asymmetry in
semi-inclusive deep inelastic scattering, Phys. Rev. D 88,
074022 (2013).

[29] K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak, Towards
an explanation of transverse single-spin asymmetries in
proton-proton collisions: The role of fragmentation in
collinear factorization, Phys. Rev. D 89, 111501 (2014).

[30] M. Anselmino, M. Boglione, and F. Murgia, Single spin
asymmetry for p↑p → πX in perturbative QCD, Phys. Lett.
B 362, 164 (1995); Phenomenology of single spin asym-
metries in p↑p → πX, Phys. Rev. D 60, 054027 (1999).

[31] U. D’Alesio and F. Murgia, Parton intrinsic motion in
inclusive particle production: Unpolarized cross sections,
single spin asymmetries and the Sivers effect, Phys. Rev. D
70, 074009 (2004).

[32] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F.
Murgia, and A. Prokudin, Sivers effect and the single spin
asymmetry AN in p↑p → hX processes, Phys. Rev. D 88,
054023 (2013).

[33] W. Vogelsang and F. Yuan, Next-to-leading order calcu-
lation of the single transverse spin asymmetry in the
Drell-Yan process, Phys. Rev. D 79, 094010 (2009).

[34] Z. B. Kang, I. Vitev, and H. Xing, Transverse momentum-
weighted Sivers asymmetry in semi-inclusive deep inelastic
scattering at next-to-leading order, Phys. Rev. D 87, 034024
(2013); L.-Y. Dai, Z.-B. Kang, A. Prokudin, and I. Vitev,
Next-to-leading order transverse momentum-weighted
Sivers asymmetry in semi-inclusive deep inelastic scatter-
ing: The role of the three-gluon correlator, arXiv:1409.5851.

[35] P. Aurenche, R. Baier, A. Douiri, M. Fontannaz, and D.
Schiff, Scheme invariant higher order QCD predictions for
large pt photoproduction reactions, Nucl. Phys. B286, 553
(1987).

[36] L. E. Gordon and J. K. Storrow, The single jet inclusive
cross-section at HERA in next-to-leading order QCD, Phys.
Lett. B 291, 320 (1992); L. E. Gordon, Next-to-leading
order corrections to inclusive hadron photoproduction,
Phys. Rev. D 50, 6753 (1994).

[37] D. Bödeker, Jet photoproduction at HERA in next-to-
leading order QCD, Phys. Lett. B 292, 164 (1992); QCD
corrections to inclusive jet photoproduction via direct
photons, Z. Phys. C 59, 501 (1993); G. Kramer and S. G.
Salesch, Single jet photoproduction at HERA in next-to-
leading order QCD, Z. Phys. C 61, 277 (1994); D. Bödeker,
G. Kramer, and S. G. Salesch, Inclusive jet production at
HERA: Next-to-leading order QCD corrections to the
resolved and direct photon contribution, Z. Phys. C 63,
471 (1994).

[38] M. Klasen and G. Kramer, Dijet cross sections in photon-
proton collisions, Phys. Lett. B 366, 385 (1996); Inclusive
dijet production at HERA: Direct photon cross-sections in
next-to-leading order QCD, Z. Phys. C 72, 107 (1996);
Inclusive two jet production at HERA: Direct and resolved
cross-sections in next-to-leading order QCD, Z. Phys. C 76,
67 (1997).

[39] S. Frixione and G. Ridolfi, Jet photoproduction at
HERA, Nucl. Phys. B507, 315 (1997); D. de Florian and
S. Frixione, Jet cross-sections in polarized photon hadron
collisions, Phys. Lett. B 457, 236 (1999); D. de Florian and
W. Vogelsang, Next-to-leading order QCD corrections to
inclusive hadron photoproduction in polarized lepton-
proton collisions, Phys. Rev. D 57, 4376 (1998).

[40] B. W. Harris and J. F. Owens, Photoproduction of jets at
HERA in next-to-leading order QCD, Phys. Rev. D 56, 4007
(1997); Jet photoproduction and the structure of the photon,
Phys. Rev. D 57, 5555 (1998).

[41] B. Jäger, M. Stratmann, and W. Vogelsang, Longitudinally
polarized photoproduction of inclusive hadrons beyond the
leading order, Phys. Rev. D 68, 114018 (2003); Longitu-
dinally polarized photoproduction of inclusive hadrons at
fixed-target experiments, Eur. Phys. J. C 44, 533 (2005);
B. Jäger, Photoproduction of single inclusive jets at future
ep colliders in next-to-leading order QCD, Phys. Rev. D 78,
034017 (2008).

[42] Z.-B. Kang, S. Mantry, and J.-W. Qiu, N-jettiness as a probe
of nuclear dynamics, Phys. Rev. D 86, 114011 (2012); Z. B.
Kang, X. Liu, S. Mantry, and J. W. Qiu, Probing nuclear
dynamics in jet production with a global event shape, Phys.
Rev. D 88, 074020 (2013).

[43] Z. B. Kang, X. Liu, and S. Mantry, 1-jettiness DIS event
shape: NNLLþ NLO results, Phys. Rev. D 90, 014041
(2014).

[44] C. F. vonWeizsäcker, Radiation emitted in collisions of very
fast electrons, Z. Phys. 88, 612 (1934).

[45] E. J. Williams, Nature of the high-energy particles of
penetrating radiation and status of ionization and radiation
formulae, Phys. Rev. 45, 729 (1934).

[46] A. C. Bawa and W. J. Stirling, Validity of the equivalent
photon approximation in high-energy electron proton colli-
sions, J. Phys. G 15, 1339 (1989).

[47] S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi,
Improving the Weizsacker-Williams approximation in elec-
tron-proton collisions, Phys. Lett. B 319, 339 (1993).

[48] A. Afanasev, C. E. Carlson, and C. Wahlquist, Probing
polarized parton distributions with meson photoproduction,
Phys. Lett. B 398, 393 (1997); Measuring polarized gluon
and quark distributions with meson photoproduction, Phys.
Rev. D 58, 054007 (1998); Soft contributions to hard pion
photoproduction, Phys. Rev. D 61, 034014 (2000).

[49] G. Altarelli, R. K. Ellis, and G. Martinelli, Large perturba-
tive corrections to the Drell-Yan process in QCD, Nucl.
Phys. B157, 461 (1979).

[50] W. L. van Neerven, Dimensional regularization of mass and
infrared singularities in two-loop on-shell vertex functions,
Nucl. Phys. B268, 453 (1986).

[51] W. Beenakker, H. Kuijf, W. L. van Neerven, and J. Smith,
QCD corrections to heavy quark production in pp̄ colli-
sions, Phys. Rev. D 40, 54 (1989).

SINGLE-INCLUSIVE PRODUCTION OF HADRONS AND … PHYSICAL REVIEW D 92, 014001 (2015)

014001-15

http://dx.doi.org/10.1103/PhysRevD.89.034029
http://dx.doi.org/10.1103/PhysRevD.89.034029
http://dx.doi.org/10.1016/j.physletb.2013.05.043
http://dx.doi.org/10.1103/PhysRevLett.103.052001
http://dx.doi.org/10.1103/PhysRevLett.103.052001
http://dx.doi.org/10.1103/PhysRevD.88.074022
http://dx.doi.org/10.1103/PhysRevD.88.074022
http://dx.doi.org/10.1103/PhysRevD.89.111501
http://dx.doi.org/10.1016/0370-2693(95)01168-P
http://dx.doi.org/10.1016/0370-2693(95)01168-P
http://dx.doi.org/10.1103/PhysRevD.60.054027
http://dx.doi.org/10.1103/PhysRevD.70.074009
http://dx.doi.org/10.1103/PhysRevD.70.074009
http://dx.doi.org/10.1103/PhysRevD.88.054023
http://dx.doi.org/10.1103/PhysRevD.88.054023
http://dx.doi.org/10.1103/PhysRevD.79.094010
http://dx.doi.org/10.1103/PhysRevD.87.034024
http://dx.doi.org/10.1103/PhysRevD.87.034024
http://arXiv.org/abs/1409.5851
http://dx.doi.org/10.1016/0550-3213(87)90453-6
http://dx.doi.org/10.1016/0550-3213(87)90453-6
http://dx.doi.org/10.1016/0370-2693(92)91052-B
http://dx.doi.org/10.1016/0370-2693(92)91052-B
http://dx.doi.org/10.1103/PhysRevD.50.6753
http://dx.doi.org/10.1016/0370-2693(92)90625-E
http://dx.doi.org/10.1007/BF01498632
http://dx.doi.org/10.1007/BF01413105
http://dx.doi.org/10.1007/BF01580327
http://dx.doi.org/10.1007/BF01580327
http://dx.doi.org/10.1016/0370-2693(95)01352-0
http://dx.doi.org/10.1007/s002880050229
http://dx.doi.org/10.1007/s002880050528
http://dx.doi.org/10.1007/s002880050528
http://dx.doi.org/10.1016/S0550-3213(97)00575-0
http://dx.doi.org/10.1016/S0370-2693(99)00544-4
http://dx.doi.org/10.1103/PhysRevD.57.4376
http://dx.doi.org/10.1103/PhysRevD.56.4007
http://dx.doi.org/10.1103/PhysRevD.56.4007
http://dx.doi.org/10.1103/PhysRevD.57.5555
http://dx.doi.org/10.1103/PhysRevD.68.114018
http://dx.doi.org/10.1140/epjc/s2005-02380-0
http://dx.doi.org/10.1103/PhysRevD.78.034017
http://dx.doi.org/10.1103/PhysRevD.78.034017
http://dx.doi.org/10.1103/PhysRevD.86.114011
http://dx.doi.org/10.1103/PhysRevD.88.074020
http://dx.doi.org/10.1103/PhysRevD.88.074020
http://dx.doi.org/10.1103/PhysRevD.90.014041
http://dx.doi.org/10.1103/PhysRevD.90.014041
http://dx.doi.org/10.1007/BF01333110
http://dx.doi.org/10.1103/PhysRev.45.729
http://dx.doi.org/10.1088/0954-3899/15/9/004
http://dx.doi.org/10.1016/0370-2693(93)90823-Z
http://dx.doi.org/10.1016/S0370-2693(97)00219-0
http://dx.doi.org/10.1103/PhysRevD.58.054007
http://dx.doi.org/10.1103/PhysRevD.58.054007
http://dx.doi.org/10.1103/PhysRevD.61.034014
http://dx.doi.org/10.1016/0550-3213(79)90116-0
http://dx.doi.org/10.1016/0550-3213(79)90116-0
http://dx.doi.org/10.1016/0550-3213(86)90165-3
http://dx.doi.org/10.1103/PhysRevD.40.54


[52] L. E. Gordon and W. Vogelsang, Polarized and unpolarized
prompt photon production beyond the leading order, Phys.
Rev. D 48, 3136 (1993).

[53] J. C. Collins, Foundations of Perturbative QCD (Cambridge
University Press, Cambridge, England, 2011).

[54] B. Jäger, M. Stratmann, and W. Vogelsang, Single inclusive
jet production in polarized pp collisions at Oðα3sÞ, Phys.
Rev. D 70, 034010 (2004).

[55] A. Mukherjee and W. Vogelsang, Jet production in (un)
polarized pp collisions: Dependence on jet algorithm, Phys.
Rev. D 86, 094009 (2012).

[56] T. Kaufmann, A. Mukherjee, and W. Vogelsang, Next-to-
leading order calculation for jets defined by a maximized
jet function, Phys. Rev. D 91, 034001 (2015).

[57] W. K. Tung, H. L. Lai, A. Belyaev, J. Pumplin, D. Stump,
and C.-P. Yuan, Heavy quark mass effects in deep inelastic

scattering and global QCD analysis, J. High Energy Phys.
02 (2007) 053.

[58] D. de Florian, R. Sassot, M. Epele, R. J. Hernandez-Pinto,
and M. Stratmann, Parton-to-pion fragmentation reloaded,
Phys. Rev. D 91, 014035 (2015).

[59] A. Accardi, J. L. Albacete, M. Anselmino, N. Armesto, E. C.
Aschenauer, A. Bacchetta, D. Boer, W. Brooks et al., Electron
ion collider: The next QCD frontier—understanding the glue
that binds us all, arXiv:1212.1701.

[60] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[61] D. de Florian, M. Pfeuffer, A. Schäfer, and W. Vogelsang,
Soft-gluon resummation for high-pT inclusive-hadron pro-
duction at COMPASS, Phys. Rev. D 88, 014024 (2013).

[62] M. Glück, E. Reya, and M. Stratmann, Probing the parton
densities of virtual photons at ep colliders, Phys. Rev. D 54,
5515 (1996).

PATRIZ HINDERER, MARC SCHLEGEL, AND WERNER VOGELSANG PHYSICAL REVIEW D 92, 014001 (2015)

014001-16

http://dx.doi.org/10.1103/PhysRevD.48.3136
http://dx.doi.org/10.1103/PhysRevD.48.3136
http://dx.doi.org/10.1103/PhysRevD.70.034010
http://dx.doi.org/10.1103/PhysRevD.70.034010
http://dx.doi.org/10.1103/PhysRevD.86.094009
http://dx.doi.org/10.1103/PhysRevD.86.094009
http://dx.doi.org/10.1103/PhysRevD.91.034001
http://dx.doi.org/10.1088/1126-6708/2007/02/053
http://dx.doi.org/10.1088/1126-6708/2007/02/053
http://dx.doi.org/10.1103/PhysRevD.91.014035
http://arXiv.org/abs/1212.1701
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1103/PhysRevD.88.014024
http://dx.doi.org/10.1103/PhysRevD.54.5515
http://dx.doi.org/10.1103/PhysRevD.54.5515

