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We perform a new analysis of electron-proton scattering data to determine the proton electric and
magnetic radii, enforcing model-independent constraints from form factor analyticity. A wide-ranging
study of possible systematic effects is performed. An improved analysis is developed that rebins data
taken at identical kinematic settings and avoids a scaling assumption of systematic errors with statistical
errors. Employing standard models for radiative corrections, our improved analysis of the 2010 Mainz
A1 Collaboration data yields a proton electric radius rE ¼ 0.895ð20Þ fm and magnetic radius rM ¼
0.776ð38Þ fm. A similar analysis applied to world data (excluding Mainz data) implies rE ¼ 0.916ð24Þ fm
and rM ¼ 0.914ð35Þ fm. The Mainz and world values of the charge radius are consistent, and a simple
combination yields a value rE ¼ 0.904ð15Þ fm that is 4σ larger than the CREMA Collaboration muonic
hydrogen determination. The Mainz and world values of the magnetic radius differ by 2.7σ, and a simple
average yields rM ¼ 0.851ð26Þ fm. The circumstances under which published muonic hydrogen and
electron scattering data could be reconciled are discussed, including a possible deficiency in the standard
radiative correction model which requires further analysis.
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I. INTRODUCTION

The electromagnetic form factors of the nucleons pro-
vide basic inputs to precision tests of the Standard Model
and to the determination of fundamental constants [1].
These form factors are also of critical importance for the
accelerator neutrino program [2]. The development of
muonic atom spectroscopy [3,4] has introduced a powerful
new probe of proton and nuclear structure, challenging
existing results obtained from (electronic) hydrogen and
electron scattering [1]. Taken at face value, in the absence
of new physics explanations, the muonic hydrogen Lamb
shift measurement [3] necessitates a ≳5σ revision of the
Rydberg constant, in addition to discarding or revising the
predictions from a large body of previous results in both
electron-proton scattering and hydrogen spectroscopy.
Sources of systematic error in electron-proton scattering
measurements also impact neutrino-nucleus scattering
observables and hence the extraction of fundamental
neutrino oscillation parameters at current and future facili-
ties [2,5,6]. Resolution of the so-called proton radius puzzle
thus has important implications across the fields of high
energy, nuclear, and atomic physics [7,8].
The muonic hydrogen measurement [4] yields rE ¼

0.84087ð39Þ fm, compared to rE ¼ 0.8758ð77Þ fm for
Lamb shift measurements from ordinary (electronic) hydro-
gen [1]. Previous analyses of electron scattering results using

the high statistics data set taken at the Mainz Microtron
(MAMI) yielded [9–11] rE ¼ 0.879ð11Þ fm and rM ¼
0.777ð19Þ fm, in both cases neglecting uncertainty associ-
ated with two-photon exchange corrections [12]. A previous
global analysis of world data [13], excluding the Mainz
data, yielded rE ¼ 0.875ð10Þ fm and rM ¼ 0.867ð20Þ fm.
Similar results were obtained in an independent global
analysis which included constraints on the large-distance
behavior of an inferredprotonchargedistribution [14,15]. So
not only are electron- and muon-based extractions of the
charge radius inconsistent, but there is also a ∼3σ disagree-
ment between extractions of rM from different electron
scattering data sets.
Here, we address the issue of radius extraction from

electron-proton scattering data. A prominent uncertainty in
the extracted radius arises from the shape of the form factor
assumed when extrapolating to q2 ¼ 0 where the radius is
defined in terms of the form factor slope. This can be the
dominant uncertainty, as happens in particular in the A1
Collaboration’s extraction of the charge radius from Mainz
data [9]. In Ref. [16], one of us investigated the implications
of analyticity for the form factors of electromagnetic lepton-
nucleon scattering. Reference [16] considered a represen-
tative data set consisting of extracted electric form factor
values from cross section data prior to 2007. In the present
paper, we extend this analysis by fitting directly to cross
section data, eliminating possible systematic uncertainties
associated with the reduction from cross sections to form
factors prior to the q2 → 0 extrapolation that defines the
radius observable. We consider the most recent data, includ-
ing separately a “Mainz data set” [9] and a “world data set”
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(defined below in Sec. IV E, excluding Mainz data). We
extend the analysis of the electric form factor of the proton to
consider also the magnetic form factor (see also Ref. [17]),
necessary to connect with cross section data. We discuss the
impact of uncertainties arising from the fitting procedure,
theoretical corrections to the cross sections, and experimen-
tal systematic uncertainties.We focus here on understanding
the implications of electron-proton scattering data in iso-
lation and do not include further constraints arising from
isospin decomposition in combination with electron-
neutron, ππ → NN̄, or other data [16–18]. As we will see,
several critical issues in the electron scattering data demand
attention before the inclusion of such further ingredients.
The remainder of the paper is structured as follows.

Section II introduces notations and conventions. Section III
discusses the constraints of the form factor shape arising
from analyticity and perturbative scaling. Section IV
reviews the status of radiative corrections and defines
the default models used in the remainder of the paper.
Section V analyzes the Mainz data set, employing exactly
the same analysis strategy as detailed in Ref. [9], with the
exception that the bounded z expansion is used in place of
polynomial or spline functions to represent the form
factors. Section VI studies a range of possible systematic
effects. Section VII provides updated extractions of the
charge and magnetic radii and uncertainties, for both the
Mainz data and the world data. Section VIII presents a
summary and conclusions. Supplemental Material [19]
includes the data used for fits in Secs. V, VI, and VII.

II. CONVENTIONS AND NOTATION

The Dirac and Pauli form factors of the proton, F1 and
F2, respectively, are defined by

hpðp0ÞjJμemjpðpÞi ¼ ūðp0ÞΓðpÞμðp0; pÞuðpÞ; ð1Þ

where

ΓðpÞμðp0; pÞ ¼ γμF1ðq2Þ þ
i

2mp
σμνqνF2ðq2Þ; ð2Þ

with qμ ¼ p0μ − pμ. The Sachs electric and magnetic form
factors are related to the Dirac–Pauli basis by

GEðq2Þ ¼ F1ðq2Þ þ
q2

4m2
p
F2ðq2Þ;

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ; ð3Þ

where GEð0Þ ¼ 1, GMð0Þ ¼ μp ≈ 2.793 [20]. The electric
and magnetic radii, rE and rM, are defined as the slopes of
the Sachs form factors at q2 ¼ 0, i.e.,

GE;Mðq2Þ
GE;Mð0Þ

¼ 1þ 1

6
r2E;Mq

2 þOðα; q4Þ: ð4Þ

In terms of GE and GM, the cross section for electron-proton
scattering in single photon exchange approximation is

�
dσ
dΩ

�
0

¼
�
dσ
dΩ

�
Mott

ϵG2
E þ τG2

M

ϵð1þ τÞ ; ð5Þ

where ðdσ=dΩÞMott is the recoil-corrected relativistic point
particle (Mott) result,

�
dσ
dΩ

�
Mott

¼ α2

4E2 sin4 θ
2

E0

E
cos2

θ

2
: ð6Þ

Here, Q2 ¼ −q2, E is the initial electron energy, E0 ¼
E=½1þ ð2E=mpÞ sin2ðθ=2Þ� and θ are the energy and angle
with respect to the beam direction of the final state electron,
and ϵ, τ are the dimensionless kinematic variables

τ ¼ Q2

4m2
p
; ϵ ¼

�
1þ 2ð1þ τÞtan2 θ

2

�
−1
: ð7Þ

In fits to the Mainz data below, we employ the beam energy
E and the acceptance-averaged Q2 as independent variables,
as dictated by the presentation of experimental results in this
data set. In fits to world data excluding Mainz data, we
employ E and θ.

III. FORM FACTOR SHAPE

When performing statistical analyses that constrain the
form factors and derived quantities such as the radius, it is
important that the class of allowed functions be large
enough to contain the true form factors but sufficiently
constrained for meaningful values to be obtained, i.e.,
without arbitrarily large errors, and such that overfitting to
statistical noise does not bias parameter extractions. We
summarize here our knowledge about the analytic structure
of the form factors, introduce notation for the z expansion,
and explain an important property of the z expansion with
regard to convexity and stability of fits involving many
parameters.

A. Analyticity and z expansion

Let us recall the analytic structure of the form factors
F1ðq2Þ, F2ðq2Þ, or equivalently GEðq2Þ, GMðq2Þ. The form
factors may be extended to functions of the complex
variable t ¼ q2, analytic outside of a cut at timelike values
of t, beginning at the two-pion production threshold,
t ≥ 4m2

π .
1 In the restricted kinematic region accessed in

a given experimental data set, −Q2
max ≤ t ≤ 0, the finite

1Here and throughout, mπ ¼ 140 MeV denotes the charged
pion mass. Accounting for isospin violation would imply a
smaller threshold at 4m2

π0
. A conservative approach to accounting

for this effect would be to lower the threshold; we have verified
that the difference is inconsequential to the fits.
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distance to singularities implies the existence of a small
expansion parameter, jzjmax < 1. To see this, we perform a
conformal mapping of the domain of analyticity onto the
unit circle,2

zðt; tcut; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p ; ð8Þ

where tcut ¼ 4m2
π and t0 is a free parameter representing

the point mapping onto z ¼ 0. By the “optimal” choice
topt0 ðQ2

maxÞ ¼ tcutð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut
p

Þ, the maximum value
of jzj is minimized: jzj ≤ jzjoptmax ¼ ½ð1þQ2

max=tcutÞ14 − 1�=
½ð1þQ2

max=tcutÞ14 þ 1�. For example, withQ2
max ¼ 0.05, 0.5,

and 1 GeV2, we have jzjoptmax ≈ 0.06, 0.25, and 0.32, respec-
tively.3 Expanding the form factors as

GEðq2Þ ¼
Xkmax
k¼0

akzk; GMðq2Þ ¼
Xkmax
k¼0

bkzk; ð9Þ

we find that higher-order terms are suppressed by powers of
this small parameter.

B. Coefficient bounds and large-k scaling

The identity [5],

X∞
k¼0

a2k ¼
1

π

Z
∞

tcut

dt
t − t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0
t − tcut

r
jGj2 < ∞; ð10Þ

ensures that the coefficients multiplying zk are not only
bounded in size but must decrease at large k. This
guarantees that a finite number of parameters is necessary
to describe the form factor with a given precision through-
out the kinematic region of interest. In the fits performed in
this paper, we focus on the class of form factors (9), with a
uniform bound on jak=a0j and jbk=b0j. A study of form
factor models, explicit spectral functions, and scattering
data motivates the conservative bound of jak=a0jmax ¼
jbk=b0jmax ¼ 5 for either t0 ¼ 0 or t0 ¼ topt0 when limiting
the fit to Q2

max ≈ 1 GeV2 [5,17]. We adopt this bound for
our default fits but study also the case of modified bounds.
In fact, a stronger statement can be made regarding the

large-k behavior of the expansion coefficients. Since at
large spacelike values of momentum transfer, Q2 → ∞, the
Sachs form factors are known to fall as 1=Q4 up to log-
arithms [22], we have that QkGð−Q2Þ → 0, k ¼ 0;…; 3.
From Eq. (9), this implies

dn

dzn
GE

���
z¼1

¼ 0; n ¼ 0; 1; 2; 3; ð11Þ

or, equivalently, the series of four sum rules,

X∞
k¼n

kðk − 1Þ � � � ðk − nþ 1Þak ¼ 0; n ¼ 0; 1; 2; 3:

ð12Þ

Absolute convergence of these series corresponds
to ak ¼ Oð1=k4Þ.4

C. Convexity and χ 2 minimization

An important feature of Taylor expanded amplitudes
facilitates efficient and stable numerical fits.5 Consider a χ2

function of schematic form

χ2 ¼
X
i

ðA2
i −MiÞ2
E2
i

; Ai ¼
X
n

anxni ; ð13Þ

where the sum is over data points labeled by index i, M
represents a measurement, E is the error on the measure-
ment, and A is the theoretical amplitude expressed in terms
of a kinematic variable x [e.g., xi ¼ zðq2i Þ in the present
application]. The Taylor expansion coefficients an are fit
parameters to be determined by minimizing χ2.
If χ2ðfangÞ is a convex function of its arguments, an,

then any local minimum is necessarily a global minimum,
and the relevant optimization problem is amenable to
efficient numerical algorithms. In general, determining
convexity of a multivariate quartic polynomial is NP
hard [23]. We notice, however, that the matrix of second
derivatives is

∂2χ2

∂an∂am ¼ 4
X
i

xnþm
i

�
3A2

i −Mi

E2
i

�
: ð14Þ

Each term in the sum over i is seen to be a positive
semidefinite matrix provided that amplitudes satisfy
3A2

i > Mi. Each contribution in Eq. (13) is thus convex
throughout the parameter regime where this physical
condition is satisfied. Since a linear combination of convex
polynomials with positive coefficients is convex, the sum of
terms in Eq. (13) is also convex in this regime. It is thus
straightforward to build up solutions to the numerical χ2

minimization problem over a large number of parameters
by successively increasing the number of parameters and
data points, using the previous solution fang as the initial
condition. The convexity condition ensures that this

2For a discussion and further references, see Ref. [21].
3For t0 ¼ 0, these numbers become approximately twice as

large, jzjmax ≈ 0.12, 0.46, and 0.58.

4Absolute convergence may be verified by inspecting the
analog of Eq. (10) applied to jdnG=dznj2 in place of jGj2.

5While this observation has emerged from a particular example
of fits to electron scattering data, the argument applies to general
quantum mechanical observables represented as squares of
Taylor-expanded amplitudes.
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procedure does not yield a solution that is a local but not a
global minimum.
The preceding arguments strictly apply when a single

form factor dominates, which is, for example, the case for
GE in Eq. (5) at lowQ2. In the general case in whichGE and
GM are fit simultaneously, the χ2 function takes a more
general form involving the sum of probabilities, A2

i →
A2
i þ B2

i , for which the simple convexity theorem following
from Eq. (14) no longer applies. It may be interesting to
pursue more general “physical convexity” theorems involv-
ing multiple probability sums and correlated errors.

D. Advantages over other parametrizations

We remark that several parametrizations of the proton
form factors in common use rely on somewhat arbitrary
expansions. A simple Taylor expansion in q2 [24] is only
guaranteed to converge below the pion production thresh-
old q2 ≤ 4m2

π ≈ 0.08 GeV2. Convergence of a sequence of
Padé approximants, implemented either directly as a ratio
of polynomials [25,26] or as a continued fraction [27,28],
requires positivity of the spectral function in the dispersive
representations of the form factors, a property which is not
satisfied.6

While these functions may be able to provide a suffi-
ciently precise representation of the form factors with
enough fit parameters, the parameters tend to be highly
correlated. Without any way to bound the parameters, these
correlations can lead to a large uncertainty on any given
parameter (such as the radius) that grows as the number of
parameters increases. Because of this, it may be difficult or
impossible to include enough parameters to properly
reproduce the data while at the same time achieving a
meaningful limit on the extracted radius. The correlation
between different parameters may also lead to the situation
in which overfitting the noise in data at high Q2 biases the
extracted radius. This concern applies especially for the
magnetic form factor for which the data at low Q2 have
larger uncertainties than the higher Q2 data.

IV. RADIATIVE CORRECTIONS

In this section, we provide a brief summary of one-loop
radiative corrections and Sudakov resummation in electron-
proton scattering. We extract the radius according to
Eq. (4), using data to which corrections have been applied
to extract a Born cross section. To understand the impact
of the different corrections applied to various data sets,
we begin in Secs. IVA–IV D with a brief overview of
notation and results for one-photon exchange, two-photon
exchange, real photon emission, and Sudakov resummation
as they impact cross section measurements. In Sec. IV E,

we return to a discussion of experimental implementations
for the data sets employed in the remainder of this paper.

A. One-photon exchange

The (on-shell, renormalized) scattering amplitude for the
electron-proton scattering process eðkÞpðpÞ → eðk0Þpðp0Þ
involving one exchanged photon may be written

M1 ¼ −
4πα

q2
1

1 − Π̂ðq2Þ ū
ðeÞðk0ÞΓðeÞμðk0; kÞuðeÞðkÞ

× ūðpÞðp0ÞΓðpÞ
μ ðp0; pÞuðpÞðpÞ ð15Þ

and includes radiative corrections involving the proton and
electron vertices (and wave function renormalization) and
vacuum polarization. Here, α ¼ 7.297 × 10−3 is the fine
structure constant. The proton vertex function ΓðpÞðp0; pÞ is
expressed, as in Eq. (2), in terms of the IR divergent
on-shell form factors discussed below. The electron vertex
function ΓðeÞðk0; kÞ is similarly expressed in terms of

on-shell form factors normalized as FðeÞ
1 ð0Þ≡ 1, FðeÞ

2 ð0Þ≡
ae ≈ α=ð2πÞ. The photon propagator correction Π̂ðq2Þ
accounts for contributions of both leptonic and hadronic
vacuum polarization.
The on-shell form factors appearing in Eq. (15) are

necessarily infrared divergent at nonzero momentum trans-
fer, as deduced by the cancellation with bremsstrahlung
emission. In terms of a photon mass, let us introduce
conventional “Born” form factors which are finite including
first-order radiative effects in the λ → 0 limit. We employ
the tilde notation ~Fi to denote the on-shell form factor with
the corresponding Born form factor Fi:

~Fiðq2Þ≡
�
1 −

α

2π
½Kðp; p0Þ − Kðp; pÞ�

	
Fiðq2Þ: ð16Þ

Here, Kðp1; p2Þ denotes the integral [29,30]

Kðp1; p2Þ ¼
2p1 · p2

−iπ2

Z
d4L

1

L2 − λ2 þ i0

×
1

L2 þ 2L · p1 þ i0
1

L2 þ 2L · p2 þ i0
ð17Þ

and is readily evaluated in analytic form. The electric and
magnetic radii are now defined as the slopes of the Born
form factors with respect to q2,

G0
E;Mð0Þ

GE;Mð0Þ
¼ 1

6
r2E;M: ð18Þ

Infrared divergences are absorbed into the extracted pre-
factors in Eq. (16) and will cancel upon including the
effects of real photon emission. The electron form factors
may be calculated analytically in QED, with infrared

6That it cannot be satisfied is readily seen from the asymptotic
behavior Q−2 for the form factor represented by such a spectral
function.
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divergences similarly cancelling against real emission. For
completeness, let us note that for the IR divergent on-shell
Sachs form factors we have

~G0
E;Mð0Þ

~GE;Mð0Þ
≡ 1

6
r2E;M þ α

3πm2
p

�
log

mp

λ
þ 1

4

�
: ð19Þ

Leptonic vacuum polarization contributions to Π̂ðq2Þ are
readily computed analytically, and the hadronic contribu-
tions are constrained by eþe− → hadrons data.7 For the
purposes of determining the radii, we may simply absorb
the hadronic contribution Π̂hadðq2Þ into an alternate defi-
nition of the reduced form factors:

Fiðq2Þ → ½1 − Π̂hadðq2Þ�−1Fiðq2Þ: ð20Þ

Several remarks are in order. First, we note that Eq. (16)
is not a calculation of proton-vertex radiative corrections
but rather a definition of Born form factors in the presence
of radiative corrections. The definitions of the radii follow-
ing from Eqs. (16) and (18) differ slightly from the
definition of Maximon and Tjon [30] which includes an
additional contribution (there denoted δð1Þel ) involving a
sticking-in-form-factors (SIFF) ansatz for the proton vertex.
However, in many analyses (including, in particular,
Ref. [9]), the additional contributions beyond those in
Eq. (16) are anyways ignored. The convention (16) does
not require the specification of a form factor model and is
closely aligned with standard treatments of electron scat-
tering. Let us further remark that this convention differs
slightly from a convention commonly used in atomic
physics applications [32]. However, the difference, repre-
sented by the term α=ð12πm2

pÞ in Eq. (19), corresponds to a
relative shift of ∼2 × 10−5 in rE, well below current
experimental sensitivities in either electron scattering or
muonic hydrogen.
Second, we remark that if hadronic vacuum polarization

is not removed explicitly before fitting then the resulting
proton form factors should be interpreted with the alternate
definition (20). With this definition, the fitted radius now
corresponds to

½r2E;M�fit ¼ r2E;M þ 6Π̂0
hadð0Þ: ð21Þ

A dispersive analysis of eþe− → hadrons data yields
[33,34],

Π̂0
hadð0Þ ¼ −9.31ð20Þ × 10−3 GeV−2: ð22Þ

This correction leads to a small shift, ∼0.001 fm, in rE, and
a more careful error analysis does not appear to be

warranted at the current level of precision. We note that
Ref. [9] did not account for hadronic vacuum polarization
explicitly and hence implicitly employed the alternate
definition (20). Experiments in the world data set used
explicit models to account for hadronic vacuum polariza-
tion or included uncertainties to account for the neglect of
this correction. Hence, the extracted radii should differ
slightly from the Mainz value according to the replacement
(21), but the effect is well below the current experimental
precision.8 The treatment in Eq. (20) efficiently accounts
for the effects of hadronic vacuum polarization on the radii
in terms of the single number Π̂0

hadð0Þ. When interpreting
form factors at finite momentum transfer, care must be
taken to account for the q2 dependence of hadronic vacuum
polarization.
Finally, we note that the analytic structures of the

functions Kðp; p0Þ in Eq. (16) and of Π̂hadðq2Þ in
Eq. (20) do not upset the assumptions going into the z
expansion, since these functions are analytic outside of a
cut at timelike q2 ≥ 4m2

p for Kðp; p0Þ and at q2 ≥ 4m2
π

for Π̂hadðq2Þ.

B. Two-photon exchange

The two-photon exchange (TPE) contribution may be
written

M2 ¼
α

2π
½−Kðp;−kÞ − Kðp0;−k0Þ þ Kðp; k0Þ

þ Kðp0; kÞ�M1 þ M̂MoTs
2

¼ α

π

�
−

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

e

p log

�
Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

e

p
me

�

þ E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 −m2

e

p log

�
E0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 −m2

e

p
me

��

× log
Q2

λ2
M1 þ M̂MaTj

2 : ð23Þ

The Kðp1; p2Þ functions are defined above in Eq. (17). As
indicated in Eq. (23), two conventions exist in the literature
for isolating an IR finite TPE contribution: M̂MoTs

2 [29]
(Mo-Tsai) and M̂MaTj

2 [30] (Maximon-Tjon). As long as
the full correctionM2 is applied to the data, the results are
independent of the convention used to separate IR divergent
and IR finite contributions. Our hadronic model for the
finite contribution is based on the Maximon–Tjon con-
vention and so yields the completeM2 when applied to the

7Alternatively, one could model the hadronic contributions by
quark loop diagrams [31]; however, strong interaction corrections
are not controlled at small Q2 ≲ Λ2

QCD.

8An explicit correction for hadronic vacuum polarization is
typically applied in atomic physics analyses. This is the case in
particular for the CREMA analysis of muonic hydrogen [3]. To
avoid a double counting, the shift (21) should therefore in
principle be applied to electron scattering extractions that absorb
this correction into the definition of the radius, before input or
comparison to atomic physics extractions.
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Mainz data, which uses the same convention. For the world
data, the Mo-Tsai convention is used, and so our calcu-
lation of M̂MaTj

2 yields a total M2 contribution that differs
by −0.4% to 0.1% at the cross section level compared to the
consistent combination. This small error is accounted for in
the radiative correction uncertainties quoted for these
measurements, and we have verified that such differences
have an insignificant impact on the extracted radii.
As a default, we employ the SIFF ansatz to estimate the

TPE correction [35–38]. We have computedM2 using two
form factor models. The first uses dipole F1, F2 form
factors,

F1;2ðq2Þ → F1;2ð0Þ
�
1 −

q2

Λ2

�
−2
; ð24Þ

with a value Λ2 ¼ 0.71 GeV2. The second model repre-
sents F1, F2 as a sum of monopoles,

F1;2ðq2Þ →
XN
j¼1

nj
dj − q2

: ð25Þ

To compare with previous results in the literature [35], we
consider in particular the case N ¼ 3with parameter values
nj; dj given in Table I. We compare these models forM2 to
results with vanishing finite TPE correction in the
Maximon-Tjon convention,

M̂MaTj
2 ðno TPEÞ ¼ 0; ð26Þ

and to results setting M̂MaTj
2 =M1 equal to the complete,

“Feshbach” [39], result forM2=M1 in themp → ∞ limit9:

M̂MaTj
2 ðFeshbachÞ ¼

�
1þ πα

sin θ
2

1þ sin θ
2

�
M1: ð27Þ

C. Soft bremsstrahlung

The soft bremsstrahlung contribution to the cross
section is

dσbrem ¼ −
α

4π2
dσ0

Z
d3lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ λ2

p
����
jlj≤ðE=E0ÞΔE

×
�

k0

k0 · l
−

k
k · l

−
p0

p0 · l
þ p
p · l

�
2

; ð28Þ

where ΔE is the accepted energy cut interval for the final
state electron in the lab frame. This integral may be
evaluated analytically [30]. After cancellation of infrared
divergences, the differential cross section including first-
order real and virtual radiative effects may be written

dσ ¼ ðdσÞ0ð1þ δÞ: ð29Þ

Here, ðdσÞ0 is the cross section (5), expressed in terms of
Born form factors, and δ is a finite correction depending on
kinematic variables that accounts for vertex, vacuum
polarization, and TPE radiative corrections.

D. Large log resummation

The preceding subsections (Secs. IVA–IV C) summarize
a complete treatment of first-order radiative corrections.
The hadronic input, apart from the form factors to be
determined, consists of a TPE model for M̂2 in Eq. (23)
and the number Π̂0

hadð0Þ (the latter impacts the radius at a
level below current uncertainties). However, we wish to
describe scattering data with momentum transfers as large
as Q2 ∼ 1 GeV2. In this regime, large logarithms from
electron radiative corrections cause a poor convergence, or
even breakdown, of the naive perturbation theory, since

α

π
log2

Q2

m2
e

����
Q2∼1 GeV2

≈ 0.5: ð30Þ

Thus, first-order radiative corrections are insufficient for
percent-level accuracy.
When Q ∼ E ∼ E0 and me ∼ ΔE, the leading series of

logarithms αn log2nðQ2=m2
eÞ are resummed by making in

(29) the replacement,

1þ δ → expðδÞ: ð31Þ

Two-loop corrections without logarithmic enhancement are
below the relevant experimental precision. For definiteness,
in our analysis of the Mainz data, we employ the pre-
scription used in Ref. [9], exponentiating all first-order
corrections in (31) except the finite TPE contributions. We
return to a discussion of deficiencies in this treatment in
Sec. VII C 3.

TABLE I. Expansion coefficients for Eq. (25) in the SIFF TPE
prescription of Ref. [35]. Note that n3 is determined by
F1;2ð0Þ ¼

P
jnj=dj.

F1 F2

n1 0.38676 1.01650
n2 0.53222 −19.0246
d1 3.29899 0.40886
d2 0.45614 2.94311
d3 3.32682 3.12550

9An imaginary part in Eq. (27) is ignored since it affects the
cross section only at relative order α2. For definiteness, we have
expressed the result in terms of ðE; θÞ instead of the variables
(E;Q2) before taking the mp → ∞ limit, to match the expression
used in Ref. [9].
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E. Summary of experimental implementations

Apart from TPE and, in some cases, large log resum-
mation, radiative corrections have already been applied to
all of the cross sections we include in our fit, as part of the
original analysis of the experiments. We will examine the
impact of different TPE prescriptions, with final results
based on the SIFF sum of monopoles TPE correction as in
Eq. (25) and Table I. Possible deficiencies in radiative
corrections are treated at the same level as experimental
systematic errors.
Consider first the Mainz data set. The A1 Collaboration’s

data analysis applied radiative corrections based on the
prescription of Refs. [30,40], as detailed in Ref. [9]. This
includes TPE corrections using the Feshbach prescription
[39] and the large log resummation given in Eq. (31) above
(excluding the finite TPE contribution from the exponen-
tiation). In the analysis of correlated systematic uncertain-
ties, the cutoff on the bremsstrahlung tail was varied,
yielding rms cross section variations well below 0.1%.
These variations in the cross sections were used to
determine the impact of radiative correction uncertainties
on the radius. No uncertainty was included in the cross
sections for the TPE contribution.
Consider now the world data set. The world data come

from many different experiments, and the details of the
radiative corrections vary. However, they are all based on the
general formalism of Mo and Tsai [29,41,42], with improve-
ments and modifications added in later works, e.g.,
Refs. [31,43]. Our compilation of world data comes from
Ref. [44], along with additional low Q2 and more recent
cross section [45–48] and recoil polarization or polarized
target measurements [13,49–56], with earlier polarization
transfer results [57–59] replaced by the results of final,
updated analyses [60–62]. Further details of radiative cor-
rections, in particular for earlier experiments, are presented in
Ref. [63]. Our compilation includes the corrections applied
to earlier measurements discussed in that work; furthermore,
we include additional vacuum polarization terms, exclude
small angle data, θ < 20°, from Ref. [43], and include
separate normalization factors for data taken with different
detectors or under very different conditions [64–66].
The original publications of the experiments comprising

the world data set did not apply TPE corrections, and
different prescriptions were used to approximate Eq. (31).
For the most part, these experiments quoted normalization
and uncorrelated uncertainties of 0.5%–1% each to account
for uncertainties in the radiative corrections applied,
dominated by uncertainty associated with TPE correc-
tions.10 In this case, we will apply TPE corrections similar

to those applied in the previous global analysis [26], for
which the errors assigned in previous experiments were
taken to be sufficient to account for uncertainties after
applying a hadronic calculation of the TPE corrections.
Note that one experiment [68] did not include uncertainties
associated with these corrections and so had much smaller
total uncertainties than other experiments. Following
Ref. [26], we thus include an additional systematic uncer-
tainty to the data of Ref. [68]: we increase the normalization
uncertainty by 1% (to a total of 1.5%) and add 0.5% in
quadrature to the point-to-point uncertainty.
In Sec. VII, we will include constraints on the form

factor ratioGE=GM from polarization measurements. In the
kinematic range considered, with Q2 ≤ 1 GeV2, the TPE
correction, estimated from a simple hadronic model [35], is
small compared to experimental errors.11 Following
Ref. [26], this model-dependent correction is thus omitted
from the fits. We will find that the polarization data points
do not have a strong influence on the radius fits and thus do
not pursue a more detailed treatment of radiative correc-
tions to these data points.

V. UPDATED FIT OF THE MAINZ DATA SET

In this section, we extract the charge and magnetic radii
from the Mainz data set, retaining the original treatment of
statistical and systematic uncertainties and correction
factors from Ref. [9] but incorporating our knowledge of
the structure of the form factors as presented in Sec. III. We
first reproduce the Mainz polynomial and inverse poly-
nomial fits and then provide an updated extraction using the
bounded z expansion. To highlight differences in the
theoretical treatment of the form factors, we fit to the full
data set (1422 points) and apply the Feshbach correction as
the only TPE correction, as was done in the primary radius
extraction from Ref. [9]. We then discuss the impact of
moving from polynomial fits to fits using the bounded z
expansion and comment on other attempts to extract the
radii from the Mainz data.
Note that, because of the way the data and uncertainties

are parametrized for the Mainz data, the uncertainties from
such a fit represent only part of the total uncertainty.
Meaningful error estimates require the examination of
correlated effects arising, e.g., from experimental system-
atic errors and radiative corrections. In this section, we
focus on how the improved form factor parametrization
modifies the extracted radii and fit uncertainties. Section VI
will include an examination of the corrections applied to
the Mainz data and the treatment of systematic uncertain-
ties presented in their analysis.

10While this turned out to be smaller than the size of TPE
corrections in recent calculations [37,38], it appears to be a
significant overestimate of the residual uncertainty at lower Q2

values, based on the consistency between low-Q2 estimates of the
corrections [67].

11The hadronic model for TPE corrections [35] predicts a
correction not larger than ∼0.5% over the full ϵ range for
Q2 ≤ 1 GeV2. Furthermore, the 41 data points with Q2 ≤
1 GeV2 are concentrated at large epsilon, ϵ ≈ 0.7� 0.2, where
the TPE correction model predicts a correction ≲0.2%.
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We take the cross section data as provided in the
Supplemental Material of Ref. [9], which includes the
Feshbach correction for TPE, and scaling of the statistical
uncertainties to account for unidentified systematic errors,
as discussed in Sec. VI. We allow the normalization
parameters to float freely in the fit, in accordance with
Ref. [9]. In addition to examining the full Mainz data
set, we also provide results obtained by restricting to
momentum transfers below a given Q2

max. We use the χ2

function

χ2σ ¼
XNσ

i¼1

ðσi − σi;fit=ηi;fitÞ2
δσ2i

: ð32Þ

Here, Nσ is the number of cross section points for a
specified kinematic cut Q2

max, σ is the measured cross
section (after accounting for radiative corrections), δσ is the
(point-to-point, uncorrelated) uncertainty, σfit is the cross
section calculated using the chosen form factor model, and
ηfit is a product of normalization parameters for a given run
(i.e., for data taken at a given choice of angle and energy).
There are 31 normalization parameters in the complete
data set.
In our default fits, we enforce bounds on the form factor

parameters by a χ2 penalty,

χ2b ¼
Xkmax

i¼1

�
a2i;fit

jakj2max
þ b2i;fit
jbkj2max

�
; ð33Þ

where ai;fit and bi;fit are the fit values of the coefficients for
Gp

E and Gp
M, respectively, and jakjmax and jbkjmax are

(Gaussian) bounds on the coefficients. For the polynomial
and unbounded z expansion fits, jakjmax and jbkjmax are
taken to be very large, acting simply as numerical regu-
lators in the fits (they are taken large enough such that fit
results represent the infinite bound limit). For the bounded
z expansion, Eq. (33) enforces a Gaussian, vs sharp cutoff,
statistical prior on the form factor parameter space,12

typically taken to be jak=a0jmax ¼ jbk=b0jmax ¼ 5. A more
detailed discussion of the dependence of fit results on form
factor priors is postponed to Sec. VII C.

A. Polynomial and inverse polynomial fits

The radius central values, minimum χ2, and reduced χ2

are displayed in Table II for fits with form factors
represented as polynomials in q2 of degree 10, or as
inverse polynomials of degree 7. These results are very
close, but not identical, to the corresponding results in
Table IV and Fig. 20 of Ref. [9]. We have compared our
results to the output from the example fitting code provided
as part of the Supplemental Material for Ref. [9], finding

agreement with the results of this code. For example, in the
case of the polynomial of degree 10, the results of the
example fitting code agree with our results in Table II, both
having a minimum χ2 of 1561.6, lower than the value 1563
quoted in Table IV of Ref. [9].13

B. Bounded z expansion fits

Let us proceed to consider the implications of the
bounded z expansion. Here, we retain the identical data
set as employed in Table II. For the default fit, we take
t0 ¼ 0, kmax ¼ 12, and a Gaussian bound of jakjmax ¼
jbkjmax=μp ¼ 5. The value kmax ¼ 12 is large enough that
the result does not change if kmax is increased further.
The results for this fit are displayed in Fig. 1 as a

function of Q2
max. The extracted radii and χ2 values are

provided for three Q2
max values in Table III. The quoted

uncertainty includes only the statistical-type uncertainties,
i.e., counting statistics and uncorrelated systematic uncer-
tainties that are represented by the rescaling of the
statistical errors in the A1 data set. The uncertainty is
obtained by varying the radius around the best-fit value,
refitting the data while allowing all data set normalizations
to float, to map out the χ2 contour as a function of radius.
The contours are typically symmetric and very nearly
parabolic, and in the tables, we quote the average of the
change in radius that yields Δχ2 ¼ 1 on the high and low
sides of the central value. Note that the primary A1
analysis of the Mainz data, identical except for the choice of
the fitting function, yielded [9] rE ¼ 0.879ð5Þstat fm and
rM ¼ 0.777ð13Þstat fm, including only statistical uncertain-
ties for comparison with our bounded z expansion results in
Table III.

C. Discussion

Let us remark on three aspects of the fits summarized in
Table III. First, we remark that the bounded z expansion fit
to the entire 1422 point data set (Q2

max ¼ 1 GeV2) yields an
electric radius significantly larger than the Mainz A1

TABLE II. Results for fits using polynomials of degree 10 and
inverse polynomials of degree 7 for the full (Nσ ¼ 1422) A1
MAMI data set. The reduced χ2 is calculated taking Ndof ¼
Nσ − 2kmax − Nnorm with Nnorm ¼ 31.

Fit type rE (fm) rM (fm) χ2 χ2red

poly 10 0.886 0.794 1561.6 1.14
inv poly 7 0.886 0.768 1569.1 1.14

12For a related discussion, see Ref. [69]. See also Ref. [70].

13More precisely, the fitting code returned a χ2 of 1561.60 and
rM ¼ 0.797 fm. Evaluating our χ2 function with the correspond-
ing parameters yielded an identical 1561.60. Using the same
initialization conditions as the example fitting code, our mini-
mization code independently returned a minimum χ2 of 1561.58
and rM ¼ 0.794 fm, as displayed in Table II.
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extraction [9]. Having analyzed identical data sets, this
difference arises solely from requiring the form factors to
lie within the class allowed by the bounded z expansion.
The difference, 0.041 fm, is large compared to the Mainz
estimated systematic uncertainty. The magnetic radii
exhibit a smaller difference, with our result 0.034 fm below
the Mainz extracted value.
Second, the extracted radii have significant dependence

on Q2
max. For example, rE ¼ 0.873ð18Þstat fm with Q2

max ¼
0.05 GeV2 vs rE ¼ 0.920ð9Þstat fm with Q2

max ¼ 1 GeV2.
The difference, 0.047 fm, is again large compared to the
quoted uncertainties. Furthermore, there is a non-negligible
variation of the rE central value as Q2

max is increased
above 0.5 GeV2, even though the region below 0.5 GeV2

includes more than 90% of the data points, and (as
illustrated below in Fig. 10) the data above 0.5 GeV2 do
not significantly impact the radius uncertainty. In fits with
unbounded parameters, it is not surprising that the extracted
radius is sensitive to higher-Q2 data because the radius may
change to provide a better fit to fluctuations in the data that
are accommodated by arbitrarily large parameter values.
This behavior is unexpected in fits with bounded param-
eters. Thus, it is surprising that the small amount of higher-
Q2 data has such a significant impact on the extracted
radius. The dependence on Q2

max suggests a possible
tension between the lower- and higher-Q2 data.
Third, taking at face value the complete 1422 point data

set and error assignments, the resulting electric radius is

rE ¼ 0.920ð9Þstatð6Þother fm, where for the moment we
simply take the A1 evaluation of other contributions to
the uncertainty.14 This result is 7σ above the muonic
hydrogen value, rE ¼ 0.84087ð30Þ fm [4]. It is also in
tension with the results extracted from hydrogen spectros-
copy, rE ¼ 0.8758ð77Þ fm [1], and with a previous global
analysis [13] of world electron-proton scattering data
which yielded rE ¼ 0.875ð10Þ. The magnetic radius value
of rM ¼ 0.743ð25Þstatð10Þother is almost 4σ from the value
rM ¼ 0.867ð20Þ fm from the global analysis in Ref. [13].
However, we note that recent global analyses [13,14] use
different representations of the form factors compared to
the bounded z expansion used in Table III. In Sec. VII B
below, we will perform our own analysis of the world data
for a consistent comparison with the analysis of the
Mainz data.
Simply replacing the fit functions employed in Ref. [9]

with the z expansion does not resolve the discrepancy with
muonic hydrogen results. In fact, the result is a larger
difference with muonic hydrogen, as well as a tension with
previous extractions from world electron-proton scattering
data. In addition, the results showanunexpected dependence
on the Q2 range of data included in the fit. In the following
Sec. VI, we consider in detail a range of sources of the
systematic error before presenting best values for the radii.

D. Further tests related to the z expansion

1. Dependence on kmax

In the bounded z expansion, we may estimate the
maximum power of z which can impact the data at a given
level when the expansion coefficients an are order unity.
Setting the upper limit of the contribution at the level of
∼0.5% implies kmax ≈ 10 should be sufficient for t0 ¼ 0,
Q2

max ¼ 1 GeV2. Figure 2 shows the χ2 values and radii
extracted as a function of kmax for the bounded z expansion
fit to the full Mainz data set. The rightmost points at
kmax ¼ 12 correspond to the rightmost points in Fig. 1 and

FIG. 1. Extracted electric (top panel) and magnetic (bottom
panel) radii as functions of the kinematic cutQ2

max on momentum
transfer for the 1422 point A1 MAMI data set, using the z
expansion with t0 ¼ 0, Gaussian priors with jakjmax ¼
jbkjmax=μp ¼ 5, kmax ¼ 12. One-σ error bands are statistical only.

TABLE III. Results from the fits in Fig. 1 for three values of
Q2

max. Nσ is the number of cross section points with Q2 below
Q2

max, and Nnorm is the number of normalization parameters
appearing in the data subset.

Q2
max ðGeV2Þ rE (fm) rM (fm) χ2min Nσ Nnorm

0.05 0.873(18) 1.071(114) 479.4 483 13
0.5 0.905(10) 0.749(28) 1404.7 1285 29
1 0.920(9) 0.743(25) 1605.5 1422 31

14The error ð6Þother results from the quadrature sum for the
errors ð4Þsystð2Þmodelð4Þgroup presented in Ref. [9]. These errors
were added in quadrature in Ref. [9], but it has more recently been
advocated [10] to add the final error linearly to the quadrature
sum of the first two, resulting in ∼ð8.5Þother.
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to the final row of Table III. In accordance with our power
counting estimate, the minimum χ2 value and extracted
radii have stabilized by kmax ¼ 10. For definiteness, we
choose kmax ¼ 12 for all of our bounded z expansion fits.
While this is significantly more parameters than required
for fits to smaller values of Q2

max, the bounds on the fit
parameters prevent the problem of radius instability due to
overfitting of noise in the higher-Q2 data [11].

2. Unbounded z expansion fits

The bounded z expansion (the formal kmax → ∞ limit
with bounded coefficients) is a particularly well-motivated
implementation of form factor priors. A different but
common choice of priors corresponds to setting ak ¼ 0
for all coefficients beyond a given order k > kmax, with the
remaining coefficients unconstrained, and −∞ < ak < ∞
for k ≤ kmax. We perform some illustrative fits with this
modified choice of priors in order to separate the impact of
applying bounds from the impact of changing from poly-
nomial or inverse polynomial functions to the z expansion.
We again fit the 1422 point A1 data set using the same
rescaled errors and Feshbach TPE correction as in Fig. 1,
but now set jakjmax; jbkjmax → ∞ in Eq. (33).

In the limit of large kmax, the true form factors are
guaranteed to lie in the space of curves described by the
unbounded z expansion. However, many badly behaved
form factors (in particular, form factors in conflict with
predictions of QCD, as discussed in Sec. III) also lie in this
space of curves, and fits without constraints on the
coefficients lose predictive power at large kmax.
Figure 3 shows results for unbounded fits with floating

normalizations. The minimum χ2 value continues to
decrease significantly as parameters are added through
kmax ¼ 10. Quantitatively reliable radius estimates are
difficult to obtain from such a fit; for small kmax, omitted
terms in the form factor expansion can introduce a poten-
tially large, but difficult to quantify, bias in the fitted radii
[71], while for large kmax, the uncertainties grow rapidly.

3. Fixed-normalization fits

As noted earlier, the manner in which uncorrelated
systematic uncertainties are treated in the Mainz data set
is only complete when the normalization parameters are
allowed to vary and when correlated systematic uncertain-
ties are estimated separately [9]. Thus, fits which fix the

FIG. 2. Total χ2 (top panel) and extracted electric (middle
panel) and magnetic (bottom panel) radii as functions of kmax for
the 1422 point A1 MAMI data set, using the z expansion with
t0 ¼ 0, Gaussian priors with jakjmax ¼ jbkjmax=μp ¼ 5. One-σ
error bands are statistical only.

FIG. 3 (color online). χ2 (top panel, solid black line) and
extracted electric (middle panel, solid black lines) and magnetic
(bottom panel, solid black lines) radii with 1σ statistical error
bands as functions of kmax for the unbounded z expansion fit with
t0 ¼ 0 to the 1422 point A1 MAMI data set (with floating
normalization). The dashed blue lines show the χ2 and 1σ error
bands from the bounded fit in Fig. 2 for comparison.
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normalization of the data based on the default Mainz fit will
underestimate uncertainties and potentially yield different
values for the radii if the fit is performed with a different
functional form than that used to determine the normali-
zation parameters. Nonetheless, such fits have been per-
formed [8,72], and so we provide a comparison of
unbounded fits with and without floating normalization
factors.
The result for fixed normalization factors is displayed in

Fig. 4. Comparing to fits with floating normalizations, one
can see that the uncertainties are significantly smaller in the
case of fixed normalizations, with the fit uncertainties on rE
underestimated by a factor ≳ 5.15

Even ignoring the artificially small uncertainties that
arise when neglecting the normalization uncertainty of the
data sets, it is not clear that there is any value of kmax for
which the fit provides a sufficiently precise description of
the data while still providing meaningful uncertainties on
the charge radius. For the magnetic radius, the results are
even less clear, with only an upper limit on the radius

possible for kmax ≥ 9. We note that for large kmax the rE
central values for the fits displayed in Figs. 3 and 4 require
very large coefficient values, in violent conflict with order
unity predictions of QCD.16

VI. SYSTEMATIC STUDIES FOR THE MAINZ
DATA SET

Taking the data and error prescriptions of Ref. [9] at face
value, we have found radius extractions in tension with
each other for fits of different functions to the same data set
(Table II compared to the last line of Table III) and for fits
of the same function to subsets of the same data set (Fig. 1
and Table III).
The first observation indicates the strong dependence of

the extracted radius on the specification of physical form
factors, as implemented by the bounded z expansion. We
focus solely on this class of form factors in the following.
Since the systematic error analysis of Ref. [9] relied on
rescaling statistical errors based on fits to a particular class
of form factor models, we also revisit this analysis using the
bounded z expansion.
The second observation, that fits to data subsets are in

tension with fits to the entire data set, indicates the
possibility of an underestimated systematic error. We
investigate below a range of correlated errors and their
potential impact on radius extractions.
The analysis of the Mainz data by the A1 Collaboration

decomposed the uncertainties into several different con-
tributions. Let us briefly review this decomposition. The
only uncertainty applied directly to the quoted cross
sections is called the statistical uncertainty. This is a
combination of counting statistics and systematic uncer-
tainties which are taken to be uncorrelated between differ-
ent data points and normally distributed and is thus treated
in the same way as counting statistics. We refer to the
systematic uncertainties that are independent for different
data points as the uncorrelated systematic uncertainties.
The A1 Collaboration includes these uncorrelated system-
atic uncertainties by introducing a rescaling factor on the
counting statistics, with a procedure to extract these scaling
factors which we summarize below in Sec. VI B 1.
Normalization uncertainties for each data subset in the

experiment are accounted for in the extraction of the radius
by allowing the 31 normalization factors corresponding to
different configurations to float freely when fitting the form
factors. The A1 analysis of Ref. [9] suggests an uncertainty
of 3.5%–5% on the normalization factors, but no con-
straints were included in the fits. Because the cross sections
are quoted after the determination of the normalization
factors in their fit, any information on the initial normal-
izations is lost, and it is no longer possible for us to make

FIG. 4. χ2 (top panel) and extracted electric (middle panel) and
magnetic (bottom panel) radii with 1σ statistical error bands as
functions of kmax for the unbounded z expansion fit with t0 ¼ 0 to
the 1422 point A1 MAMI data set with fixed normalization
parameters.

15In detail, for kmax ¼ 9ð10Þ, the radius uncertainty is δrE ¼
0.011ð0.014Þ for fixed normalizations, compared to δrE ¼
0.053ð0.096Þ for floating normalizations.

16For example, at kmax ¼ 9, requiring the central value for rE
in Fig. 4 to lie within the 1σ envelope of a bounded z expansion
requires coefficient bound ≳104.
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use of even the limited precision with which these
normalization factors were constrained.
Finally, the A1 Collaboration gives a procedure for

estimating the impact of correlated systematic uncertainties
on their data. These are corrections which potentially have
a strong kinematic dependence, and their impact will not
necessarily decrease when one includes a large number of
measurements. Such corrections must be treated independ-
ently from the statistical and uncorrelated systematic errors.
The Mainz treatment of these uncertainties and our exami-
nation of other possible correlated effects are included in
Sec. VI C.
In the remainder of this section, we introduce the

following three modifications to the analysis. First, in
Sec. VI A, we study the impact of different TPE correction
models on radius extractions, choosing the SIFF sum of
monopoles ansatz as the default in the remaining fits.
Second, after identifying in Sec. VI B 1 potential short-
comings in the rescaling of statistical errors, in Sec. VI B 2,
we rebin data taken at identical kinematic settings in order
to incorporate in Sec. VI B 3 uncorrelated systematic errors
which do not scale with statistics. Lastly, in Sec. VI C, we
consider a range of correlated systematic errors consistent
with the experimental precision achieved in Ref. [9].

A. TPE model dependence

The variation of the extracted radii with different TPE
models is illustrated in Fig. 5, where the extracted rE and
rM central values are plotted vs Q2

max. The black curve is
identical to the central curve in Fig. 1. The remaining
results are obtained by repeating the fit of Sec. V after
removing the Feshbach TPE correction, Eq. (27), and then
applying the SIFF TPE result [using dipole form factors,
Eq. (24), or those from Blunden et al., Eq. (25)] or applying
no finite TPE correction [in the Maximon–Tjon conven-
tion, Eq. (26)]. As the plot illustrates, expressed as a
difference relative to the Feshbach correction, the results
have mild Q2

max dependence. Numerical values for Q2
max ¼

0.05; 0.5; 1 GeV2 are given in Table IV.
The Feshbach correction is the exact result in the

formal limit of infinite proton mass and is independent
of the proton structure. The exact result for arbitrary
kinematics for a pointlike proton [38] yields a correction
that grows with Q2, approximately doubling the correction
between Q2 ¼ 0 and 1 GeV2. However, calculations using
either hadronic [35] or partonic [37] models to account
for proton structure indicate that the correction does not
grow with increasing Q2 but instead becomes smaller and
then changes sign. This is the behavior required to explain
the difference between the Rosenbluth and polarization
measurements of μpGE=GM for the proton [24] and
has been recently confirmed for Q2 ≈ 1–1.5 GeV2 by
comparisons of positron and electron scattering from the
proton [73,74].

There is a significant difference in the charge radius
between the case of no TPE corrections and either the
Feshbach or SIFF corrections. However, there is a relatively
small difference between Feshbach and SIFF, suggesting
that the infinite proton mass limit provides a significant part

FIG. 5 (color online). Extracted electric (top panel) and
magnetic (bottom panel) radii as functions of the kinematic
cut Q2

max on momentum transfer for several TPE models, as
discussed in the text: no correction (red, dotted), Feshbach
correction (black, solid), SIFF dipole (green, dot-dashed), and
SIFF sum of monopoles (blue, dashed). There is a negligible
difference between the SIFF choices of the dipole and the sum of
monopoles. Fits are to the 1422 point A1 MAMI data set, using
the z expansion with t0 ¼ 0, Gaussian priors with jakjmax ¼
jbkjmax=μp ¼ 5, kmax ¼ 12.

TABLE IV. Change in the extracted charge and magnetic radii
for three different TPE corrections, relative to the Feshbach
correction applied in the Mainz analysis. Results are for the fit
with Q2

max ¼ 0.05; 0.5; 1 GeV2 in Fig. 5.

Q2
max (GeV2) Model ΔrE (fm) ΔrM (fm)

0.05 Feshbach ≡0 ≡0
SIFF dipole −0.004 þ0.022
SIFF Blunden −0.004 þ0.025

No TPE −0.023 −0.028
0.5 Feshbach ≡0 ≡0

SIFF dipole −0.003 þ0.036
SIFF Blunden −0.002 þ0.034

No TPE −0.017 −0.026
1 Feshbach ≡0 ≡0

SIFF dipole −0.003 þ0.038
SIFF Blunden −0.002 þ0.037

No TPE −0.016 −0.026
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of the correction for rE. For the magnetic radius, there is a
large difference between all three approaches. For both the
charge and magnetic radii, there is little sensitivity to the
choice of form factors included in the SIFF calculation. We
collect in Table IV the deviations of the extracted radius
using different models in place of the Feshbach correction.
In all subsequent fits, we employ the SIFF ansatz, using for
definiteness the sum of monopoles in Table I as our default
TPE model. The uncertainty associated with TPE correc-
tions will be incorporated into the evaluation of correlated
systematic uncertainties in Sec. VI C.

B. Uncorrelated systematic uncertainties

1. Summary of the Mainz A1 approach

To estimate the uncorrelated systematic uncertainties, the
A1 Collaboration performed a fit to the entire 1422 point
data set using a default form factor model (an eight-
parameter cubic spline model for each of GE and GM).
The data were then grouped according to the beam energy
and the spectrometer used in the measurement. For each
data group, the uncorrelated systematic uncertainties were
taken from examination of the distribution of the
differences between measured and fit cross sections, scaled
by the uncertainty from counting statistics. (If the counting
statistics fully represented the uncorrelated uncertainties,
then this should be a Gaussian distribution with width one.)
This distribution was fit with a Gaussian, the width of
which was then taken as the scaling factor applied to the
counting statistics to determine the combined statistical and
systematic uncorrelated uncertainties. The scaling factors
obtained in this way vary from 1.070 to 2.283, as given in
the Supplemental Material of Ref. [9].
This rescaling procedure is meant to yield a reduced χ2

close to unity when the data are compared to the original fit.
However, because the Gaussian fit may underestimate the
impact of outliers and the scaling of the uncertainties
changes the relative weighting of the different data sets, the
fit to the data set with updated uncertainties yields a
reduced χ2 somewhat larger than unity: χ2red ≈ 1.15 for
the entire data set. This suggests that the quoted systematics
are somewhat underestimated.
The rescaled statistical errors represent the minimum

additional uncertainty necessary to account for random
scatter around a global fit to the data. Any correlated effects
will not be included in the extracted uncertainties. For
example, the A1 analysis of Ref. [9] does not include any
uncertainty associated with the error in the measurement of
the beam energy or offsets in the spectrometer angles. Such
kinematic offsets would yield correlated errors in the cross
sections which would not be captured by this procedure.
The A1 rescaling procedure yields systematic uncertain-

ties which depend on the form factor model used in the fit.
We performed a similar analysis using our bounded z
expansion and using the χ2 value for each data subset

relative to the fit as the square of the scaling factor. This
procedure yielded similar scaling factors, larger by 6% on
average compared to the A1 procedure (thus yielding a
value of χ2red closer to unity), with a typical scatter around
the small average offset of approximately 10%. Thus, the
form factor model dependence of this rescaling procedure
is small, though not negligible, and related more to the
difference in our procedure than to the change in the fitting
function.
The rescaling procedure accounts for undetermined

systematic errors that are assumed to be uncorrelated and
to scale with the statistical counting errors. However, it is
not clear that all the uncorrelated systematics should scale
with the statistical uncertainties. If one assumes that the
statistical and uncorrelated systematic uncertainties add in
quadrature, then one can compare the original (unscaled)
and rescaled statistical uncertainties to extract the effective
uncorrelated systematic uncertainty used in the A1 pro-
cedure. This inferred uncertainty can be extremely small, as
low as 0.05%, but varies with kinematics and with the
counting statistics, attaining values up to 2%. Because the
full set of 1422 data points includes many instances of
repeated measurements at identical kinematics, this pro-
cedure implies even greater reduction in the systematic
uncertainty associated with each independent kinematic
point, with values as low as 0.02%, even though it is
experimentally difficult to constrain uncertainties at that
level.
To address these concerns, we present a modified treat-

ment of the uncorrelated systematic uncertainties where a
fixed uncorrelated systematic error is added to all points to
account for unknown drifts or corrections.

2. Rebinning studies

As noted above, the 1422 data points include many
repeated measurements at the same conditions. One would
expect that many potential systematic errors would be
identical for these points, e.g., time-dependent efficiencies,
rate-dependent corrections, or uncertainties in the beam
energy or spectrometer angle settings. Adding a fixed
systematic to every one of the 1422 data points would
underestimate the systematic uncertainty for data points
with many repeated measurements. Therefore, we begin by
combining data points taken with identical conditions,
reducing the data set from 1422 data points to 658
independent cross section measurements.
We group (i.e., rebin) all data taken at identical kinematic

settings, using only the uncertainties from counting sta-
tistics (i.e. removing the A1 scaling factor). We tested our
assumption that the points within the groups of repeated
measurements were consistent within statistics by looking
at the χ2 values and confidence levels for every set of the
rebinned data. There were 407 settings with multiple runs
taken under identical conditions, and the confidence-level
distribution for these sets is consistent with a uniform
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distribution between 0% and 100% except for a handful of
outliers below 1% confidence level, indicating a nonstat-
istical scatter of the points being combined. Most of these
outliers involved scatter at the 0.1%–0.2% level, which is
contained within the systematic uncertainty we will add to
achieve χ2red near unity. One setting—Ebeam ¼ 315 MeV,
θ ¼ 30.01°, spectrometer C—had a single measurement
that deviated by∼1.5% from the two other measurements at
that setting, while the statistical uncertainties were approx-
imately 0.15%. We excluded this set of points, yielding a
total of 657 independent cross section measurements when
fitting the rebinned data.
We remark that normalization parameter 14 appears for

only one point in the rebinned 657 point data set (and two
points in the original 1422 point data set). Since the
normalization parameters have to be allowed to float freely
in the fit, this data point has no impact, but for definiteness, it
is retained. Note that with the Mainz procedure of applying
scaling factors to the counting statistics the rebinning has no
impact on the fit, and the only change at this point would be
due to the exclusion of the one point after rebinning.
However, when applying a more conventional constant
uncorrelated systematic uncertainty to all points, the uncer-
tainty is best applied to the rebinned data points.

3. Uncorrelated systematics for rebinned data

With the rebinned data set in hand, we proceed to
investigate the inclusion of an uncorrelated systematic error
that does not scale with statistics. We add a fixed systematic
uncertainty to every data point and perform the bounded z
expansion fit with Q2

max ¼ 1 GeV2 and our default form
factor scheme, t0 ¼ 0, kmax ¼ 12, and Gaussian bound
jakjmax ¼ jbkjmax=μp ¼ 5. We varied the systematic uncer-
tainty until we found a reduced χ2 value close to unity. This
required a systematic uncertainty of approximately 0.3%.
We then examined the χ2 contribution from each of the 18
energy-spectrometer combinations to see if any of them had
anomalously large or small χ2red values. While the spread of
χ2red valueswas significant,manydata subsets hada relatively
small number of points, and the only subset which was an
extreme outlier was the data from spectrometer B at
Ebeam ¼ 855 MeV. We chose to increase the systematic
uncertainty on this data subset to 0.4% while keeping 0.3%
for all other data subsets. The reduced χ2 and confidence
levels for each data subset are displayed in Table V. The total
χ2 is 520.4 for 657 points, which might suggest that 0.3% is a
slight overestimate of the uncorrelated systematic, but it is a
small effect, with a 0.25% correction yielding a reduced χ2

above 1 by a similar amount.
Table VI shows the radius fit results for the rebinned

Mainz data with the statistical scaling factors from the
original analysis replaced by the constant 0.3% systematic
uncertainty (0.4% for spectrometer B at 855 MeV beam
energy).

This procedure introduces enough uncertainty to account
for random scatter of the points around the best-fit curve.
However, any errors that are correlated between multiple
points will bias the fit, and will not be fully reflected in this
procedure, making the resulting uncertainty estimate more
of a lower limit. While the impact of correlated uncertain-
ties will be examined separately, these rely on specific
models for kinematic dependences of any additional errors.
The inclusion of an even larger uncorrelated uncertainty
would allow the data to account for a range of correlated
errors, but the reduced χ2 would end up significantly
smaller than unity. For illustration, Table VII shows the
results where we apply a 0.5% uncorrelated systematic
uncertainty to every data point, instead of the 0.3%–0.4%
uncertainties in the previous fit.

TABLE V. Number of data points, reduced χ2, and confidence
level for each combination of spectrometer (A, B, or C) and beam
energy (in MeV) of the rebinned A1 MAMI data set. Columns 4
and 5 give the results after the inclusion of a uniform 0.25%
uncorrelated systematic; columns 6 and 7 give the results after the
inclusion of the final 0.3–0.4% uncorrelated systematic. See the
text for details.

Spec. Beam Nσ χ2red C.L. (%) χ2red C.L. (%)

A 180 29 0.59 96.1 0.46 99.4
315 23 0.54 96.4 0.44 99.1
450 25 1.52 4.8 1.00 46.7
585 28 1.54 3.4 1.03 42.8
720 29 1.05 39.9 0.87 66.4
855 21 0.92 56.8 0.77 76.0

B 180 61 0.85 79.8 0.65 98.3
315 46 1.05 38.5 0.76 88.5
450 68 0.90 71.7 0.67 98.2
585 60 0.61 99.2 0.50 99.96
720 57 1.29 6.9 0.97 53.7
855 66 1.88 0.002 1.15 19.6

C 180 24 0.88 63.3 0.68 88.0
315 24 1.16 27.2 0.78 76.8
450 25 1.53 4.3 1.08 35.9
585 18 0.83 66.3 0.65 86.4
720 32 1.11 30.2 0.90 62.3
855 21 0.79 73.7 0.62 90.5

TABLE VI. Results for fitting of the 657 point rebinned A1
MAMI data set with 0.3%–0.4% uncorrelated systematic un-
certainties at three values of Q2

max using the z expansion with
t0 ¼ 0, Gaussian priors with jakjmax ¼ jbkjmax=μp ¼ 5, kmax ¼
12. Nσ is the number of cross section points withQ2 < Q2

max, and
Nnorm is the number of normalization parameters appearing in the
data subset.

Q2
max (GeV2) rE (fm) rM (fm) χ2min Nσ Nnorm

0.05 0.856(27) 1.11(14) 110.5 176 13
0.5 0.895(14) 0.777(34) 442.0 568 29
1 0.908(13) 0.767(33) 520.4 657 31
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C. Correlated systematic uncertainties

We now consider systematic errors that do not scale with
statistical errors but that are also correlated across data
points. We begin by examining the procedure of Ref. [9].
We then examine modified evaluations of the radius
uncertainty associated with the correlated systematic
uncertainties.

1. Summary of the Mainz A1 approach

In the A1 MAMI data set, each cross section is
accompanied by two factors to account for systematic
uncertainties. The first is due to the bremsstrahlung energy
cut and is estimated by varying the cut. The second is meant
to account for efficiency changes, normalization drifts,
variations in spectrometer acceptance, and background
misestimations. This second class of systematics is inves-
tigated by applying a kinematic-dependent correction to the
data. The complete data set is refit after multiplying or
dividing the individual cross section ratios by the corre-
sponding factor for either the energy cut or correlated
systematic error, and the largest difference in radius
obtained from multiplying or dividing is taken as the
uncertainty. The total systematic uncertainty is then
obtained by summing in quadrature:

Δrsyst ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔrEcutÞ2 þ ðΔrcorrÞ2

q
: ð34Þ

The stated cross section uncertainties associated with the
variation in the energy cut are small, with a rms variation
of 0.08%. These mainly introduce an additional scatter
into the cross sections but have little impact on the radius
central values. For the entire data set, this translates to an
uncertainty in rE of 0.003 fm and in rM of 0.009 fm.
Explicit results are given in Table VIII.
In the A1 analysis, the kinematic-dependent correlated

systematic is assumed to depend linearly on the scattering
angle [cf. Eq. (35) below, with x ¼ θ], with a variation of
approximately 0.2% between the minimum and maximum
angles for each energy-spectrometer combination, except
the 855 MeV data with spectrometer C (covering large
angles), for which the variation is approximately 0.5%.17

We perform a more comprehensive study of correlated
systematics below.

2. Sensitivity to size or kinematic dependence

The correlated systematics mentioned above could
represent either experimental or theoretical uncertainties.
For example, they could be associated with radiative
corrections (beyond the energy cutoff variation), back-
ground subtraction [14], potential offsets in the absolute
beam energy or angle calibration, etc. The impact of such
uncertainties on the cross sections is difficult to constrain
below the 0.5% level, but because of the floating normal-
izations of the different data sets, these correlated system-
atic uncertainties only need to account for the variation
within a specific normalization subset.
While some sources of correlated corrections may be

well approximated by a correction that is linear in the
scattering angle over a single energy-spectrometer setting,
this is not the only possible kinematic dependence, and
effects may be relevant over larger or smaller subsets of
data or may be more important for one spectrometer.
Thus, we examine the impact of different prescriptions
for applying the correlated systematics. We take a 0.5%
variation in the systematic correction but vary the func-
tional form used to go from the minimum to the maximum
kinematic settings within data subsets, and we vary how the
full experiment is broken down. For the latter, we examine
three cases: 0.5% variation over the range of angles for
each spectrometer-energy combination (as done in the A1
analysis, with 18 separate angular ranges), 0.5% variation
over the full kinematic range for each spectrometer (with
three separate ranges), and 0.5% variation for each of the 34
normalization subsets.
We examine eight different approaches to varying the

kinematic dependence of the systematic correction over a
given data subset. We multiply and divide the cross sections
and uncertainties by the factor

1þ δcorr ¼ 1þ a
x − xmin

xmax − xmin
; ð35Þ

TABLE VII. Same as Table VI, but with 0.5% uncorrelated
systematic uncertainty.

Q2
max (GeV2) rE (fm) rM (fm) χ2min Nσ Nnorm

0.05 0.861(35) 1.05(18) 48.7 176 13
0.5 0.891(18) 0.768(43) 211.5 568 29
1 0.901(17) 0.758(42) 250.3 657 31

TABLE VIII. Results for changes in the radii under increases
(upper value for each Q2

max) or decreases (lower value) in the
energy loss cut. Fits are for the 657 point rebinned A1 MAMI
data set with 0.3%–0.4% uncorrelated systematic uncertainties at
three values of Q2

max using the z expansion with t0 ¼ 0, Gaussian
priors with jakjmax ¼ jbkjmax=μp ¼ 5, kmax ¼ 12.

Q2
max (GeV2) ΔrE (fm) ΔrM (fm)

0.05 −0.001 þ0.023
−0.005 0.000

0.5 þ0.003 þ0.003
−0.003 þ0.003

1 þ0.003 þ0.009
−0.002 0.000

17These values are deduced from the appropriate column of the
tabulated data set in the Supplemental Material of Ref. [9].
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where a ¼ 0.005 and x is a kinematic variable. We take the
variable x to be proportional or inversely proportional to θ,
Q2, or E0 or to be proportional to ε or 1= sin4ðθ=2Þ. Note
that for a given energy the correction goes from zero at one
extreme of the angular range for the data subset to 0.5% at
the other extreme; these different corrections only modify
the interpolation to intermediate angles. These illustrative
functional forms can be motivated from specific sources,
including kinematic offsets, rate-dependent effects, or
simplified models of radiative corrections. However, the
exact magnitude and precise functional form cannot be
fully determined without further input.
Taking the correction to be linear in the scattering angle,

x ¼ θ, and applied to each of the 18 energy-spectrometer
combinations, we find an uncertainty in the radii from fits
to the entire data set of ΔrE ¼ 0.017 fm, ΔrM ¼ 0.025 fm.
These are roughly 2.5 times larger than the values quoted
in the Mainz analysis, due mainly to the increase from
their ∼0.2% to our 0.5%. Other functional forms give
similar results, with the largest effect coming from scaling
the uncertainties with 1=Q2. The cases x ¼ Q2, 1=Q2, θ,
and 1=θ are given in Table IX. We take the case x ¼ θ to
represent a reasonable average of the functional forms
tested.

3. Impact of applying systematic corrections
to different data subsets

Applying the 0.5% correction over the full kinematic
range for each spectrometer, rather than over the range
corresponding to a single beam energy, yielded somewhat
smaller uncertainties for rE and somewhat larger uncer-
tainties for rM. There was also a wider spread in the

uncertainties arising from different functional forms in
Eq. (35), as expected for the interpolation over a wider
kinematic range. Applying the 0.5% variation only over
the angular range for each normalization subset yielded
uncertainties that were typically 20%–30% larger for rE
compared to the default approach, with smaller increases
for the uncertainty on rM. We note that similar studies using
the original 1422 point data set showed much larger
increases when applying the correction to the different
normalization subsets.
For simplicity, we have taken the systematic scaling

factor, a in Eq. (35), identical in sign (i.e., always
multiplying or always dividing by 1þ δcorr) and magnitude
for each data subset. However, many systematic effects
could differ for the different spectrometers, and the com-
bined effect might be enhanced or suppressed by the
assumption of identical corrections. When applied indi-
vidually to each spectrometer, the charge radius uncertainty
tends to be dominated by the corrections applied to
spectrometer B. For the magnetic radius, there tends to
be a significant cancellation between the corrections from
the three spectrometers, and the result of shifting all of the
spectrometers identically (used in Ref. [9] and shown in
Table IX) is much smaller than the result of evaluating the
corrections independently for each spectrometer. Because it
is not clear how much the spectrometer corrections may be
related, we do not enhance the uncertainty in rM. We
simply note that the uncertainty on rM shown in Table IX
could be a significant underestimate if the cancellation in
these tests does not reflect the true nature of any systematic
corrections.
To further investigate the impact of applying different

correlated systematic shifts to different data subsets, con-
sider a fit with distinct parameters a in Eq. (35) for different
data subsets. These are allowed to vary as part of the fit,
which then allows for subpercent kinematic variations in
each data subset. This could be done with separate
parameters for each spectrometer, for each of the 18
energy-spectrometer combinations or for each of the 34
different normalization subsets. For definiteness, we con-
sider a fit with an independent normalization and slope
parameter a for each of the 34 normalization subsets.18

This seems most consistent with the breakdown of uncer-
tainties into normalization, correlated systematics, and
uncorrelated systematics. For Q2

max ¼ 0.5 GeV2, we find
rE ¼ 0.891ð18Þ fm and rM ¼ 0.792ð49Þ fm, compared to
rE ¼ 0.895ð20Þ fm and rM ¼ 0.776ð38Þ fm from Table X
below, which includes both statistical and uncorrelated
systematic uncertainties. The changes in the extracted radii
are consistent with the previously assigned uncertainties

TABLE IX. Results for changes in the radii under multipli-
cation (top sign) or division (bottom sign) by a linear perturba-
tion as in Eq. (35) for each beam energy/spectrometer
combination, with x ¼ Q2, 1=Q2, θ, or 1=θ. Fits are for the
657 point rebinned A1 MAMI data set with 0.3%–0.4%
uncorrelated systematic uncertainties at three values of Q2

max
using the z expansion with t0 ¼ 0, Gaussian priors with
jakjmax ¼ jbkjmax=μp ¼ 5, kmax ¼ 12.

x Q2
max (GeV2) ΔrE (fm) ΔrM (fm)

Q2 0.05 ∓0.017 �0.021
0.5 ∓0.016 ∓0.022
1 ∓0.015 ∓0.026

1=Q2 0.05 �0.041 ∓0.046
0.5 �0.025 �0.016
1 �0.023 �0.021

θ 0.05 ∓0.022 �0.027
0.5 ∓0.018 ∓0.021
1 ∓0.017 ∓0.025

1=θ 0.05 �0.036 ∓0.039
0.5 �0.024 �0.018
1 �0.021 �0.022

18Note that in the Mainz analysis and our other fits there are 31
normalization parameters which appear in 34 different combi-
nations. For this test, we allow all 34 normalization factors to vary
independently.
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associated with the correlated systematics. The uncertain-
ties in this fit are somewhat smaller for the charge radius
and larger for the magnetic radius, in line with the
expectation based on applying the corrections separately
to each spectrometer. This may be a more realistic estimate
of the uncertainties and could potentially allow for a
combined analysis of Mainz and world data by including
all of the Mainz systematic uncertainties explicitly in the fit.
However, most likely neither the Mainz assumption that
the corrections are totally correlated between settings nor
the assumption here that they are totally uncorrelated is
entirely realistic. The analysis presented here is included
only as an independent estimate of the impact of allowing
the correlated systematic correction to differ for different
kinematic settings.

4. Final evaluation of the correlated systematics

It is difficult to determine an optimal approach for
evaluating the impact of unknown systematic errors or
corrections. The analysis strategy for the Mainz data set
involves a breakdown of the uncertainties into uncorrelated,
correlated, and normalization contributions and seems most
consistent with applying the correlated uncertainty to
each normalization subset. As noted above, this tends to
increase the uncertainty on rE in comparison to applying
the correlated uncertainty to each spectrometer or to each
spectrometer-energy combination. Similarly, applying cor-
rections independently to the three spectrometers tends to
decrease the uncertainty on rE and increase the uncertainty
on rM.
We choose to evaluate the correlated systematic error by

making simple, minimal changes to the A1 procedure. We
evaluate the impact of a linear angle-dependent correction
(x ¼ θ), applied to each beam-spectrometer combination,
but choose a fixed 0.4% variation. The 0.4% variation
(a ¼ 0.004) is approximately twice the typical value
considered in the A1 analysis, which seems a reasonable
estimate to account for additional systematic effects such
as TPE [12] and background subtraction [14]. At Q2

max ¼
1 GeV2, this choice yields uncertainties of 0.014 fm and

0.020 fm for rE and rM, respectively, four-fifths of the
uncertainties shown for x ¼ θ in Table IX.
These uncertainties are significant, but not sufficient to

explain the discrepancy with muonic hydrogen. Obtaining
larger shifts due to such corrections would require either a
systematic shift above the 0.4% assumed here, a correction
applied over smaller data subsets, a more extreme func-
tional form for such corrections than considered here, or a
conspiracy between shifts applied to different spectrometer-
beam combinations.

VII. RADIUS RESULTS FROM MAINZ AND
WORLD DATA

Having completed our systematics studies, we proceed
to perform a final fit to the Mainz data and compare with a
fit to other world data using the same theoretical frame-
work. We close this section with several consistency checks
on the fits, including a discussion of form factor priors,
radiative corrections beyond TPE, and the verification of
the fit consistency between different spectrometer-energy
subsets of the data.

A. Best fit radii from Mainz data

Let us summarize our final fit to the Mainz data set.
We use the 657 point rebinned data set of Sec. VI B 2,
with the SIFF sum of monopoles TPE correction from
Table I in place of the Feshbach correction applied in the
Mainz analysis and with the A1 statistical rescaling
replaced by a fixed 0.3%–0.4% uncorrelated systematic
as in Sec. VI B 3. We employ our default form factor
scheme, t0 ¼ 0, kmax ¼ 12, and Gaussian bound jakjmax ¼
jbkjmax=μp ¼ 5. The results are shown in Fig. 6 and
Table X. The “statistical” uncertainty accounts for
both counting statistics and the uncorrelated systematic
uncertainties. The energy cut correction is taken from
Table VIII. The correlated systematic uncertainty is
obtained from the x ¼ θ entry of Table IX, rescaled to
0.4%, as described above in Sec. VI C 4.

B. Best fit radii from world data

Now that we have a procedure for analyzing the Mainz
data, we perform a similar fit to the global set of world data,
excluding the Mainz data set. We perform this separate
analysis in part to obtain independent results as a check on
consistency between the Mainz data set and the world data
set. In addition, it is not clear that there is a reliable way to
perform a combined analysis of the Mainz data with other
experiments, given the very different manner in which
uncertainties from the Mainz experiment were presented
[11]. The inclusion of the correlated systematic correction
coefficients a in the fit, as discussed in Sec. VI C 3, yields a
fit to the Mainz data where all uncertainties are accounted
for in the fit and would allow a combined analysis with the

TABLE X. Final radius results from the fits to the rebinned 657
point A1 MAMI data set with the 0.3%–0.4% uncorrelated
systematic uncertainties in Fig. 6, for three values of Q2

max. The
uncertainties labeled “stat” include both the statistical and
uncorrelated systematic uncertainties, while those labeled
“ΔE” and “cor” account for the energy cut dependence and
the correlated systematic uncertainties, respectively.

Q2
max

(GeV2) rE (fm) rM (fm)

0.05 0.856ð27Þstatð5ÞΔEð18Þcor 1.11ð14Þstatð2ÞΔEð2Þcor
0.5 0.895ð14Þstatð3ÞΔEð14Þcor 0.776ð34Þstatð3ÞΔEð17Þcor
1 0.908ð13Þstatð3ÞΔEð14Þcor 0.766ð33Þstatð9ÞΔEð20Þcor
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world data. However, this approach allows the correlated
systematic corrections to be different for each subset, which
may not be significantly better than the assumption in the
Mainz analysis that these corrections are identical for
different subsets. We thus present separate fits to the
Mainz and world data sets so that the comparison can
be made without worrying about how to consistently treat
Mainz and world uncertainties.
For the analysis of world data, we take the χ2 function

χ2w ¼ χ2σ þ χ2b þ χ2n: ð36Þ

Here, χ2σ and χ2b are identical to those used for the Mainz
analysis, Eqs. (32) and (33). Because these experiments
provide a normalization uncertainty, we follow previous
analyses and include χ2n for the floating normalization
parameters assigned to each experiment, where

χ2n ¼
XNexp

i¼1

ð1 − ηi;fitÞ2
dη2i

: ð37Þ

Below Q2 ¼ 1 GeV2, there are Nexp ¼ 23 independent
experiments, and dηi ranges from 1.5% to 4.6%. For the
fit to the combined world and polarization data sets, we
include an additional term for the recoil polarization and
polarized target measurements of μpGE=GM,

χ2wþp ¼ χ2w þ
XNrat

i¼1

ðRi − Ri;fitÞ2
dR2

i
; ð38Þ

where Ri ¼ μpGEðq2i Þ=GMðq2i Þ.
The TPE model for the cross section data in these

analyses is the SIFF prescription with the form factor as
a sum of monopoles from Table I.19 As in the fit to the A1
MAMI data set, we find little difference in the rE results
using either a dipole form factor or the Feshbach correction
but significant differences in the rM results between
approaches. For Q2

max ¼ 1 GeV2, there are Nσ ¼ 363 cross
section data points, Nrat ¼ 41 polarization data points, and
Nexp ¼ 23 normalization parameters. Results for fits using
the z expansion with our default t0 ¼ 0, kmax ¼ 12, and
Gaussian bounds jakjmax ¼ jbkjmax=μp ¼ 5, are displayed
in Figs. 7 and 8. Table XI contains the radii values and error
budget for particular values ofQ2

max. The results in Table XI
indicate that the inclusion of the polarization data does not
significantly change the extracted radii. The results for the
electric radius are in agreement with the fit to the Mainz
data in Table X, while magnetic radius values disagree by
2.7σ if the uncertainties are added in quadrature.

FIG. 6. Extracted electric (top panel) and magnetic (bottom
panel) radii as functions of the kinematic cut Q2

max on the
momentum transfer for the rebinned 657 point A1 MAMI data
set, with 0.3%–0.4% uncorrelated systematic uncertainties, using
the z expansion with t0 ¼ 0, Gaussian priors with
jakjmax ¼ jbkjmax=μp ¼ 5, kmax ¼ 12. Error bands are statistical
and uncorrelated systematic only.

FIG. 7. Extracted electric (top panel) and magnetic (bottom
panel) radii as functions of the kinematic cut Q2

max on
momentum transfer for the world cross section data set, using
the z expansion with t0 ¼ 0, Gaussian priors with jakjmax ¼
jbkjmax=μp ¼ 5, kmax ¼ 12. Error bands include statistical and
systematic uncertainties.

19The use of different conventions in the world data to isolate
the IR finite TPE contribution, as detailed after Eq. (23), changes
rE and rM by less than 0.003 fm.
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C. Consistency checks

We have derived best-fit values for rE and rM from the
Mainz data set and from a world data set excluding
the Mainz data. We observe a significant dependence of
the Mainz radius on the Q2 range included in the fit as well
as a disagreement between the Mainz and world data
extractions of rM. Here, we describe several consistency
checks on the fits we have performed. We also consider the
possibility of a common systematic not specific to a
particular experiment and reexamine subleading radiative
corrections which become enhanced at large Q2.

1. Priors

Let us revisit the dependence on the class of form factors
over which the fit is performed, defined in the bounded z
expansion by the choice of kmax, t0, and coefficient bound.
As discussed above in Sec. V D 1, we have taken kmax

large enough such that the fit results are independent of the
precise value of kmax, removing this choice from the
discussion of prior dependence.

With our imposition of coefficient bounds, the chosen
form factor class depends on t0.

20 We have redone selected
fits with different scheme choices, e.g., t0 ¼ topt0 defined
after Eq. (8), finding negligible dependence on t0 in the
large kmax limit.
Regarding Gaussian vs sharp priors, we have employed

Gaussian priors for numerical ease but have checked that
our results are not significantly changed if sharp priors are
used. Central values for both rE and rM differ by a
negligible amount between the two priors, and the differ-
ence in radius errors is small.
We note that enforcing a bound on the radius parameters

could in principle bias the radius fits. For example, at t0 ¼
0 (or default choice), the squared radii are proportional to fit
parameters a1 and b1, and a bound on these parameters
would tend to bias fits toward smaller radii. We have
checked that fitting with the bounds on a1 and b1 removed
has a negligible impact.
Finally, consider the choice of the numerical value for

the bound. We choose a Gaussian bound of 5, i.e.,
jak=a0jmax ¼ jbk=b0jmax ¼ 5, for our fits, based on the
sum rules and studies discussed in Sec. III B. Our imple-
mentation of the bounds is meant to be very conservative,
especially at large k, where the coefficients must fall as
1=k4. We examined the impact of tightening the constraint
for larger values of k, taking a bound of 5 for k ¼ 1;…; 4
and a bound of 20/k for larger k values. This yields small
changes in the central radius values (< 0.3σ), with only
slightly smaller uncertainties. Because tighter high-k con-
straints have a minimal impact, for simplicity, we use a
fixed bound of jak=a0jmax ¼ jbk=b0jmax ¼ 5. More aggres-
sive priors or kmax truncations could be invoked to reduce
the statistical/fit uncertainty on the radius at the expense of
introducing model-dependent truncation errors. This may
allow for the possibility of reduced uncertainties in the
extracted radii, if one can verify that the reduction in
uncertainty coming from tighter bounds or truncations is
not replaced with a bias that yields a larger net uncertainty.
In this work, we are focused on minimizing any such biases
and so do not attempt to further constrain the fits.
We also fit the data and obtained statistical errors for

larger bounds, jak=a0jmax ¼ jbk=b0jmax ¼ 10. The change
in the extracted radii is very small for fits with large kmax
(in particular for our default kmax ¼ 12). No additional
uncertainty is applied as typical changes in the fit were
significantly smaller than the statistical or the correlated
systematic uncertainties. Fits in which kmax was not
sufficiently large to give fully converged results showed
larger changes but are not included in the final results
presented here.

FIG. 8. Same as Fig. 7 but with both the world polarization data
in addition to the world cross section data.

TABLE XI. Final radius results from the fits to the world cross
section data in Fig. 7 (first line) and to the combined world cross
section and polarization data in Fig. 8 (second line). There is no
polarization data below Q2 ¼ 0.05 GeV2.

Q2
max (GeV2) rE (fm) rM (fm) χ2 Nσ Nrat Nexp

0.05 0.846(42) 1.04(11) 52.9 111 0 8
0.5 0.910(25) 0.919(38) 163.4 269 0 15

0.927(24) 0.899(38) 234.5 269 30 15
1 0.916(24) 0.914(34) 260.9 363 0 23

0.919(23) 0.913(34) 366.0 363 41 23

20Modifications (multiplication by suitable analytic function
ϕ) to the z expansion can ensure that the form factor class is
rigorously independent of t0 in the large kmax limit if the bound is
placed on

P
ka

2
k. See, e.g., Ref. [75].
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2. Data set exclusions

To verify that the fits to the Mainz data set are not biased
by one particular subset of the data, we redo our best fits for
rE and rM 18 times, excluding in each fit a particular
energy/spectrometer combination. The results are displayed
in Tables XII and XIII for Q2

max ¼ 0.5 and 1 GeV2,
respectively. For the electric radius, the impact of each
subset exclusion is typically less than half of the total
statistical error (taken from Table X). Several subset
exclusions impact the magnetic radius at a level comparable
to or greater than the total statistical error. For the 180 MeV
data, excluding any one of the three spectrometers gives a
0.030–0.041 fm shift in rM. This is much larger than the
estimated systematic uncertainty and much larger than one
might expect based on an exclusion of 4%–11% of the data
points. While this suggests the need for a larger uncertainty
in the quoted value of rM, it is hard to quantify what
uncertainty would be appropriate as we are comparing
highly correlated fits. As such, we simply note this as
another potential issue, similar to the anomalous Q2

max
dependence observed in the extraction of the charge radius.

3. Subleading radiative corrections

We have used standard prescriptions for the electron
vertex and bremsstrahlung radiative corrections. As noted
above, in the Q2 ∼ GeV2 regime, it is critical to resum
the leading α log2ðQ2=m2

eÞ terms. However, numerically
enhanced subleading logarithms can also have a significant
impact, as illustrated by the following considerations. This

exercise is presented both as an illustration of how a
correction would need to deviate from the assumptions
of Sec. VI C 4 in order to reconcile muonic hydrogen
with electron scattering measurements of the charge radius
and to point out the potential impact of a class of naively
subleading but numerically enhanced radiative corrections.
Recall the explicit form for the sum of the one-loop elec-

tron vertex and real bremsstrahlung radiative corrections,

δ ¼ α

π

��
log

Q2

m2
e
− 1

�
log

ðηΔEÞ2
EE0 þ 13

6
log

Q2

m2
e
þ � � �

	
;

ð39Þ

where η ¼ E=E0 and the ellipsis denotes terms not con-
taining large logarithms. In the regimewhereΔE ∼me (and
E ∼ E0 ∼Q), the numerically relevant leading log term

δ ¼ α

π

�
−log2

Q2

m2
e
þ � � �

	
ð40Þ

is fixed by infrared divergences whose forms are dictated
by soft photon theorems [76]. Equivalently, an effective
theory renormalization analysis between hard (∼Q) and
soft (∼me) scales determines the relevant Sudakov form
factor. However, in practice, ΔE can be large compared to
me, introducing another scale into the problem, and
associated large logarithms not captured by the naive
exponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illustrate
the potential impact, let us consider in place of the ansatz
that makes the replacement (31) in Eq. (29) the following
expressions:

TABLE XII. Change in extracted rE and rM when each data
subset is excluded. Fits are for rebinned A1 MAMI data set with
0.3%–0.4% uncorrelated systematic uncertainties at Q2

max ¼
0.5 GeV2 (568 data points), using the z expansion with t0 ¼ 0,
Gaussian priors with jakjmax ¼ jbkjmax=μp ¼ 5, kmax ¼ 12.

Spec. Beam Nσ ΔrEðfmÞ ΔrMðfmÞ
A 180 539 −0.008 −0.031

315 545 þ0.001 −0.008
450 543 −0.004 þ0.008
585 540 0.000 −0.009
720 552 −0.003 −0.002
855 561 0.000 0.000

B 180 507 −0.001 þ0.034
315 522 þ0.001 þ0.003
450 500 þ0.003 −0.017
585 508 þ0.005 þ0.005
720 511 −0.002 −0.006
855 502 þ0.005 þ0.019

C 180 544 −0.002 þ0.030
315 544 0.000 −0.023
450 543 −0.006 þ0.032
585 561 −0.001 þ0.001
720 566 0.000 0.000
855 568 — —

TABLE XIII. Same as Table XII, but for Q2
max ¼ 1 GeV2 (657

data points).

Spec. Beam Nσ ΔrEðfmÞ ΔrMðfmÞ
A 180 628 −0.008 −0.035

315 634 −0.001 −0.007
450 632 −0.004 þ0.012
585 629 −0.002 −0.015
720 628 −0.004 −0.003
855 636 −0.001 −0.004

B 180 596 0.000 þ0.041
315 611 0.000 þ0.004
450 589 þ0.004 −0.016
585 597 þ0.005 þ0.006
720 600 −0.004 −0.007
855 591 þ0.007 þ0.020

C 180 633 −0.003 þ0.036
315 633 þ0.001 −0.017
450 632 −0.006 þ0.021
585 639 þ0.001 −0.000
720 625 −0.002 −0.005
855 636 þ0.001 þ0.001
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ð1þ δÞ →
�
1�

�
δþ α

π
log2

Q2

m2
e

���1

exp

�
−
α

π
log2

Q2

m2
e

�
:

ð41Þ
These expressions agree with the known corrections
through one-loop order and resum the leading logarithms
to all orders in perturbation theory when there is only one
large ratio of scales.
Figure 9 illustrates the impact of applying the correction

on the right-hand side of Eq. (41) in place of the ansatz
(31). For definiteness, the plot takes ΔE ¼ 10 MeV. As
indicated in the figure, the shifts in the radii under this
correction are a factor ∼2–3 larger than those allowed in
Table IX, which considered corrections varying by 0.5%
over beam-energy/spectrometer combinations. The varia-
tion of the correction (41) over beam-energy/spectrometer
combinations [i.e., the magnitude of a in Eq. (35)] ranges
between 0.9% and 2.6%, with an average 1.5%.

D. Final radius extractions

A global analysis combining Mainz and other world data
will artificially favor the Mainz data, as the uncertainties
associated with each cross section measurement include
only a small part of the total uncertainty. Thus, we provide
best-fit values separately for our analyses of the Mainz and

world data. To determine an optimal Q2
max, Fig. 10 illus-

trates the statistical uncertainty on rE and rM found using
our default fit both to the 1422 point Mainz data set and to
the world data set. For the Mainz data, the uncertainty is
minimized by taking Q2

max ≳ 0.5 GeV2, with negligible
improvement beyond this point. To maximize the statistical
power of the data, while minimizing potential systematic
effects in higher Q2 data, we take for definiteness the
Q2

max ¼ 0.5 GeV2 results of the previous sections.21

We then have for the Mainz data set, from Table X,

rMainz
E ¼ 0.895ð14Þð14Þ; rMainz

M ¼ 0.776ð34Þð17Þ;
ð42Þ

where the first error comes from counting statistics and
uncorrelated systematics and the second error comes from
variation of the bremsstrahlung energy cut and correlated
systematics. For the world data set, including cross section
and polarization measurements, we take a slightly higher
Q2

max ¼ 0.6 GeV2 based on Fig. 10. We then have

rworldE ¼ 0.916ð24Þ; rworldM ¼ 0.914ð35Þ: ð43Þ

FIG. 9 (color online). Illustrative fit with modified radiative
corrections given by Eq. (41) using ΔE ¼ 10 MeV. Lower and
upper dashed blue lines correspond to the plus sign and minus
sign in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI data set with 0.3%–0.4% uncorrelated systematic
uncertainties using the z expansion with t0 ¼ 0, Gaussian priors
with jakjmax ¼ jbkjmax=μp ¼ 5, kmax ¼ 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-dotted
red line indicates the muonic hydrogen value for rE.

FIG. 10 (color online). Statistical error on rE (bottom, red
squares) and rM (top, blue circles) as a function of Q2

max. Solid
symbols are for the 1422 point A1 MAMI data set, and open
symbols are for the world cross section and polarization data
set. Fits use the z expansion with t0 ¼ 0, Gaussian priors with
jakjmax ¼ jbkjmax=μp ¼ 5, kmax ¼ 12.

21A similar choice was made in Ref. [16] based on radius
sensitivity in the world data summarized by extracted form
factors [26]. Related argumentation for the Q2

max dependence
of radius sensitivity, based on continued-fraction expansion, is
given in Ref. [27].
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These values correspond to the same analysis as presented
in Table XI, but for a fit withQ2

max ¼ 0.6 GeV2. In contrast
to the Mainz data, the world data have combined statistical
and systematic uncertainties at the cross section level and
so have only a single combined uncertainty.
The electric charge radius results are consistent with

each other and between one and two standard deviations
higher than the atomic physics measurements based on
atomic hydrogen which yield rE ¼ 0.8758ð77Þ fm [1].
They are well above the muonic hydrogen result rE ¼
0.84087ð39Þ fm [4]. The magnetic radii differ significantly,
indicating an unresolved tension between the Mainz data
set and the world data set.
A simple combination of the results (42) and (43) yields

ravgE ¼ 0.904ð15Þ; ravgM ¼ 0.851ð26Þ: ð44Þ

While the Mainz and world data sets have comparable total
uncertainties, the high statistics of the Mainz data set imply
that in this case the errors are dominantly systematic. It is
not entirely clear that a simple average of the Mainz and
world results is appropriate [11,15]. The magnetic radii
differ by 2.7σ, suggesting an inconsistency between Mainz
and world cross sections that is ignored in averaging the
results. In addition, the simple combination assumes that
the uncertainties for the Mainz and world data analyses are
independent, which may not be the case if there is a
common error, e.g., due to approximations in the radiative
correction procedures.

VIII. SUMMARY AND DISCUSSION

We have performed a comprehensive analysis of elec-
tron-proton scattering data to determine the proton electric
and magnetic radii. Our analysis incorporates constraints of
analyticity and perturbative scaling which enforce model-
independent bounds on form factor shape. The bounded z
expansion ensures that the true form factor is guaranteed to
lie within the space of considered curves, while at the same
time being sufficiently restrictive to enable meaningful
radius extractions. We focused on the high-statistics Mainz
data set and performed a wide- ranging study of the impact
of potential systematic errors. We discussed potential flaws
in the procedure of rescaling statistical errors and addressed
these by rebinning data taken at identical kinematic settings
and applying a constant uncorrelated systematic error that
is not assumed to scale with statistics. We also reevaluated
the correlated systematic uncertainties, increasing the size
of these effects to include contributions neglected in the
original analysis and examining different approaches to
evaluating the impact of such corrections on the radius.
Table XIV displays the progression of results leading up

to the final Mainz radius values, as various improvements
are included in the analysis. The data exhibit several issues
that suggest the need for additional uncertainties but for
which it is difficult to quantify an appropriate correction or

uncertainty contribution. There is an unusually large
variation of rE and rM with the Q2 range included in
the fit, as illustrated in Fig. 6. In addition, the exclusion of
individual data sets, in particular at low beam energy, has an
unusually large impact on the extracted radii. Despite these
anomalous features, inclusion of the above improvements
leads to a proton charge radius that is larger than extracted
in the original A1 analysis [9] and, even with the larger
uncertainty, almost 3σ above the value rE ≈ 0.84 fm
inferred from muonic hydrogen. Based on our examination
of the systematic uncertainties, resolving this discrepancy
would require correlated systematic effects well above the
0.5% level that was considered in our analysis.
As an independent check of the radius, we performed the

analogous fit to the world data excluding Mainz data. The
systematic error treatment in the world data set differs in
that the systematic errors are included in each cross section
data point as opposed to deduced from a combination of
statistics rescaling and model-dependent correlated sys-
tematics analysis. It is thus not straightforward to perform a
meaningful combined fit, but observables such as radius
values may be compared to verify consistency. In this
comparison, the Mainz and world rE values are in good
agreement, and the rM values differ by 2.7σ. This is perhaps
not surprising, given the clear disagreement between the
Mainz form factors and world data, in particular for GM at
low Q2 [9]. Putting aside the discrepancy in magnetic radii,
the charge radius puzzle persists, with the world value
for rE 3σ high compared to muonic hydrogen and the
combined Mainz + world average discrepant at the 4.2σ
level. In light of this, it is also important to inquire to what
extent an underestimated systematic effect or theoretical
correction could be common to both data sets.
The theoretical input to the radius extraction consists

of specifying the form factor class and defining the
radiative correction model. We have examined in detail

TABLE XIV. Charge and magnetic radii as determined in
Ref. [9] compared to the sequence of fits leading to the final
values determined in this paper. For the Mainz data set, the first
error is a combination of statistics and uncorrelated systematics,
and the second error is from correlated systematics. The entry
labeled “alternate approach” is the test from Sec. VI C 3 which
evaluates the impact of the correlated systematic uncertainties as
part of the fit, rather than evaluating it separately.

Source rE (fm) rM (fm)

A1 spline [9] 0.879(5)(10) 0.777(13)(14)
Bounded z exp. Tab. III 0.920(9)(-) 0.743(25)(-)
þHadronic TPE Tab. IV 0.918(9)(-) 0.780(25)(-)
Rebin, 0.3%–0.4% syst. Tab. X 0.908(13)(-) 0.767(33)(-)
þ0.4% corr. syst. Tab. X 0.908(13)(14) 0.767(33)(22)
Q2

max ¼ 0.5 GeV2 (42) 0.895(14)(14) 0.776(34)(17)
(Alternate approach) VI C 3 0.891(18)(-) 0.792(49)(-)
New fit to world data (43) 0.916(24) 0.914(35)
Simple avg. (44) 0.904(15) 0.851(26)
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the uncertainties associated with form factor shape assump-
tions. We find a large impact from fitting to the physical
form factor class defined by the bounded z expansion,
compared to polynomial or inverse polynomial fits.
Somewhat surprisingly, the central value for the charge
radius goes in the direction of increasing tension between
the electron scattering and muonic hydrogen. We have
further examined the dependence of radius values on form
factor priors, finding that such a residual dependence is
small compared to other uncertainties.
The other theoretical input is the radiative correction

model, as described in Sec. IV. For the most part, the
corrections are known precisely or, for model-dependent
terms including hadronic vacuum polarization or proton
vertex corrections, the uncertainties are estimated to be
small compared to the uncertainty in the radius extraction.
Through one-loop order, the only essential model depend-
ence of the radiative corrections enters from the description
of the TPE. Varying over models in the literature reveals no
large dependence on the applied TPE correction. The Q2 ∼
GeV2 regime demands QED radiative corrections beyond
one-loop order. In the counting me ∼ ΔE, leading loga-
rithms are resummed by a standard ansatz. Subleading
logarithms then enter at a level expected to be contained
within the 0.4% systematic error budget. Possible enhance-
ments, either simply numerical or due to the hierarchy
ΔE ≫ me, could potentially give rise to larger effects. The
Mainz and world data sets differ in their treatment of
bremsstrahlung radiation and approximations based on (31)
and in the uncertainties ascribed to these effects. More
refined calculations, including a detailed examination of
experimental conditions and the interplay with background
modeling and subtraction, are required in order to fully
address this question [77].
Further constraints may be placed on the proton form

factors in combination with electron-proton scattering data.
In particular, the inclusion of either electron-neutron
scattering data, or both electron-neutron and pion-nucleon
data, allows the threshold tcut appearing in the definition of
the z expansion (8) for the isoscalar/isovector decomposi-
tion of the form factors to be raised from 4m2

π to either 9m2
π

or 16m2
π. This yields a smaller jzjmax and hence tighter

constraints on the form factors and smaller radius uncer-
tainties. Isospin violating corrections and systematic uncer-
tainties in the additional data must be properly accounted
for. These additional constraints by themselves cannot offer
a satisfactory resolution to the proton radius puzzle, since
they would then be inconsistent with the results of the fit
to the electron scattering data alone. Similar remarks hold
for the model spectral function analysis in Ref. [78]. We
note that it is not feasible to reconstruct accurate spectral
functions for form factors, ImGðtÞ, from scattering data,
since these have support at jzj ¼ 1.

Electron scattering data from a polarized target have
been taken and will provide low-Q2 measurements of
μpGE=GM, down to Q2 ≈ 0.02 GeV2, yielding a more
sensitive measurement of the magnetic form factor in
this region [79]. Future experiments will obtain low-Q2

(∼10−4–10−2 GeV2) proton form factor measurements less
prone to high-Q2 systematics [80,81]. Muon-proton scat-
tering promises to provide further insight [82]. Independent
of scattering measurements, new results are anticipated
from hydrogen spectroscopy that may impact the charge
radius discrepancy, including a new microwave measure-
ment of the 2S-2P Lamb shift [83], measurement of 2S-4P
transitions [84], and 1S-3S=3D transitions [85,86]. Next-
generation lattice QCD simulations may provide another
handle [87–91]; in particular, resolving the ∼8% discrep-
ancy between rE ≈ 0.84 fm of muonic hydrogen and
rE ≈ 0.91 fm of the simple fit to Mainz electron scattering
data is a viable present-day target. Such first-principles
calculations would be independent of radiative corrections
involving the electron, thus avoiding the reliance on
hadronic models for TPE, and detector-dependent model-
ing of radiative tails.
Regardless of its resolution, the proton radius puzzle

has important implications across particle, nuclear, and
atomic physics. For example, understanding and control-
ling systematic effects, including radiative corrections, at
the percent level will be critical for measurements at future
long baseline neutrino experiments [92]. Any deficiency
in the theoretical treatment of electron-proton scattering
will be exacerbated in neutrino applications by the
presence of additional flux uncertainties and nuclear
corrections. Much more intriguing is the possibility that
updated measurements and a detailed examination of the
radiative corrections will not resolve the discrepancy.
Already much work has been performed to find explan-
ations in terms of physics beyond the Standard Model
[7,8,93–98]. Future measurements will provide more
stringent tests of the discrepancy in electron scattering
and atomic hydrogen, with plans to directly compare
electron-proton and muon-proton scattering as a test of
lepton nonuniversality.
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