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We study leptonic CP violation from a new perspective. For Majorana neutrinos, a new parametrization
for leptonic mixing of the form V ¼ O23O12Ki

a ·O reveals interesting aspects that are less clear in
the standard parametrization. We identify several important scenario cases with mixing angles in agreement
with experiment and leading to large leptonic CP violation. If neutrinos happen to be quasidegenerate,
this new parametrization might be very useful, e.g., in reducing the number of relevant parameters of
models.
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I. INTRODUCTION

Observations of neutrino oscillations have solidly estab-
lished the massiveness of the neutrinos and the existence of
leptonic mixing. Since neutrinos are strictly massless in the
standard model (SM), these observations require neces-
sarily new physics beyond the SM. One is still far from a
complete picture of the lepton sector; i.e., many funda-
mental questions need to be answered. Not only the origin
of the leptonic flavor structure remains unknown, but also
the leptonic mixing differs tremendously from the observed
quark mixing. Moreover, the absolute neutrino mass scale
is still missing, one does not know whether neutrinos are
Majorana or Dirac particles, and the nature of leptonic CP
violation is still open (for a recent review, see Ref. [1]).
During the last decades, several attempts were made in

order to overcome these fundamental questions. In par-
ticular, one may impose family symmetries forbidding
certain couplings and at the same time explaining success-
fully the observed structure of masses and mixings, as well
as predicting some other observables [2–15]. Although
the structure of leptonic mixing is predicted in such models,
the mass spectrum turns out to be unconstrained by such
symmetries. The connection of leptonic mixing angles and
CP phases with neutrino spectra in the context of partially
and completely degenerate neutrinos was proposed in [16].
In an alternative approach, the anarchy of the leptonic
parameters is assumed so that there is no physical dis-
tinction among three generations of lepton doublets
[17–20].
From the analysis of neutrino oscillation experiments,

one can extract bounds for the light neutrino mass square
differences Δm2

21 ≡m2
2 −m2

1 and Δm2
31 ≡m2

3 −m2
1.

Recent cosmological observations have constrained the

sum of neutrino masses [21], which then imply an upper
bound of the lightest neutrino mass. All knowledge on the
light neutrino mixing is encoded in the Pontecorvo-Maki-
Nakagawa-Sakata matrix (PMNS) [22–24]. In order to
further analyze the leptonic flavor structure, it is essential
to parametrize all the entries of the full PMNS matrix in
terms of six independent parameters. It is clear that the
choice of a parametrization does not impose any con-
straints on the physical observables. However, parametri-
zations are an important tool—recall the usefulness of the
Wolfenstein parametrization [25] in the quark sector—and
may play a meaningful role in interpreting underlying
symmetries or relations that the data may suggest. In this
sense, different parametrizations are certainly equivalent
among themselves, although some particular patterns
indicated by the data are easer to visualize in some
parametrizations than in others. Moreover, special limits
suggested by some parametrizations are obfuscated in
others.
Among many parametrirmetrization is the most widely

used, and the six parameters are three mixing angles,
namely, θ12; θ13; θ23 ∈ ½0; π=2�, one Dirac-type phase δ,
and two Majorana phases α1; α2 in the following form:

VSP ¼ K ·O23 · KD ·O13 ·O12 · KM; ð1Þ
where the real-orthogonal matrices O12, O13, and O23

are the usual rotational matrices in the (1, 2), (1, 3), and
(2, 3) sector, respectively. The diagonal unitary matrices
KD and KM are given by KD ≡ diagð1; 1; eiαDÞ and
KM ≡ diagð1; eiαM1 ; eiαM2 Þ. Within the standard parametriza-
tion, one may recall that the consistent values for the
neutrino mixing angles θ12 and θ23 together with the
smallness of θ13 suggest that the neutrino mixing is rather
close to the tribimaximal mixing (TBM) [26]. It is
important to stress that this parametrization is (modulo
irrelevant phases) the same as the one used for the quark
sector, despite the fact that leptonic mixing is quite
different.
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In this paper, we study leptonic CP violation in the
context of a new parametrization for leptonic mixing of
the form

V ¼ O23O12Ki
α ·O; ð2Þ

where Ki
α ¼ diagð1; i; eiαÞ, and O is a real-orthogonal

matrix parametrized with three mixing angles. We then
have a total of six parameters, namely, five mixing angles
and one complex phase α, which is the required number of
independent parameters for describing the PMNS matrix.
We point out again that the nature of leptonic CP violation
is still an open question, and it is, thus, not yet clear what,
de facto, is the most adequate form to express or para-
metrize this phenomenon. Here, we choose to express
leptonic CP violation as combinations of mixing angles
and a unique complex phase α and will argue its usefulness
in certain cases.
Indeed, due to its specific form, this new parametrization

is particularly useful if neutrinos are quasidegenerate
Majorana fermions [27]. It may also reflect the specific
nature of neutrinos, suggesting that there could be a large
contribution to neutrino mixing and CP violation present in
the left part of the parametrization, possibly as a result of
some symmetry, while the right part, in the form of the
orthogonal matrix O, could come from some perturbative
effect, reflecting the fact that there are three neutrino
families with small mass differences and which result in
small mixing, comparable to the mixing in the quark sector
and the Cabibbo angle.
The new parametrization permits a new view of large

leptonic CP violation. It reveals interesting aspects that are
less clear in the standard parametrization. We identify five
scenario cases that lead to large Dirac-CP violation, and
which have mixing angles in agreement with experimental
data. A certain scenario (I-A) is found to be the most
appealing, since it only needs two parameters to fit the
experimental results on lepton mixing and provides large
Dirac-CP violation and large values for the Majorana-CP-
violating phases.
The paper is organized as follows. In the next section, we

prove the consistency of the new parametrization stated in
Eq. (2). In Sec. III, we motivate the use of this new
parametrization in the limit of degenerate or quasidegen-
erate neutrino spectrum. Then in Sec. IV, we present an
alternative view of large leptonic CP violation, using the
new parametrization for leptonic mixing, discuss its use-
fulness, and identify several important scenario cases.
Results are shown for mixing and CP violation. In
Sec. V, we give a numerical analysis of the scenarios
described in the previous section, and, for the quasidegen-
erate Majorana neutrinos, a numerical analysis of
their stability. Finally, in Sec. VI, we present our
conclusions.

II. A NOVEL PARAMETRIZATION

In this section, we present the new parametrization for
the lepton mixing matrix. First, we prove that any unitary
matrix can be written with the following structure:

V ¼ KSO23O12Ki
α ·O; ð3Þ

where KS ¼ diagðeiα1 ; eiα2 ; eiα3Þ is a pure-phase unitary
diagonal matrix, O23, O12 are two elementary orthogonal
rotations in the (23)- and (12)-planes, Ki

α ¼ diagð1; i; eiαÞ
has just one complex phase α (apart from the imaginary unit
i), and O is a general orthogonal real matrix described by
three angles.
Proof: Let us start from a general unitary matrix V and

compute the following symmetric unitary matrix S,

S ¼ V�V†: ð4Þ

Assuming that S is not trivial, i.e., it is not a diagonal
unitary matrix, one can rewrite the matrix S as

S ¼ K�
SS0K

�
S; ð5Þ

with a pure-phase diagonal unitary matrix KS ¼
diagðeiα1 ; eiα2 ; eiα3Þ so that the first row and the first column
of S0 become real. In fact, the diagonal matrix KS has
no physical meaning, since it only rephases the PMNS
matrix V on the left. This can be clearly seen in the
weak basis where the charged lepton mass matrix is
diagonal, and through a weak-basis transformation the
phases in KS can be absorbed by the redefinition of the
right-handed charged lepton fields. One can now perform a
(23)-rotation on S0 as

S00 ¼ O⊺
23S0O23; ð6Þ

with a orthogonal matrix O23 given by

O23 ¼

0
B@

1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23

1
CA; ð7Þ

so that the (13)- and (31)-elements of the resulting matrix
vanish. Making use of unitarity conditions, one concludes
that automatically the (13)- and (31)-elements become also
zero, and, therefore, the (12)-sector of S00 decouples, and
one obtains that

S0 ¼ O23O12 · diagð1;−1; e−2iαÞ ·O⊺
12O

⊺
23; ð8Þ

where O12 is given by
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O12 ¼

0
B@

cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

1
CA: ð9Þ

The matrix S0 is then written as

S0 ¼ U�
0U

†
0; ð10Þ

where the unitary matrix U0 is given by

U0 ¼ O23O12Ki
α; ð11Þ

with Ki
α ¼ diagð1; i; eiαÞ. Thus, given V, we can compute

explicitly the matrices KS, O23, O12, and Ki
α. In order to

obtain the form given in Eq. (3), we factorize the leptonic
mixing V as

V ¼ ðKSU0ÞW�
0; ð12Þ

and we demonstrate that W0 is real and orthogonal. By
definition, the matrix W0,

W0 ≡ ðU⊺
0KSÞ · V�; ð13Þ

is obviously unitary since it is the product of unitary
matrices. Let us then verify thatW0 is indeed orthogonal by
computing the product

W0 ·W
⊺
0 ¼ ðU⊺

0KSÞ · V�V† · ðKSU0Þ ¼ U⊺
0KSSKSU0;

ð14Þ

where we have used Eq. (4). Inserting into this expression
the other expression for S given in Eq. (5) and making use
of Eq. (10), we find

W0 ·W
⊺
0 ¼ 1; ð15Þ

which means thatW0 is real and orthogonal. We, thus, write
W0 explicitly as

W0 ≡ ðU⊺
0KSÞ · V� ≡O; ð16Þ

where the O stands for the fact that it is a real-orthogonal
matrix. Finally, rewriting this equation, we find for the
general unitary matrix V,

V ¼ KS ·U0 ·O; ð17Þ

or with Eq. (11),

V ¼ KS ·O23O12Ki
α ·O: ð18Þ

We have, thus, derived a new parametrization for the lepton
mixing matrix, i.e.,

V ¼ O23O12Ki
α ·O; ð19Þ

where we have discarded the unphysical pure-phase matrix
KS. It is clear that, as with the standard parametrization in
Eq. (1), this parametrization has also six physical param-
eters, but some are now of a different nature: two angles in
O23 and O12, three other angles in O, but just one complex
phase α in Ki

α. From now on, we use explicitly the
following full notation

V ¼ OL
23O

L
12 · K

i
α ·OR

23O
R
13O

R
12; ð20Þ

where we have identified each of the elementary orthogonal
rotations, either on the left or on the right of the CP-
violating pure-phase matrix Ki

α, with a notation super-
script L;R.
The angles θL23 and θL12 can be easily calculated from

the PMNS matrix V as

j tan θL23j ¼
r3
r2
; j tan 2θL12j ¼

ðr22 þ r23Þj cos θL23j
r1r2

;

ð21Þ
where the real numbers r1, r2, and r3 are given by

r1 ¼ jV2
11 þ V2

12 þ V2
13j; ð22Þ

r2 ¼ jV11V21 þ V12V22 þ V13V23j; ð23Þ

r3 ¼ jV11V31 þ V12V32 þ V13V33j: ð24Þ

The phase α in Kα
i is given by arg½ðO⊺

23S0O23Þ33�.

A. CP violation

In the standard parametrization (SP), we may distinguish
two types of CP-violating phases: Dirac- and Majorana-
CP-violating phases. The Dirac-type phases are determined
by the four independent arguments of the quartets
argðV1iVkjV�

1jV
�
kiÞ, with i ≠ j ≠ k, and the Majorana-type

phases are given by the six independent arguments of the
bilinears argðVijV�

ikÞ, with j ≠ k. In the SP, these phases are
the minimal CP-violating quantities when neutrinos are
Majorana particles [28–34].
However, we remind again that the nature of leptonic CP

violation is still open, and it is, thus, not yet clear what
could be the most adequate form to express or parametrize
this phenomenon. Here, as an alternative, we choose to
express CP violation in a different way, namely, as
combinations of mixing angles and the unique complex
phase α. It is worth to note that, in our new parametrization,
even when α ¼ 0 or π, we still have CP violation due to the
presence of an imaginary unit in the diagonal matrix Kα

i . In
particular, setting α ¼ 0 the Dirac-CP-violating invariant
ICP ≡ ImðV12V23V�

22V
�
13Þ yields
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ICP ¼ 1

32
ðsin 2θL23 cos 2θR23ðsin2θL12 cos θL12 sin 2θR12ð3 sin 3θR13 − 5 sin θR13Þ

þ 8sin2θL12 cos θ
L
12 cos 2θ

R
12 cos 2θ

R
13 sin 2θ

R
23 þ ð7 cos θL12 þ cos 3θL12Þ sin 2θR12 sin θR13cos2θR13Þ

þ 2 sin 2θL12 cos 2θ
R
23 cos θ

R
23ðsin 2θR12 cos θR13ðcos 2θR13 − 3Þ cos 2θR23 þ 2cos2θR13Þ − 2 cos 2θR12 sin 2θ

R
13 sin 2θ

R
23ÞÞ;

ð25Þ

which vanishes when θL12 ¼ θL23 ¼ 0 [i.e., omitting the left
orthogonal matrices in Eq. (20)] and when θL12 ¼ θR23 ¼ 0.

B. Other parametrizations

It should also be mentioned that lepton mixing matrices
expressed as a product of two orthogonal and pure-phase
diagonal matrices OKO0 were first proposed in Ref. [35],
however, with limited usefulness, and later in Ref. [36] in
the context of a type-I seesaw. In regard to this, we point
out, following a similar reductive procedure outlined here,
that one can also obtain other forms [from the one in
Eqs. (19) and (20)] for the parametrization of the lepton
mixing matrix. E.g., one can have a parametrization where
V ¼ O23O13Kα

i ·O, with Kα
i ¼ diagð1; eiα; iÞ, or even

other variations such as V ¼ O12O23
~Kα
i ·O, with

~Kα
i ¼ diagðeiα; i; 1Þ. On the contrary, and due to its specific

form, it will be shown that our new parametrization of
Eqs. (19) and (20) is particularly useful.

C. Usefulness

Why a new parametrization? Does it add anything
useful to the standard parametrization? We give several
motivations.
First, we still do not know whether neutrinos are

hierarchical or quasidegenerate. However, if neutrinos
happen to be quasidegenerate, then the new parametrization
is very useful.
Second, in this case, the new parametrization may reflect

some specific nature of neutrinos. Heuristically, it may
suggest that there is some large contribution to neutrino
mixing and CP violation present in the left part OL

23O
L
12K

i
α

of Eq. (20), possibly as a result of some symmetry, while
the right part in the form of the real-orthogonal matrix
O ¼ OR

23O
R
13O

R
12 with the three angles could come from

some perturbative effect, reflecting that there are three
neutrino families with small mass differences and results in
small mixing. Indeed, we consider that our parametrization
incorporates well-diverse fixed structures for the lepton
mixing [26,37–39] in the limit V13 ¼ 0, and, in particular,
the case of TBM which, e.g., in [40,41] occurs as the result
of a family symmetry. If such a family symmetry exists,
once it is broken at the electroweak scale, the reactor angle
gets a small contribution of the order of the Cabibbo angle,
possibly related to the small neutrino mass differences.

The third motivation is that this parametrization permits
a different view of large leptonic CP violation from a new
perspective. It reveals interesting aspects that were less
clear in the standard parametrization. The Dirac- and
Majorana-CP-violating quantities are here simply related
to just one complex phase α present in Ki

α ¼ diagð1; i; eiαÞ.
We discuss these issues in the next subsection, first
in the limit of degenerate and quasidegenerate Majorana
neutrinos.

III. DEGENERATE AND QUASIDEGENERATE
MAJORANA NEUTRINOS

A. Degenerate neutrino masses

In the weak basis where the charged lepton mass matrix
is diagonal and real positive, the matrix S0 has a special
meaning in the limit of exact neutrino mass degeneracy
[27,42]. In this limit, the neutrino mass matrixM0 assumes
the following form:

M0 ¼ μS0 ¼ μU�
0U

†
0; ð26Þ

where μ is the common neutrino mass. The matrix U0

accounts for the leptonic mixing. Thus, within the para-
metrization given in Eq. (19), degeneracy of Majorana
neutrino masses corresponds to setting the orthogonal
matrix O to the identity matrix. In the limit of exact
degenerate neutrinos, the orthogonal matrix O on the right
of the new parametrization in Eq. (19) has no physical
meaning. It can be absorbed in the degenerate neutrino
fields. This has motivated our proposal for the use of the
new parametrization.
As stated in Ref. [27], in the limit of exact degeneracy for

Majorana neutrinos, leptonic mixing and CP violation can
exist irrespective of the nature of neutrinos. Leptonic
mixing can only be rotated away if and only if there is
CP invariance and all neutrinos have the same CP parity
[43,44]. This is clearly the case when S0 is trivial. It is also
clear that even in the limit of exact degeneracy with CP
conservation, but with different CP parities (α ¼ 0 or
α ¼ π

2
), one cannot rotate U0 away through a redefinition

of the neutrino fields. Thus, even in this limit (within the
degeneracy limit), leptonic mixing may occur.
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B. Quasidegenerate neutrino masses

The usefulness of the new parametrization is particularly
interesting if neutrinos are quasidegenerate. When the
degeneracy is lifted, i.e., for quasidegenerate neutrinos,
the full neutrino mass matrix becomes slightly different
from the exact limit in Eq. (26):

M ¼ μðS0 þQεÞ; ð27Þ
where Qε is some small perturbation. In general, this
perturbation may significantly modify the mixing result
for the exact case in Eq. (26). In view of our new
parametrization, now the full lepton mixing matrix diag-
onalizing M is described by

V ¼ U0
o ·O; ð28Þ

where U0
o is of the same form as Uo. It is not guaranteed

that thisU0
o is the exactly same asUo. It may differ fromUo

because of the perturbation, just as the matrix O, which
can be either a small or possibly large general orthogonal
matrix. In Sec. V, we shall quantify this more explicitly,
using numerical simulations.

C. CP violation of quasidegenerate neutrinos

It was pointed out in Ref. [27] that if neutrinos are
quasidegenerate (or even exact degenerate), CP violation
continues to be relevant. This can be understood if one
defines weak-basis invariant quantities sensitive to CP
violation. An important invariant quantity in this case is

Gm ≡ jTrð½MvHlM�
v; H�

l �3Þj; ð29Þ

where Hl ¼ MlM
†
l is the squared charged lepton mass

matrix. Contrary to the usual quantity I¼Trð½M†
vMv;Hl�3Þ,

which is proportional to the Dirac-CP-violating quantity
ICP, we find that the quantity Gm signals CP violation
even if neutrinos are exact degenerate. In fact, we obtain in
this limit

G≡Gm

Δm
¼ 3

4
j sin 2θL12 sin 4θL12sin22θL23 sin 2αj; ð30Þ

where

Δm ≡ μ6ðm2
τ −m2

μÞ2ðm2
τ −m2

eÞ2ðm2
μ −m2

eÞ2; ð31Þ

with μ the common neutrino mass. θL12 and θL23 are,
respectively, the angles of OL

12 and OL
23 in Eq. (20), and

α is the complex phase of Ki
α ¼ diagð1; i; eiαÞ. Obviously,

with the new parametrization for the lepton mixing in
Eq. (20), this invariant takes on a new and relevant
meaning. It is a curious fact that G is so specifically
(and in such a clean way) dependent on only, what we have
called, the left part of Eq. (20) and on sin 2α.

D. Quasidegenerate neutrinos and double-beta decay

Another result which we obtain in the case of quaside-
generate neutrinos is the fact that the parameter Mee
measuring double-beta decay depends in our new para-
metrization mainly on the matrix Uo. From Eq. (27), it is
clear that

jMeej ¼ jμðSoÞ11j ¼ jμ cos 2θL12j; ð32Þ

in zeroth order in ε. This is an interesting result for Mee
when confronting it with the one calculated directly from
the standard parametrization in Eq. (1). In the case of
quasidegenerate neutrinos, we have the approximation

jMeej ¼ jμðcos2θsol þ e2iα
M
1 sin2θsolÞj; ð33Þ

neglecting the terms with V2
13.

The point here is that, with possible separate future
results for μ and Mee, we may deduce if there is any
significant Majorana-type phase αM1 . Subsequently, by
comparing Eq. (33) with Eq. (32), we may know if θL12
can be identified with the solar mixing angle θsol. If,
however, this is not the case, then we also know that the
perturbation in Eq. (26) produces large effects. E.g.,
suppose that inserting the (future) experimental results in
Eq. (33) yields αM1 ¼ 0, which from Eq. (32) results in
θL12 ¼ 0. Then a large solar angle must come mainly from
the O in Eq. (19).

IV. LEPTONIC CP VIOLATION FROM
A NEW PERSPECTIVE

Maximum Dirac-CP violation in lepton mixing can be
obtained in the standard parametrization of Eq. (1) when
choosing the Dirac phase αD ¼ π=2 in the diagonal unitary
matrix KD ¼ diagð1; 1; eiαDÞ. If neutrinos are Dirac, then
there is no other form of leptonic CP violation. If neutrinos
are Majorana, then there are two more CP-violating phases
in KM ¼ diagð1; eiαM1 ; eiαM2 Þ. These Majorana phases may
be large or small, and one finds that leptonicCP violation is
apparently limited to these two considerations if one
chooses the standard parametrization. On the contrary, if
one switches to the new parametrization of Eq. (20), one
gets a much richer structure for leptonic CP violation,
particularly, if neutrinos are quasidegenerate.
The experimentally measured mixing angles are given by

the paramenters of the new parametrization as

jV13j2 ¼ s2
θL
12

c2
θR
13

s2
θR
23

þ c2
θL
12

s2
θR
13

; ð34aÞ

sin2 θsol ¼
s2
θL
12

ðcθR
12
cθR

23
− sθR

12
sθR

13
sθR

23
Þ2 þ c2

θL
12

s2
θR
12

c2
θR
13

1 − jV13j2
;

ð34bÞ
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sin2θatm ¼
c2αc2θR

13

c2
θR
23

s2
θL
23

− 2cαcθL
23
cθR

13
cθR

23
sθL

12
sθL

23
sθR

13
þ c2

θL
23

s2
θL
12

s2
θR
13

þ c2
θR
13

ðsαcθR
23
sθL

23
þ cθL

12
cθL

23
sθR

23
Þ2

1 − jV13j2
; ð34cÞ

where we have used the identification cX ¼ cosX and
sX ¼ sinX. As will be shown, these expressions simplify
significantly for several cases near to the experimental data
and with large leptonic CP violation.
Next, we identify these important cases leading to large

CP violation in lepton mixing using the new parametriza-
tion of Eq. (20). We do this by fixing some of the
parameters and assume this fixing would arise from a
preexisting model and/or symmetry. We choose a starting
point for the mixing matrix that has the same mixing angles
as the tribimaximal mixing,

jV13j2 ¼ 0; sin2θatm ¼ 1=2; sin2θsol ¼ 1=3:

ð35Þ

These values are close to the experimental results at the 1σ
level [45],

0.439 < sin2θ23 < 0.599;

0.0214 < sin2θ13 < 0.0254;

0.307 < sin2θ12l < 0.339 ð36Þ

given in terms of the standard paramatrization angles. Is
easy to observe that 1=3 is an allowed value for sin2 θ12, but
values slightly lower are better. The central value for
sin2 θ23 is above 1=2, but values both below and above
are preferred.
Given the closeness of tribimaximal mixing with exper-

imental values, we fix some of the parameters such that
we can reproduce TBM to zeroth order. The remaining
parameters are then small and can be treated as perturbation
parameters θij ¼ εtij, with ε of the order the Cabibbo
angle. We identify five different cases. In Table I, we show
the values for the parameters being used in our five different
cases. Table II shows the explicit expression for the mixing
angles in terms of the perturbation parameters εtij for each
of the cases. All cases can have large Dirac-CP violation.

A. Scenario I-A

This scenario yields in leading order a value for the
Dirac-type invariant ICP, which may be large:

ICP ¼ ε

6
ffiffiffi
3

p j
ffiffiffi
2

p
tR23 cos α − 2tR13 sin αj: ð37Þ

All experimental results on mixing, including the central
value for the solar angle, can be fit with just the phase α and
the small parameter combination εtR23 of the order of the
Cabibbo angle. If we take the limit of small tR12 and tR13, a
nonzero value for α is necessary to have a value of
sin θatm ≠ 1=2. In addition, if the tR12 and tR13 are small,
the Majorana-CP-violating phases are large (∼π=2). We
find for the Majorana phases:

tan αM1 ¼
ffiffiffi
2

p

εtR12
; tan αM2 ¼ tR23ffiffiffi

2
p

tR13
: ð38Þ

Clearly, the Majorana phases will decrease if ðtR12; tR13Þ
assume substantial values, but that will increase the
value for the solar angle. We find for the double-beta
decay parameter (the leading-order approximation) for the
quasidegenerate case,

Mee ¼
μ

3
: ð39Þ

Another important aspect of this scenario is the form the
neutrino mass matrix for the quasidegenerate case. In
leading order, we find

M ¼ μ

3

0
BB@

1 −2 −2
−2 −1þ3e−2iα

2
1þ3e−2iα

2

−2 1þ3e−2iα
2

−1þ3e−2iα
2

1
CCA: ð40Þ

Furthermore, we obtain for the CP-violating quantity G
defined in Eq. (30):

G ¼ 4

9
j sinð2αÞj: ð41Þ

B. Scenario I-B

The CP invariant is in this case (in leading order) given
by

ICP ¼ ε

3
ffiffiffi
2

p jtR13 cos αj: ð42Þ

TABLE I. Values of the parameters for each case.

OL
23 OL

12 OR
23 OR

13 OR
12

I-A -π=4 sin−1ð1= ffiffiffi
3

p Þ εtR23 εtR13 εtR12
I-B -π=4 εtL12 εtR23 εtR13 sin−1ð1= ffiffiffi

3
p Þ

I-C -π=4 sin−1ð1=2Þ εtR23 εtR13 sin−1ð1= ffiffiffi
6

p Þ
II-A εtL23 εtL12 -π=4 εtR13 sin−1ð1= ffiffiffi

3
p Þ

II-B sin−1ð1= ffiffiffi
3

p Þ εtL12 -π=4 εtR13 sin−1ð1= ffiffiffi
3

p Þ
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If we want to avoid the central value for the atmospheric
mixing angle, then it is clear that we need at least three
parameters α; tR13; t

R
23 to fit the experimental results on

mixing and large Dirac-CP violation. The central value
for the solar angle cannot be achieved, not even with the use
of all parameters. The Majorana-CP-violating phases are

tan αM1 ¼ 3ffiffiffi
2

p εtL12; tan αM2 ¼ εtL12ffiffiffi
2

p
�
1þ

ffiffiffi
2

p
tR23

tR13

�
:

ð43Þ
This scenario produces small Majorana-CP-violating
phases. If neutrinos are quasidegenerate, we find for the
neutrino mass matrix, in leading order

M ¼ μ

0
BB@

1 0 0

0 sin α cos α

0 cos α − sin α

1
CCA: ð44Þ

The double-beta decay parameter and the CP-violating
quantity G read (in leading order)

Mee ¼ μ and G ¼ 0; ð45Þ
respectively.

C. Scenario I-C

An intermediate scenario where both OL
12 and OR

12 are
large. We choose one of the many combinations of these
two angles to obtain TBM mixing. Then, three parameters
are fixed, which leaves only three free parameters. This
scenario yields for ICP,

ICP ¼ ε

24
jð

ffiffiffiffiffi
15

p
tR13 þ

ffiffiffi
3

p
tR23Þ cos αþð

ffiffiffi
5

p
tR23 − 3tR13Þ sin αj:

ð46Þ
Again, we may have large Dirac-CP violation. If we want
to avoid the central value for the atmospheric mixing angle,
it may be seen here that we only need two parameters: the
phase α and one of the remaining tij to fit the experimental
results on mixing, but remember that this depends on the
choice of the two large angles of OL

12 and OR
12. In this

context, the Majorana-CP-violating phases can be large:

tan αM1 ¼ 3

ffiffiffi
3

5

r
; tan αM2 ¼

ffiffiffi
3

p ðtR13 þ
ffiffiffi
5

p
tR23Þ

3
ffiffiffi
5

p
tR13 − tR23

: ð47Þ

We find for the quasidegenerate limit the neutrino mass
matrix, the double-beta decay parameter, and the CP-
violating quantity G, in leading order:

M ¼ μ

2

0
BBBBB@

1 −
ffiffi
3
2

q ffiffi
3
2

q

−
ffiffi
3
2

q
2e−2iα−1

2
2e−2iαþ1

2ffiffi
3
2

q
2e−2iαþ1

2
2e−2iα−1

2

1
CCCCCA
; ð48Þ

Mee ¼
μ

2
; G ¼ 9

16
j sin 2αj: ð49Þ

D. Limit case II

As in limit case I, we may construct here two opposite
and distinctive scenarios: a scenario whereOL

23 is large, or a
scenario where OR

23 is large. The scenario where OL
23 is

large but where OR
23 is small, is already contained in the

scenario I-A of limit case I (modulo some slight modifi-
cations which produce equivalent results). It is, therefore,
sufficient to focus on a scenario whereOL

23 is small andOR
23

is large or exceptionally on a scenario between, where both
are large.

E. Scenario II-A

A scenario where OL
23 is small and OR

23 is large. The
Dirac-CP invariant is given (in leading order) by

ICP ¼ ε

6
jtL12j: ð50Þ

In this case, it is clear that we cannot achieve a central
value for the solar angle; we need tL12 ≠ 0 to have a nonzero
value for ICP, but doing so will increase the value of the
solar angle above 1σ. The Majorana-CP-violating phases
are also obtained in leading order

tan αM1 ¼ 3

2
εtR12; tan αM2 ¼ tL12ffiffiffi

2
p

tR13
; ð51Þ

TABLE II. Mixing angles as a function of the perturbed parameters tij.

jV13j2 sin2θatm sin2 θsol

I-A ε2

3
ð2ðtR13Þ2 þ ðtR23Þ2Þ 1

2
− εffiffi

3
p ðtR13 cos α −

ffiffiffi
2

p
tR23 sin αÞ 1

3
þ ε2

9
ð3ðtR12Þ2 þ 2ðtR13Þ2 − 2ðtR23Þ2Þ

I-B ε2ðtR13Þ2 1
2
þ εtR23 sin α − ε2tL12t

R
13 cos α

1
3
þ ε2ðtL

12
Þ2

3

I-C ε2

4
ð3ðtR13Þ2 þ ðtR23Þ2Þ 1

2
− ε

2
ðtR13 cos αþ ffiffiffi

3
p

tR23 sin αÞ 1
3
þ ε2

24
ð3ðtR13Þ2 − 2

ffiffiffi
5

p
tR13t

R
23 − 3ðtR23Þ2Þ

II-A ε2

2
ððtL12Þ2 þ 2ðtR13Þ2Þ 1

2
þ εtL23 sin α − ε2ðtL

12
Þ2

4
1
3
þ ε2ðtL

12
Þ2

6

II-B ε2

2
ððtL12Þ2 þ 2ðtR13Þ2Þ 1

2
þ

ffiffi
2

p
sin α
3

− ε2

12
ððtL12Þ2 − 8tL12t

R
13 cos αÞ 1

3
þ ε2ðtL

12
Þ2

6
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where only the second one can be large. For quasidegen-
erate neutrinos, we find for the neutrino mass matrix, the
double-beta decay parameter and the CP-violating quantity
G in leading order:

M ¼ μ1; Mee ¼ μ; G ¼ 0: ð52Þ

F. Scenario II-B

An intermediate scenario where both OL
23 and OR

23 are
large. Also, for this case, only two parameters are needed,
e.g., the perturbative parameter tR13 and the phase α, which
has to be small of the order of the Cabibbo angle to fit the
experimental results on atmospheric mixing and large
Dirac-CP violation, but again, here this depends on the
choice for the two large angles of OL

23 and OR
23. In first

order, we have for the Dirac-CP invariant:

ICP ¼ ε

18
jtL12 þ 4tR13 cos αj: ð53Þ

As in all of the previous cases, one can have a large value
for ICP. For this case, we can make a simple (leading-order)
prediction if we take tL12 much smaller than tR13 and α small:

ICP ¼ 2

9
jV13j: ð54Þ

The Majorana-CP-violating phases are obtained in leading
order

tan αM1 ¼ 3

2
εtR12; tan αM2 ¼ tL12ffiffiffi

2
p

tR13
; ð55Þ

where again, the second one can be large. For quaside-
generate neutrinos, we find for the neutrino mass matrix,
the double-beta decay parameter and the CP-violating
quantity G in leading order:

M ¼ μ

0
BB@

1 0 0

0 e−2iα−2
3

ffiffi
2

p ð1þe−2iαÞ
3

0
ffiffi
2

p ð1þe−2iαÞ
3

2e−2iα−1
3

1
CCA; ð56Þ

Mee ¼ μ; G ¼ 0: ð57Þ

As already mentioned in this section, it can be seen from
Table II that in the cases I-B, II-A, and II-B, the value for
sin2 θsol cannot be lower than 1=3, which is not in
agreement with the experimental results given Eq. (36)
at the 1σ level. This is, of course, due to our initial choice
in Eq. (35), which corresponds to exact tribimaximal
mixing. We stress that some of our conclusions with
regard to the different scenarios may depend significantly
on the initial starting point, while others do not. However,
with regard to scenario I-A, very similar results are

obtained if one chooses as starting points, e.g., the golden
ratio mixing of type I [39] or the hexagonal mixing
[37,38], instead of TBM.

G. Scenario I-A and the standard parametrization

We are tempted to find scenario I-A the most appealing.
It only needs two extra parameters to fit the experimental
results on lepton mixing and provides large Dirac-CP
violation and large values for the Majorana-CP-violating
phases. The other scenarios need more parameters or
need more adjustment. We also point out that scenario
I-A would not appear so clearly if one used a different
parametrization, e.g., one of the parametrizations men-
tioned just after Eq. (20).
Given the relevance of scenario I-A, we shall now

reproduce this scenario in the standard parametrization
given in Eq. (1), where the TBM scheme is obtained with

VSP ¼ Oπ=4
23 · KD ·O13 ·O

ϕo
12 ;

sinϕo ¼
1ffiffiffi
3

p ; ð58Þ

with the angle of O13 put to zero. For simplicity, we
leave out the Majorana phases. In this parametrization, in
order to have a value for jV13j ≠ 0, we have to switch on
the angle O13. However, for the unitary matrix in
Eq. (58), one may check that even then, jV23j ¼ jV33j,
irrespective of the value of the angle of O13. Thus, using
this remaining parameter, one cannot adjust the atmos-
pheric mixing angle unless, e.g., from the start, the angle
of the O23 is chosen to be different from π=4. One has to
correct the atmospheric mixing angle, or from the
beginning, or afterwards, with some additional extra
contribution which modifies the TBM limit. It is clear,
in the standard parametrization, adjusting the TBM limit
for the atmospheric mixing angle is not possible using
the remaining parameters. This is in clear contrast with
our new parametrization and what we obtain for scenario
I-A, where the parameters available in the actual para-
metrization, in this case, via suitable choice for of the
parameter εt23 in Eq. (58), at the same time adjust the
atmospheric mixing angle, generate a small value for
jV13j, and make possible large values for CP violation.
Possibly, this may be useful for some models.

V. NUMERICAL SIMULATION AND STABILITY

For completeness, we give a numerical analysis
of some of the scenarios described in the previous
section. We choose a fixed scheme, the TBM scheme
constructed with the five different scenarios. More
precisely, we test

DAVID EMMANUEL-COSTA et al. PHYSICAL REVIEW D 92, 013012 (2015)

013012-8



I-A∶ Vo ¼ Oπ=4
23 Oϕo

12K
i
αo ;

I-B∶ Vo ¼ Oπ=4
23 Ki

αoO
ϕo
12 ;

I-C∶ Vo ¼ Oπ=4
23 Oϕ1

12K
i
αoO

ϕ2

12 ;

II-A∶ Vo ¼ Oπ=4
23 Oϕo

12 ;

II-B∶ Vo ¼ Oθo
23K

i
αoO

π=4
23 Oϕo

12 ; ð59Þ

where sinϕo ¼ sin θo ¼ 1ffiffi
3

p , sinϕ1 ¼ 1
2
, sinϕ2 ¼ 1ffiffi

6
p . We

define the Uo as the matrix on the left, together with the
Ki

αo . In the II-A case, this is the identity matrix. We
define also the Oo as the matrix on the right of the Ki

αo .
In the II-A case, this is the whole matrix Vo. For case II-
B, αo ¼ 0 as pointed out in the previous section. For the
other cases, we assume for αo, diverse fixed values.
We illustrate in Figs. 1–3 the correlations among the

observables for the scenarios I-A, II-A, and II-B. The
figures plot for each scenario sin2 θatm and ICP as a function
of jV13j2 and ICP as a function of jV13j2, for particular
values of the parameters left unconstrained in the definition
of each scenario according to Table I. Scenarios I-B and I-C
are omitted since they have similar behavior as scenario I-A

for these observables. A numerical analysis of scenario I-A
was also done in Ref. [42]. We can conclude from Figs. 1–3
that a large CP invariant ICP can be obtained in agreement
with the allowed experimental range of the observed
parameters.
Next, we test how the lepton mixing matrix changes and

the stability of our scenarios, by adding a small random
perturbation to a predefined exact degenerate limit. To do
this, we construct a neutrino mass matrix M composed of
an exact degenerate part in the form of a symmetric unitary
matrix So related to one of the TBM scenario schemes in
Eq. (59) and a part composed of a small random perturba-
tion Qε. Thus, the full quasidegenerate neutrino mass
matrix is as in Eq. (27)

M ¼ μðSo þQεÞ; ð60Þ

where So ¼ U�
oU

†
o, with the Uo’s of the different cases, and

Qε is some small complex symmetric random perturbation

Qε ≡ ε2Q; ε2 ¼ ðΔm2
31Þexp

2μ2
;

FIG. 1 (color online). Plotting sin2 θatm and the CP invariant ICP as a function of jV2
13j for scenario I-A.

FIG. 2 (color online). Plotting sin2 θatm and the CP invariant ICP as a function of jV2
13j for scenario II-A.
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with Q random perturbations of Oð1Þ generated by our
program. We test the stability of lepton mixing of the
different scenarios. We do not worry about the exact mass
differences, with two (reasonable) exceptions: we take for
ε2 a fixed value. Taking into account the upper bound on
the sum of neutrino masses as suggested by the Planck
Collaboration [21] obtained in a model-dependent analysis,
i.e.,

P
imi < 0.23 eV, one gets for the common neutrino

mass μ≲ 0.08 eV. However, if one relaxes this assumption
and takes a somewhat larger value for μ ¼ 0.14, together
with ðΔm2

31Þexp ¼ 2.5 × 10−3 eV2, we obtain ε2 ≲ 0.064,
which makes ε of the order of the Cabibbo angle. These
values make sure that we are in a mass range where the
computed output Δm2

31 ¼ Oð1Þ × 10−3 eV2. We discard
cases generated by the perturbation where jΔm2

31j <
jΔm2

21j. Further, we do not impose any other restrictions
on the random perturbation Q other than ReðQijÞ and
ImðQijÞ to be real numbers between −1 and 1. However,
we have checked that further restrictions on the masses do
not change significantly any of the plots.
From the different mixing scenarios and the random Q’s

in M, we compute the full lepton mixing V, i.e., the
corresponding diagonalizing matrix of M, such that
V⊺MV ¼ D is real and positive. Following the proof in
Sec. II, we decompose the full lepton mixing V in the new
parametrization obtained as in Eq. (19). We then compare
the new U ≡O23O12Ki

α resulting from the perturbation,
with the original Uo (i.e., without the perturbation) of one
of the cases in Eq. (59) and evaluate a quantity ΔU giving a
reasonable measure of how much U and Uo differ:

ΔU ¼ 1

2

X
jjUijj − jðUoÞijjj: ð61Þ

Notice that this definition does not “see” the phase factors
of the Ki

α of U or of the Uo. For this, we evaluate the
changing on the phases α by defining the quantity

Δα ¼ jj sin αj − j sin αojj ð62Þ

that compares the phase α of the Ki
α ofU, with the phase αo

of the Ki
αo of Uo and discarding differences of π. The II-A

case has no αo phases. We have also estimated howmuchO
in Eq. (19) differs from our original Oo in Eq. (59), with

ΔO ¼ 1

2

X
jjOijj − jðOoÞijjj; ð63Þ

where again we discard any sign difference. The 1=2 in
front of ΔO (and ΔU) is a suitable normalization factor
chosen such that, e.g., in a case where the original Oo ¼ 1
and the new O is such that O ¼ O12 (or any other
elementary rotation) with an angle sin θ12 ¼ 0.2, then also
ΔO ≈ 0.2, of the same order of the Cabibbo angle.
In Figs. 4 and 5, we plot ΔU as a function of ΔO and Δα

as a function of ΔU, respectively, for the five scenarios.
From Figs. 4 and 5, we find that theΔU andΔα of scenarios
I-A and I-C hardly suffer any change with the perturbations.
This means also that these quantities hardly depend on the
parameter ε and subsequently on the common neutrino
mass as given in Eq. (60), which is proportional to the
perturbations. In Fig. 6, we show the variation of ΔO as a
function of ΔU for different values of αo ¼ π=2, π=3, π=4,

FIG. 3 (color online). Plotting sin2 θatm and the CP invariant ICP as a function of jV2
13j for scenario II-B.

FIG. 4 (color online). Plotting ΔO versus ΔU for the five cases
identified in Eq. (59) with αo ¼ π=3.
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π=6, and π=9 for case I-B. Clearly, small α leads to more
stability. Case I-A is not shown, since there is no apparent
change of these quantities by varying α.
Cases I-A, I-C, and I-B with small α are the most stable

with regard to ΔU and Δα. As mentioned previously, Case

I-C is somewhat artificial, as it requires a certain conspiracy
between two angles ϕ1 and ϕ2 to be near the TBM limit.
Therefore, we focus on Case I-A. As shown in the previous
section, generically, scenario I-A has also the largest
Majorana phases.
With regard to the stability and variation of ΔO, we see

that, in general, the perturbations generate large ΔO
contributions for all cases and, in particular, for scenario
I-A. This parameter, therefore, depends strongly on the
magnitude of the perturbation parameter ε. It seems that this
can only be improved if one imposes restrictions on the
allowed perturbations forcing smaller ΔO’s. Maybe some
kind of symmetry could accomplish this. In Fig. 7 we give
an example, where the perturbations Q are restricted:
certain elements are taken to be zero, while the imaginary
part and the diagonal real part are taken to be 0.1 smaller
than the others:

Q ¼

0
BB@

0 0 0

0 x22
10

x23
0 x23

x33
10

1
CCAþ i

10

0
BB@

0 0 0

0 y22 y23
0 y23 y33

1
CCA; ð64Þ

where the x’s, and y’s are random real numbers varying
between −1 and 1. For the initial phase αo, we take
αo ¼ π=9. We see that most of the deviations ΔO (from
the original Oo ¼ 1) are now around 0.2 of the order of the
Cabibbo angle, and this does not affect having large values
for ICP.

VI. CONCLUSIONS

We have studied some aspects of leptonic CP violation
from a new perspective. We have identified several limit
scenario cases, with mixing angles in agreement with
experiment and leading to large CP violation. We have
proposed a new parametrization for leptonic mixing of the
form V ¼ O23O12Ki

α ·O to accomplish this.

FIG. 6 (color online). Plotting ΔO versus ΔU for the case I-B
varying αo ¼ π=2, π=3, π=4, π=6, and π=9.

FIG. 5 (color online). Plotting ΔO versus ΔU for the five cases
identified in Eq. (59) with αo ¼ π=3.

FIG. 7 (color online). Plotting the CP invariant ICP as a function of ΔO considering restricted perturbations for Q. The right plot is a
histogram showing the distribution of the values of ΔO obtained from 50000 uniformly distributed sets of input values forQ restricted as
indicated in Eq. (64).
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If neutrinos are quasidegenerate and Majorana, this new
parametrization is particularly useful. It may reflect some
specific nature of neutrinos, suggesting that there could be a
large contribution to neutrino mixing and CP violation
present in the left part of the parametrization, possibly as a
result of some symmetry, while the right part, in the form of
the real-orthogonal matrix O with the three angles could
come from some perturbative effect, reflecting the fact
that there are three neutrino families with small mass
differences and which results in small mixing comparable
to the mixing in the quark sector and the Cabibbo angle.
The new parametrization permits a new view of large

leptonic CP violation. It shows interesting aspects that
were less clear for the standard parametrization. We have
identified several limit scenario cases and have shown
results for mixing and CP violation. A certain scenario
(I-A) was found to be the most appealing. It only needs two
extra parameters to fit the experimental results on lepton
mixing and provides large Dirac-CP violation and large
values for the Majorana-CP-violating phases. We point out
that the results for this scenario derive explicitly from the
form of the new parametrization.
In addition and for quasidegenerate Majorana neutrinos,

the stability of the different scenarios has been tested using
random perturbations. We have concluded that the left part

of the parametrization behaves quite differently for the
diverse scenarios. Scenario I-A was very stable in this
respect. With respect to the right part of the parametriza-
tion, i.e., the real-orthogonal matrix O, the perturbations
generate large contributions for all cases. This unstable
part of the mixing (due to the random perturbations) can
only be improved if one imposes restrictions on the allowed
perturbations. We have shown how to accomplish this.
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