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The neutrinos emitted from the proto-neutron star created in a core-collapse supernova must run through
a significant amount of turbulence before exiting the star. Turbulence can modify the flavor evolution of the
neutrinos imprinting itself upon the signal detected here at Earth. The turbulence effect upon individual
neutrinos, and the correlation between pairs of neutrinos, might exhibit sensitivity to the power spectrum of
the turbulence, and recent analysis of the turbulence in a two-dimensional hydrodynamical simulation of a
core-collapse supernova indicates the power spectrum may not be the Kolmogorov 5=3 inverse power law
as has been previously assumed. In this paper we study the effect of non-Kolmogorov turbulence power
spectra upon neutrinos from a point source as a function of neutrino energy and turbulence amplitude at a
fixed postbounce epoch. We find the two effects of turbulence upon the neutrinos—the distorted phase
effect and the stimulated transitions—both possess strong and weak limits in which dependence upon the
power spectrum is absent or evident, respectively. Since neutrinos of a given energy will exhibit these two
effects at different epochs of the supernova each with evolving strength, we find there is sensitivity to the
power spectrum present in the neutrino burst signal from a Galactic supernova.
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I. INTRODUCTION

There is now ample evidence from both observations
and numerical simulations for the multidimensional nature
of core-collapse supernovae. The high-velocity “jets” of
sulfur-rich material—which presumably originated deep in
the stellar mantle—seen in the supernova remnant
Cassiopeia A [1], the double-peaked structure of the
oxygen and magnesium nebular lines in observations of
SN 2003jd [2], and the spectropolarimetric observations of
stripped-envelope core-collapse supernovae [3] can all be
explained if the explosions were aspherical. Asphericity in
the hydrodynamical simulations of core-collapse super-
novae is seen to emerge even when the progenitor is
spherically symmetric [4–13]. If the asphericity is indeed
generated deep within the star during the earliest epochs of
the explosion, then one would naturally expect the gen-
eration of turbulence in the fluid. The turbulence, which
some have argued is crucial for achieving an explosion
[14], would, in turn, alter the flavor evolution of neutrinos
racing through the stellar mantle from the cooling proto-
neutron star formed at the core.
Finding the consequence of the turbulence upon the

neutrinos is vital for interpreting the signal from the next
supernova in the Galaxy. This need has long been recog-
nized and various authors have examined the effect of
turbulence upon neutrinos [15–24]. From these studies it
has emerged that turbulence can affect the neutrinos in two
different ways. The first, more direct effect of the

turbulence is to “stimulate” transitions between the instan-
taneous neutrino eigenstates [22–24] while the neutrino is
propagating through the turbulent region. Although this
effect depends upon a number of factors, typically notice-
able turbulence effects require the density fluctuations to be
present in the region of the supernovae mantle where
neutrinos experience the Mikheyev, Smirnov and
Wolfenstein (MSW) resonances [25,26] and their ampli-
tude must be of order a few percent. That said, the
description of the stimulated transition effect of turbulence
is not in terms of MSW resonances, and MSW resonances
are not required for the effect to appear. The second, more
subtle effect of turbulence occurs when the neutrino
transition probabilities exhibit phase effects [27,28]. In
order to observe phase effects and this second, indirect,
sensitivity to turbulence, we require at least two semi-
adiabatic MSW resonances and/or density discontinuities
in the profile. Even then, it is sometimes possible to reduce
the imprint of this second effect by carefully selecting the
profile and neutrino energy. In more general circumstances,
we find both effects simultaneously though the second
effect of turbulence becomes most obvious when the
amplitude is small because the direct effect is usually
negligible in this limit [19].
While the basic effects of turbulence upon the neutrinos

have been determined, it is not apparent to what extent they
might operate in a supernova due to the lack of suitable
three-dimensional, high-resolution, long-duration hydrody-
namical simulations. In their absence, authors have been
forced to model the turbulence in a supernova by adopting a
turbulence-free profile and then inserting turbulence into it
in the form of a random field with assumed properties. The
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problem with this approach is that the validity of these
prescriptions for the turbulence in supernovae is unknown.
That situation changed recently with the study by Borriello
et al. [29] of the turbulence in a two-dimensional simu-
lation from Kifonidis et al. [30] which approached the
necessary resolution and duration. Borriello et al. fitted the
power spectrum for the turbulence along each radial slice of
the simulation with a broken inverse-power law defined by
four parameters. Two of these parameters correspond to
spectral indices which they called p1 and p2: p1 is the
index for the longer wavelengths, and p2 is for the shorter.
The other two parameters are the amplitude and the break
wave number defined in terms of a multiple of the long
wavelength cutoff scale. The short wavelength index was
found to have a mean and 1 − σ error of around p2 ¼
3.04þ0.57

−0.63 while the index for the longer wavelengths was
found to have a mean and 1 − σ error of p1 ¼ 1.85þ0.54

−0.77 .
The analysis by Borriello et al. is a welcome addition to the
literature but the well-known differences between the
properties of turbulence in two and three spatial dimensions
means it is not clear which results can be safely carried over
to three dimensions. For example, in the inertial range of
wave numbers for two-dimensional turbulence, one may
observe a Kraichnan inverse enstrophy cascade which
funnels turbulent power into the long-wavelength modes,
a Kolmogorov energy cascade in the opposite direction, and
even double cascades [31] where turbulence is injected at
some given scale and cascades to both longer and shorter
wavelengths. The turbulence seen by Borriello et al.
appears to be of this double cascade type because they
find broken power laws similar to a Nastrom-Gage spec-
trum [32]. If the presence of the “break wave number” and a
short wavelength index p2 is due to the two-dimensional
nature of the turbulence and if the amplitude they obtain is
similarly contaminated by the inverse cascade effect, this
leaves, perhaps, just the long wavelength index p1 as being
transferable to a three-dimensional study. Thus, the most
conservative conclusion to draw from the study is that the
long wavelength spectral index has a mean of p1 ∼ 5=3 and
the fact it has a range appears to indicate the turbulence
is also not always “fully developed” justifying the
exploration of something other than a Kolmogorov, 5=3,
power spectrum in the prescriptions for turbulence in
three dimensions which has heretofore been the default.
Changing the power spectrum will alter the evolution of
individual neutrinos passing through the turbulence and the
correlation between pairs of neutrinos sent along parallel
rays [33].
The analytic results of Friedland and Gruzinov [17] and

Patton, Kneller and McLaughlin [23,24] can be used to
predict the effect of changing the spectral index for the
direct, stimulated transition, effect of turbulence. They
indicate that a lowering of the index (hardening) of the
power spectrum should increase the stimulated transition
effect upon the neutrinos by (i) increasing the amplitude of

the turbulence modes which lead to transitions between the
neutrino states, (ii) permitting more combinations of modes
to drive transitions without a severe simultaneous narrow-
ing of the resonance, and (iii) lowering the amplitude of the
modes which suppress those transitions. However the
precise amount by which the direct turbulence effect alters
the neutrino transition properties as the power spectrum
changes has not been determined, and nothing exists in the
literature for the indirect turbulence effect of distorted
phase. It is the filling of these holes which is the goal of this
paper. We begin by describing the calculations we have
performed paying particular attention to the turbulence
power spectrum we use and other details. The section
following demonstrates the two effects of turbulence and
the two descriptions which we shall use to make predictions
and understand our results. Our results for the change in the
ensembles for single neutrinos at three different energies
and a wide range of turbulence amplitudes as a function of
the power spectral index are then presented and we finish
with a summary and our conclusions where we attempt to
construct a coherent description of turbulence effects in
supernova neutrinos.

II. DESCRIPTION OF THE CALCULATIONS

In order to study the effect of the supernova turbulence
upon the neutrinos we compute the set of probabilities that
a neutrino initially in some state νj is later detected in some
other state νi at a different location—the transition prob-
abilities. These quantities are denoted as Pij for neutrinos
and P̄ij for the antineutrinos. The transition probabilities
can be computed from the elements of the evolution matrix
S which links the initial and final neutrino states, that is
Pij ¼ jSijj2, and the evolution matrix is computed by
solving the Schrodinger equation

ı
dS
dλ

¼ HS ð1Þ

where H is the Hamiltonian and λ the affine parameter
along the neutrino trajectory. The transition probabilities
we report in this paper are for the “matter” basis states. The
matter basis states are related to the flavor basis states by
the matter mixing matrix ~U which is defined so that the
flavor basis Hamiltonian HðfÞ and its eigenvalue matrix ~K
are related via HðfÞ ¼ ~U ~K ~U† [34,35]. In our case the
Hamiltonian possesses two contributions: the first, H0, is
from the vacuum and the second, HMSW comes from the
effect of the matter upon the neutrino [25,26]. We do not
include the contribution to H from “collective” effects: see
Duan, Fuller and Qian [36] for a review of this fascinating
subject. The vacuum Hamiltonian for a neutrino of a given
energy E is defined by the two independent mass squared
differences δm2

ij ¼ m2
i −m2

j of δm2
32 and δm2

21. It is
diagonal in the “mass” basis which is related to the flavor
basis by the Maki-Nakagawa-Sakata-Pontecorvo [37,38]
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unitary “mixing” matrix U. The mixing matrix can be
written in terms of three vacuum mixing angles, θ12, θ13
and θ23, a CP phase δ, and two Majorana phases though the
two Majorana phases do not influence the evolution
[35,39]. Throughout this paper we adopt numerical values
of δm2

21 ¼ 7.5 × 10−5 eV2, δm2
32 ¼ 2.32 × 10−3 eV2 (a

normal hierarchy), θ12 ¼ 33.9°, θ13 ¼ 96° and θ23 ¼ 45°
which are consistent with the values from the Particle Data
Group [38]. The CP phase is set to zero.
The MSW potential HMSW is diagonal in the flavor basis

because matter interacts with neutrinos based on their
flavor. The matter affects the neutrinos via both neutral
and charged current channels but the neutral current
contribution to HMSW may be ignored because it leads
to an unobservable global phase. In contrast, the absence of
mu and tau leptons in the matter means the charged current
potential affects the electron flavor neutrino and antineu-
trinos only. The charged current potential for the electron
flavor neutrinos and antineutrinos is given by Ve ¼
� ffiffiffi

2
p

GFneðrÞ where GF is the Fermi constant and neðrÞ
the electron density. The plus sign applies to the electron
neutrinos, the minus sign for the electron antineutrinos.
This potential is the ‘ee’ element of HMSW. The tiny
radiative μτ potential [40,41] is ignored since it is a factor
of ∼10−5 smaller than the potential affecting the electron
flavor in the standard model (but may be two or three orders
of magnitude bigger if supersymmetric contributions are
included [42]). It is through the electron density neðrÞ that
the turbulence enters HMSW. As noted in the Introduction,
the ideal would be to use density profiles taken from high-
resolution, long-duration, three-dimensional simulations of
supernovae in order to study the effect of turbulence. These
are not available so one is forced to adopt a profile from a
one-dimensional simulation and add turbulence to it. We
shall introduce the turbulence in such a way that the profile
from the one-dimensional simulation is also the mean
electron density hneðrÞi, the average here being over
realizations of the turbulence. The profile we use for
hneðrÞi is the t ¼ 3 s postbounce snapshot from the
10.8M⊙ simulation by Fischer et al. [43]. The MSW
potential for this profile is shown in Fig. 1 and was chosen
so that neutrinos with the MSW resonance of the three
energies we shall use throughout this paper, 5, 15, and
45 MeV, intersect the profile in the region where we shall
place the turbulence. As we shall discover, these energies
are representative in the sense that each will be affected by
the turbulence to differing degrees because the region
where we place the turbulence will have a different relation
to the MSW densities of these three neutrino energies.
Since we are considering different neutrino energies it is not
necessary for us to consider snapshots at other epochs from
this simulation because, to first order, the profile epoch and
the neutrino energy are degenerate: what occurs to lower
energy neutrinos at early times will occur for higher
energies at later times. For this profile we may regard

the 45 MeV neutrinos as representing what we expect at the
epoch when turbulence is just beginning to affect the
neutrinos of a given energy, the 15 MeV as representing
the effect when the H resonant channel is strongly affected,
and the 5 MeV neutrinos as representing what we expect
when the turbulence begins to affect both H and L resonant
channels. Fixing the neutrino energy and changing the
snapshot time would be an alternative way to explore this
dependence between the turbulence effects and MSW
densities. Also, the actual shape of the underlying one-
dimensional profile is not very important to the turbulence
effects so changing the simulation will not lead to quali-
tatively different results—the reader is referred to Lund and
Kneller [22] where turbulence was put into this same M ¼
10.8M⊙ simulation from Fischer et al. at multiple post-
bounce epochs and compared with results for turbulence
inserted into two other two simulations, aM ¼ 8.8M⊙ and
aM ¼ 18M⊙, by the same authors. Returning to Fig. 1, the
reader will observe there are three discontinuities within the
profile: the reverse shock at rr ¼ 1;734 km, the contact
discontinuity at rc ¼ 12;348 km and the forward shock at
rf ¼ 30;323 km. These features were steepened by hand
from the original simulation data: see Lund and Kneller
[22] for a discussion of why this steepening was necessary.
The evolution of neutrinos and antineutrinos with

energies 5, 15, and 45 MeV and the given set of mixing
parameters through the base profile are shown in Fig. 2. For
the neutrinos the mixing between ν2 and ν3 dominates and
note that the sudden discontinuities in the transition
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FIG. 1 (color online). The MSW potential for the snapshot at
t ¼ 3 s postbounce of the M ¼ 10.8M⊙ simulation from Fischer
et al. [43] as a function of distance. From the inside out, the three
discontinuities in the profile are the reverse shock at
rr ¼ 1; 734 km, the contact discontinuity at rc ¼ 12; 348 km,
and the forward shock at rf ¼ 30; 323 km. From top to bottom,
the horizontal dashed lines are the two-flavor resonance potential
for a neutrino with E ¼ 5, E ¼ 15, and E ¼ 45 MeV, respec-
tively, using mixing parameters δm2 ¼ 2.32 × 10−3 eV2 and
θ ¼ 9° while the horizontal dot-dashed lines are the two-flavor
resonance potential for a neutrino with E ¼ 5, E ¼ 15, and
E ¼ 45 MeV from top to bottom, respectively, using mixing
parameters δm2 ¼ 7.5 × 10−5 eV2 and θ ¼ 33.9°.
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probability P23 occur at the discontinuities in the profile
and not at the MSW resonances (unless the two coincide).
For 5 MeV neutrinos there is a noticeable change in both
P12 and P13 at the forward shock; for the 15 MeV the
change in the same probabilities at the same location is
much smaller, and by 45 MeV the change in P12 and P13

are minuscule. In the antineutrinos we again see a notice-
able jump in P̄12 at the forward shock of similar size to the
change of P12 for neutrinos of the same energy while the
jump in P̄12 at higher energies is much smaller; any jump in
P̄23 is very small at all antineutrino energies (the mixing in
this channel is suppressed if the mixing in ν2 − ν3 is
strong); and similarly the jumps in P̄13 are small for all
energies. For future reference, the values of the transition
probabilities fP12; P13; P23g and fP̄12; P̄13; P̄23g through
this profile for 5 MeV neutrinos are f0.0918; 0.189; 0.548g
and f0.120; 7.09 × 10−5; 3.12 × 10−5g, respectively, for
15 MeV neutrinos they are f7.13 × 10−3; 0.0308; 0.696g
and f0.0353; 5.36 × 10−3; 1.35 × 10−4g, for 45 MeV neu-
trinos they are f2.22 × 10−3; 6.73 × 10−4; 0.194g and
f2.81 × 10−3; 3.68 × 10−3; 1.85 × 10−5g. The evolution
of the neutrinos and antineutrinos through the underlying
base profile will determine the extent to which turbulence is
able to modify the emerging probabilities. In general we

find that if Pij is close to the limits of zero or unity then the
effect of turbulence tends to be smaller, everything else
being equal. Thus we should expect big effects in P23 even
at small turbulence amplitudes while effects in P12, P13 and
the antineutrinos will require somewhat larger density
fluctuations.
It is in the region between the forward and reverse shocks

that strong turbulence is seen in multi-dimensional simu-
lations [29,44,45] so that is where we shall modify the
profile to insert the turbulence. As in Lund and Kneller
[22], we use two random field realizations: one for the zone
between the forward shock and the contact discontinuity,
and a second between the contact discontinuity and the
reverse shock. Realizations are generated by multiplying
hneðrÞi by a factor 1þ FðrÞ where FðrÞ is a Gaussian
random field with a power spectrum E. Quite generally we
may write the random field FðrÞ within the region r< to r>
as a Fourier series of the form

FðrÞ ¼ C⋆ tanh
�
r − r<
λ⋆

�
tanh

�
r> − r
λ⋆

�

×
XNq

a¼1

ffiffiffiffiffiffi
Va

p
fAa cos ðqarÞ þ Ba sin ðqarÞg: ð2Þ
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FIG. 2 (color online). In the left figure we show the evolution of the neutrino transition probability P12 (dashed dot), P13 (dashed) and
P23 (solid) with energies of 5 (top panel), 15 (middle panel), and 45 MeV (bottom panel) through the profile shown in Fig. 1. The right
figure we show the evolution of the antineutrino transition probabilities P̄12 (dashed dot), P̄13 (dashed) and P̄23 (solid) with energies of 5
(top panel), 15 (middle panel), and 45 MeV (bottom panel) through the same profile.)
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The purpose of the two tanh functions is to damp the
fluctuations close to r< and r> and the parameter λ⋆ is the
damping scale which we set to λ⋆ ¼ 100 km. The param-
eter C⋆ is the root-mean-square amplitude of the field and
we shall use the same value of C⋆ for the two realizations
for simplicity. The set of coefficients fAg and fBg are
independent standard, zero-mean Gaussian random
variates (which ensures the mean value of F is zero), the
wave numbers for the Fourier modes are qa and the
quantities Va are “volume” coefficients. The method for
generating a realization of the turbulence is the same
“variant C” of the Randomization Method described in
Kramer, Kurbanmuradov, and Sabelfeld [46] and used in
Kneller and Mauney [47]. The space of wave numbers is
divided into Nq regions and from each region we select a
random wave number q using the normalized power-
spectrum, EðqÞ, as a probability distribution. The volume
parameters Va are the integrals of the power spectrum over
each region. In order to produce random fields that affect
the neutrinos we must cover a sufficiently large dynamic
range of scales. Given the size of the turbulence regions
shown in Fig. 1 and the neutrino oscillation length scale of
∼10 km at these densities, the dynamic range is found to be
of order 40–50 decibels which requires at a minimum that
Nq also be in the range 40–50 [33].
The power spectrum of the random field is taken to be an

inverse power law of the form

EðqÞ ¼ ðα − 1Þ
2q⋆

�
q⋆
jqj

�
α

Θðjqj − q⋆Þ: ð3Þ

Here α is the spectral index and q⋆ is the long wavelength,
small wave-number cutoff. The parameter q⋆ is sometimes
called the ‘driving scale’ since it is the longest, nonzero
turbulence wavelength. In our case this wavelength is
twice the size of the turbulence domains, that is,
1=q⋆ ¼ 2ðr> − r<Þ. The assumption that the power spec-
trum E has no spatial dependence is the simplest choice we
can make but it’s an assumption that should be examined
further. Though there is evidence that the power spectrum
of the angular kinetic energy during the accretion phase
does show radial dependence [4,48], that does not auto-
matically mean we should find radial dependence in the
turbulence power spectrum during the cooling phase when
the turbulence is far out in the stellar mantle. Similarly we
know of no evidence that the turbulence power spectrum in
a three dimensional simulation of a supernova at the
appropriate epoch over the range of length scales we
require is anything other than a single inverse power
law: the broken power law found by Borriello et al. [29]
is relic of the two dimensional nature of the simulation they
analysed.
With the Hamiltonian including turbulence constructed

our plan is to generate multiple realizations of the turbu-
lence and then solve Eq. (1) for the evolution matrix for

each realization. This approach will allow us to construct
ensembles of results which we can then characterize with
frequency distributions or with distribution moments.

III. THE TWO EFFECTS OF TURBULENCE

Before presenting the results from our numerical calcu-
lations, we first take time to demonstrate the two effects of
turbulence. As we previously stated, the first effect is the
modification of the neutrino transition probability evolution
in the region of the turbulence due to direct stimulation
between the states, and the second is the modification of the
transition probabilities of the neutrino as it emerges from a
turbulent region if the transition probabilities are subject to
phase effects. The two effects are neatly shown in Fig. 3
where we see the evolution of the transition probability P23

as a function of distance through the profile shown in Fig. 1
for a E ¼ 15 MeV neutrino. In the top panel where C⋆ ¼
0.1 we see the first case: the evolution of the transition
probability with turbulence differs from the evolution
without turbulence as soon as the neutrino enters the
turbulence region. In the middle panel where C⋆ ¼ 10−2

we see a small differences between the evolution with and
without turbulence as soon as the neutrino enters the
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FIG. 3 (color online). The evolution of P23 as a function of
distance r for a 15 MeV neutrino. The dashed line is the evolution
through the underlying profile and the solid line is the evolution
with a single realization of turbulence with spectral index
α ¼ 5=3. In the top panel C⋆ ¼ 10%, in the middle C⋆ ¼ 1%
and in the bottom C⋆ ¼ 0.1%.
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turbulence but the jumps at the discontinuities are signifi-
cantly larger. In the bottom panel where C⋆ ¼ 10−3 there is
no apparent difference between the evolution with and
without turbulence until the contact discontinuity. Beyond
that point the two curves are different but exhibit no relative
change until the neutrino passes through the forward shock
where another large change occurs. In these bottom two
panels the change in the evolution is mainly due to a change
in the phase effects; phase effects do occur in the top panel
but are subordinate. But note well that that even though the
turbulence amplitude differs by two orders of magnitude
between the three calculations, the value of P23 that
emerges is very similar in each case.
In addition to the visual distinction between the two

effects, it is possible to understand these two effects in more
analytic terms. These analytic descriptions will prove
useful because they allow us to construct expectations
for, and thus interpret, the results from ensembles of
realizations of the turbulence which we shall present
in Sec. IV.

A. Phase effect distortion

Let us first concentrate on the distortion of the phase
effect. We shall use a two-flavor model and a profile with
two discontinuities which will be found to both adequately
describe our results and to understand the effect. In the
matter basis in which we work, Fig. 3 indicates that when
the turbulence amplitude is small the neutrino passes
through a set of discontinuities at the entrance and exit
of the turbulent regions but evolves adiabatically in the
turbulence region between the discontinuities. We can
construct an evolution matrix which describes this evolu-
tion and from it derive the transition probability. First, the
matter basis evolution matrix describing the evolution
across a discontinuity located at r is Sðrþ; r−Þ ¼
~U†ðrþÞ ~U†ðr−Þ where ~U is the matter mixing matrix, r−
is a point immediately before the discontinuity and rþ a
point immediately after. Adiabatic evolution of the neutrino
between discontinuities means the evolution matrix must be
of the form

Sðrb; raÞ ¼
�
expð−ıϕ1Þ 0

0 expð−ıϕ2Þ

�
ð4Þ

where

ϕj ¼
Z

rb

ra

~kjðrÞdr ð5Þ

and ~kjðrÞ is the instantaneous eigenvalue for matter state j.
Thus the evolution matrix describing the neutrino evolution
through a profile with two discontinuities, located at ra and
rb is

S ∼ ~U†ðrbþÞ ~U†ðrb−Þ
�
expð−ıϕ1Þ 0

0 expð−ıϕ2Þ

�

× ~U†ðraþÞ ~U†ðra−Þ ð6Þ

where we have omitted the evolution up to ra− and beyond
rbþ assuming it to be adiabatic. If we denote by Pa and Pb
the crossing probabilities through the discontinuities sep-
arately, we find the crossing probability for the neutrino
after passing through the entire profile is

P ¼ Pað1 − PbÞ þ ð1 − PaÞPb

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PaPbð1 − PaÞð1 − PbÞ

p
cosðΦÞ: ð7Þ

where Φ ¼ ϕ1 − ϕ2 þ constant. Note well that Pa and Pb
are constants and not changed when we insert turbulence
into the profile and that Pa ∝ j ~U⋆

e1ðraþÞ ~Ue2ðra−Þj2 and
Pb ∝ j ~U⋆

e1ðrbþÞ ~Ue2ðrb−Þj2. This dependence of P upon the
matter mixing matrix elements indicates the crossing
probability P is most sensitive to the turbulence via the
distorted phase effect when the MSW resonance density is
similar to one of the densities on either side of the
discontinuity.
The place where the turbulence enters Eq. (7) is via the

phase difference Φ. Every realization of the turbulence will
give a different value for the phase difference and if we
generate many realizations then we generate a distribution
of phase differences. Thus, we can model the effect of the
turbulence by treating the phase difference Φ as a random
variate drawn from a distribution fðΦÞ. The model we
adopt for the distribution of Φ is the von Mises distribution
which is of the form

fðΦÞ ¼ expðκ cosðΦ − Φ0ÞÞ
2πI0ðκÞ

; ð8Þ

where Φ0 is the mean value of Φ and κ is the concentration.
If we define P⋆ ¼ Pað1 − PbÞ þ ð1 − PaÞPb and Δ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PaPbð1 − PaÞð1 − PbÞ

p
and note that jdP=dΦj ¼

Δ sinΦ then we derive the distribution for P must be

fðPÞ ¼ 1

2πI0ðκÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ðP − P⋆Þ2

p

× exp

�
κ cos

�
cos−1

�
P − P⋆

Δ

�
− Φ0

��
ð9Þ

on the interval P⋆ − Δ ≤ P ≤ P⋆ þ Δ. In the limit where
κ → 0, the distribution of Φ is rectangular and the prob-
ability distribution for P becomes the arcsine distribution
i.e.

fðPÞ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ðP − P⋆Þ2

p ; ð10Þ
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which has a mean of P⋆ and variance of VðPÞ ¼ Δ2=2.
Note that in this limit there is no explicit dependence of
fðPÞ upon the spectral index α nor C⋆ because P⋆ and Δ
are independent of the turbulence.
In the other limit where the concentration is large, we can

expand the phase Φ around Φ0 so that to lowest order
(assuming sinΦ0 ≠ 0)

P − P0 ¼ −Δ sinðΦ0ÞðΦ − Φ0Þ ð11Þ

where P0 ¼ P⋆ þ Δ cosΦ0. This equation shows P and Φ
are linearly related in this limit and so the standard
deviation of P is proportional to the standard deviation
of Φ: σP ∝ σΦ. The phase difference Φ between two
discontinuities is given by

Φ ∝
Z

rb

ra

ð~kiðrÞ − ~kjðrÞÞdr ð12Þ

and for neutrinos far from a MSW resonance—such as the
45 MeV neutrinos in the ν2 − ν3 mixing channel—the
difference between ~k2 and ~k3 is approximately the MSW
potential hVið1þ FÞ in the region where we place the
turbulence. This means we can write an expression for the
variance of Φ which is

hðΦ − Φ0Þ2i ≈
��Z

rb

ra

hViðrÞFðrÞdr
�

2
�

ð13Þ

The integral is dominated by the longer wavelengths,
lowest wave numbers of the random field F—the integral
over the turbulence modes with wavelengths smaller than
the scale height of the potential will be very small. If we
ignore all the Fourier modes except the lowest then we
predict hðΦ − Φ0Þ2i ∝ hA2

1i and, since q1 ≈ q⋆, we have
hA2

1i ∝ α − 1. Putting this together with the linear relation-
ship between P and Φ we conclude

σP ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
α − 1:

p
ð14Þ

This result indicates harder turbulence power spectra have
less effect upon the transition probability than softer
spectra. This makes sense because for phase distortion
the neutrinos are more sensitive to the longest wavelength
of the turbulence and those amplitudes increase with α.
Obviously the distorted phase effect of turbulence

requires a phase effect be present in the transition prob-
ability in the absence of turbulence. Glancing at Fig. 2 we
see only P23 has a strong phase effect with two or more
semi-adiabatic transitions at the three energies we are
using, plus P12 and P̄12 for the 5 MeV neutrinos: in all
other mixing channels the jumps in Pij at the disconti-
nuities are too small. Thus we expect to see the distorted
phase effect of turbulence for all three energies we are using

in the ν2 − ν3 mixing channel, and maybe a small distorted
phase effect in ν1 − ν2 and ν̄1 − ν̄2 at 5 MeV.

B. Stimulated transitions

A detailed description of the direct stimulation of
transitions between neutrino states by turbulence can be
found in Kneller, McLaughlin and Patton [21] and the two
papers by Patton, Kneller and McLaughlin [23,24]. In this
description the effect of the turbulence can be understood as
similar to the effect of a laser upon a polarized molecule.
Comparison between numerical and analytical solutions
reveals the description to be very powerful because it is able
to predict the effect of turbulence on a case-by-case basis.
For every pair of neutrino matter states i and j there is an
associated splitting δkij between two eigenvalues of the
Hamiltonian. As Eq. (2) indicates, turbulence can be
described with a Fourier series and one finds that transitions
between the neutrino states will be occur if a set of integers
fng can be found, one for each Fourier mode, such that
δkij þ

P
anaqa ≈ 0. When the condition is exact, known as

a parametric resonance [49–53], the amplitude of the
transition between states i and j is 100% no matter the
amplitudes of each Fourier mode. Where the amplitudes of
the modes enter is through the distance λ—called the
transition wavelength—over which a neutrino makes the
transition from state i to state j or vice versa. This distance
is inversely proportional to the coupling between the two
states i.e. ŬeiŬ

⋆
ej, where Ŭei are elements of the unper-

turbed matter mixing matrix, and also inversely propor-
tional to a product of Bessel functions JnaðzaÞ where
za ∝ Ca=qa and the integer na is the same integer pre-
viously identified. Ca is the amplitude of the Fourier mode
a. In order for a stimulated transition to occur one must
compare λwith the density scale height rρ of the underlying
profile defined to be rρ ¼ ρ=ðdρ=drÞ. Only if λ < rρ is a
transition expected, if λ > rρ then none will occur. Finally,
the only difference when one considers antineutrinos is that
the splitting δkij and coupling

˘̄Uei
˘̄U⋆
ej are computed using a

Hamiltonian where the MSW potential switches sign.
At small C⋆ one typically finds the integers are na ¼ 0

for all a except for the mode whose wave number is closest
to the eigenvalue splitting δkij [24]. In this limit the
smallness of Ca indicates za for that mode will also be
small so we may use J1 ∼ z for small z. Putting this all
together we find the transition wavelength in the small
amplitude limit goes as

1=λ ∝ CaŬeiŬ
⋆
ej=qa: ð15Þ

The transition wavelength λ is inversely proportional to that
resonant mode’s amplitudeCa—which depends upon α and
C⋆—and the product of mixing matrix elements ŬeiŬ

⋆
ej in

the region of the turbulence. In order to make λ small and
see stimulated transition we must either increase ŬeiŬ

⋆
ej

and/or Ca. Increasing ŬeiŬ
⋆
ej means the turbulence must be
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in the vicinity of the MSW density because the product
takes on its maximal value at that location. This is the same
requirement as in the distorted phase effect. Since the
expectation value of Ca goes as hCai2 ¼ C2⋆ðq⋆=qaÞα we
see increasing Ca can be achieved by either increasing C⋆
or decreasing α.
The evolution of the underlying profilemeans the splitting

between the neutrino eigenvalues δkij and the coupling
ŬeiŬ

⋆
ej between the matter states both evolve with hneðrÞi.

This means neutrinos experience a parametric resonance
only at a point and at present it is only possible to predict
where and with what approximate strength the transitions
occur. Phenomenologically one finds the distributions of the
transition probabilities are exponentially distributed with
greater widths as C⋆ and ŬeiŬ

⋆
ej increase [19].

In the limit of large turbulence amplitudes and optimally
placed turbulence, stimulated transitions occur essentially
continuously in the turbulence region—the parametric
resonance condition is fulfilled many times through the
profile—and in virtually all realizations. When this occurs
one finds the evolution matrix for the evolution between the
discontinuities becomes essentially random rendering the
evolution across the discontinuities unimportant. In this
strong stimulated transition limit an ensemble of evolution
matrices approaches that of an ensemble of N-flavor
circular unitary matrices [54] where the distribution of
every element of the matrices is identical. This limit is
known as depolarization and from the expectation for the
structure of the ensemble of evolution matrices we can
derive the distributions of the transition probabilities. First,
we note that the N real components, xij, plus the N
imaginary components, yij, of the elements of a row or
column in every evolution matrix form a 2N Euclidean
space. The requirement of unitarity of the evolution matrix
is equivalent to the definition that a vector made from these
real and imaginary components lies upon the surface of a
unit sphere in this space. Since these 2N quantities are
identically distributed, the probability f of a particular set
of the elements from a row or column must be uniform over
the surface of the sphere. For example, if we chose to look
at a column j then the probability that we are located at
fx1j; y1j; x2j; y2j;…g, must be proportional to the area
element dA allowing us to write

fðx1j; y1j; x2j; y2j;…ÞdNxdNy ∝ dA

¼ δ

�
1 −

XN
i¼1

x2ij −
XN
i¼1

y2ij

�YN
i¼1

dxij
YN
i¼1

dyij: ð16Þ

If we now change variables so that each of the N
independent pairs xij; yij are expressed as

x1j ¼
ffiffiffiffiffiffiffi
P1j

p
cos θ1j; y1j ¼

ffiffiffiffiffiffiffi
P1j

p
sin θ1j; ð17Þ

x2j ¼
ffiffiffiffiffiffiffi
P2j

p
cos θ2j; y2j ¼

ffiffiffiffiffiffiffi
P2j

p
sin θ2j; ð18Þ

then the Pij’s are found to be distributed as

fðP1j;…PNjÞdNP ∝ δ

�
1 −

XN
i¼1

Pij

�YN
i¼1

dPij: ð19Þ

The set of transition probabilities fP1j;…PNjg are uni-
formly distributed on the surface of a standard N − 1
simplex. Equation (19) can be integrated over N − 1 of
the Pij’s and normalized so that we derive the final result
that element Pij must be distributed according to

fðPijÞ ¼ ðN − 1Þð1 − PijÞN−2: ð20Þ

The shape of the distribution is controlled by the number of
flavors N that are involved and nothing else. With the
distribution for Pij found it is a simple task to determine
that the mean and variance are

hPiji ¼
1

N
; ð21Þ

VðPijÞ ¼¼ σ2ij ¼
N − 1

N2ðN þ 1Þ ð22Þ

For the specific case of N ¼ 2 the distribution is uniform
with mean 1=2 and variance 1=12: for N ¼ 3 the distri-
bution is triangular with mean 1=3 and variance 1=18. Note
that the depolarized limits do not explicitly depend upon
any property of the turbulence, they are functions only of
the appropriate number of flavors involved. It is via N that
the turbulence amplitude and spectral index will enter
because the appropriate value of N will change as C⋆ and α
are varied.
Since there are three flavors of neutrino it would

seem we should use the N ¼ 3 case but in practice whether
3-flavor depolarization is actually reached depends upon
the placement of the turbulence in the profile in relation to
the H and L resonance densities for a given energy. If not
located in the appropriate place in the profile for a given
neutrino energy, two flavor depolarization may be more
appropriate. As we stated, the distance over which a
neutrino makes the transition from matter state j to matter
state i is proportional to the product of instantaneous
mixing matrix elements ŬeiŬ

⋆
ej. This product has its

maximal value at the resonance between states i and j.
Figure 1 shows that the H resonance density for the E ¼
45 MeV neutrinos is below the densities where we place
the turbulence by a factor ≳3, the L resonance density is
lower by a factor ≳300. For E ¼ 45 MeV neutrinos we
should expect some difficultly stimulating transitions
between matter states ν1 and ν2 but it should be somewhat
easier for mixing between states ν2 and ν3. For the lower
energy of 15 MeV the H resonance density is very similar
to the density of the profile between the reverse shock and
the contact discontinuity which would lead us to expect a
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strong stimulated transition effect in this channel for this
energy. The L resonance for this same energy again lies
below the density of the profile meaning the product of
mixing matrix elements Ŭe1Ŭ

⋆
e2 will be small again

suppressing stimulated transitions between ν1 and ν2.
Finally, the H resonance density for the 5 MeV neutrinos
is similar to the density of the profile between the contact
discontinuity and the reverse shock and the difference
between the L resonance density and the profile density
between the reverse shock and the contact discontinuity is
only of order a factor of a few. Thus of the three energies we
are considering, the 5 MeV neutrinos have the best prospect
of exhibiting stimulated transitions between all three states
and reaching three-flavor depolarization, the E ¼ 15 and
E ¼ 45 MeV neutrinos should show evidence for stimu-
lated transition only between two states.
The stimulated transitions work between the discontinu-

ities in the profile while the evolution across the disconti-
nuities themselves is still given by ~U†ðrþÞ ~U†ðr−Þ. Thus
stimulated transitions and distorted phases do not work
separately, they work in tandem. The essential difference
between the two is for stimulated transitions one replaces the
central evolutionmatrix in Eq. (6) which describes adiabatic
evolution between the discontinuities with amatrix that may
or may not have nonzero off-diagonal elements depending
upon whether there were any stimulated transitions in the
turbulence region. Even if there are no stimulated transitions
in the turbulence region, at a minimum the turbulence will
distort the phase. For this reasonwe often find circumstances
where the distributions for the transition probabilities in a
given channel are not completely described by a distorted
phase model nor solely described by stimulated transitions
but rather exhibit contributions from both. These situations
arise because stimulated transitions are often found to be all-
or-nothing. Thus the frequency distributions of the transition
probabilities in these circumstances are seen to be mixtures
of two distinct, more fundamental, distributions—see for
example Fig. 12 in Kneller and Volpe [19]—which can
cause difficulty with interpretation of results. Mixing
between distributions will shift the means and variances
of the total distribution from the expected values of the two,
more fundamental, components. If the distribution Type A,
with mean transition probability hPiA and variance σ2A,
contributes a fraction f to the total distribution, and a
different distribution, Type B, with mean transition proba-
bility hPiB and variance σ2B contributes 1 − f, then the mean
transition probability of the total distribution is hPi ¼
fhPiA þ ð1 − fÞhPiB and similarly the variance is also
σ2 ¼ fσ2A þ ð1 − fÞσ2B. One should expect the fraction f
to depend upon the neutrino energy and snapshot time as
well as the turbulence amplitudeC⋆ and the spectral index α.
Knowing f is useful if onewants to, say, simulate supernova
neutrino signals using Monte Carlo methods. The neutrinos
we receive at a given instant from the next supernova in our
galaxy will all have traveled through similar turbulence as

they traversed the mantle of the star which has the conse-
quence that the transition probabilities of the neutrinos of a
given energywill bevery strongly correlated—the size of the
proto-neutron in not sufficient to wash this correlation out
unless the turbulence is very anisotropic [33]. This means
that the neutrino signal will not have sampled the ensemble
of realizations of the turbulence, we receive neutrinos which
have been affected by essentially just one realization. The
probability this realization gives transition probabilities
distributed according to distribution Type A is the fraction
f; the probability the transition probabilities are distributed
according to distribution Type B is 1 − f.

IV. RESULTS

A. Neutrinos

In Figs. 4 and 5 we show the mean values and standard
deviation of the distributions of the neutrino transition
probabilities P12, P13 and P23 as a function of the spectral
index and the turbulence amplitude for the three represen-
tative energies we are using. Even a cursory glance
indicates there is a great deal of rich behavior as a function
of the three parameters we have varied to generate the
figures. Before diving into the results in depth to try and
understand why we see the trends we do, let us summa-
rize them:

(i) E ¼ 45 MeV. When C⋆ ¼ 50%, α ≤ 7=3 and
C⋆ ¼ 30%, α ≤ 5=3, the ν2 − ν3 mixing channel
reaches hP23i ¼ 0.5 and σ23 ¼ 0.28. At these same
large amplitudes but larger α we see the mean and
standard deviation, hP23i and σ23, respectively,
both fall with increasing α. In the range
0.1%≲ C⋆ ≲ 10%, it appears hP23i is fixed at
hP23i ¼ 0.44 independent of α and C⋆ and similarly
the standard deviation σ23 is also independent of α
and C⋆ fixed at σ23 ≈ 0.18. These same two values
appear to be the asymptotic limits of hP23i and σ23
for C⋆ ¼ 50% and C⋆ ¼ 30% for large α. At very
small turbulence amplitudes,C⋆ ≲ 0.01%, a depend-
ence of hP23i and σ23 upon C⋆ and α re-emerges and
it appears both hP23i and the standard deviation σ23
increase as the power spectrum becomes softer. In
hP12i, hP13i, σ12 and σ13, we only see a difference
from turbulence free results when C⋆ ¼ 50% and
C⋆ ¼ 30% with little dependence upon α.

(ii) E ¼ 15 MeV. For this energy the mean value of P23

is approximately hP23i ¼ 0.5 at α ¼ 3 for all turbu-
lence amplitudes above C⋆ ¼ 0.1%. Except for the
case of C⋆ ¼ 0.5, there is no apparent running of
hP23iwith α or C⋆ in this range of amplitudes: in σ23
the trend appears to be a small increase in σ23 with α
from σ23 ¼ 0.28 at α ¼ 4=3 to σ23 ¼ 0.3 at α ¼ 3
and we observe that at fixed α, as C⋆ decreases the
standard deviation increases. For C⋆ ¼ 0.5 the in-
crease of hP23i and σ23 with increasing α is more
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obvious and we note that hP12i, hP13i, σ12 and σ13
are noticeably different at C⋆ ¼ 0.5 from even the
case of C⋆ ¼ 0.3. For C⋆ ≲ 0.1%, the evolution of
the standard deviation σ23 with C⋆ reverses and now
σ23 decreases with C⋆. However, as with the E ¼
45 MeV neutrinos, the trend appears to be at very
small turbulence amplitudes there is an increase of
σ23 and larger difference between the turbulence -
free result of hP23i with increasing α.

(iii) E ¼ 5 MeV. For this energy we observe much
larger turbulent effects in the ν1 − ν2 and ν1 − ν3
mixing channels than for the other two energies
considered particularly for small α. When C⋆ ¼
50% and α ≤ 5=3, the mean values of P12, P13 and
P23 all plateau at hPiji ¼ 0.33 and the standard
deviations σ12, σ13 and σ23 all reach σij ¼ 0.23 in the
same range of amplitudes and spectral indices. For
all amplitudes greater than C⋆ ≳ 1%, the trend of
hP12i, hP13i and hP23i with α is towards a fixed

value with simultaneous decreasing standard devia-
tions σ12, σ13 and σ23. At small amplitudes for the
turbulence, C⋆ ≲ 1%, all three transition probabil-
ities of the 5 MeV neutrinos approach the previously
reported values through the underlying profile. The
convergence is more rapid for softer power spectra:
e.g. at C⋆ ¼ 10% the mean of P12 and P23 are
measurably different from the turbulence free values
at α ¼ 5=3 but not so at α ¼ 7=3.

Let us now examine these results in more detail and try to
find explanations of the trends we observe using the two
different descriptions for the effects of turbulence from
Sec. III.

1. E ¼ 45 MeV

We first examine the E ¼ 45 MeV neutrinos and focus
upon P23. At large amplitudes and hard spectral indices the
ν2 − ν3 mixing channel appears to reach the two-flavor
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FIG. 4 (color online). The mean values of P12 (top row), P13 (middle row) and P23 (bottom row) as a function of the power spectral
index. The leftmost column is for 5 MeV neutrinos, the middle for 15 MeV and the rightmost is 45 MeV. In all panels the curves
correspond to C⋆ ¼ 0.5 (filled circles), C⋆ ¼ 0.3 (filled squares), C⋆ ¼ 0.1 (filled diamonds), C⋆ ¼ 10−2 (filled triangles), C⋆ ¼ 10−3

(open circles), C⋆ ¼ 10−4 (open squares) and C⋆ ¼ 10−5 (open diamonds). For the sake of clarity, not all lines appear in each panel;
where a line is missing it should be taken to be negligibly different from the smallest value of C⋆ shown in the panel.
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depolarized limit since hP23i ¼ 0.5 and σ23 ¼ 0.28 when
C⋆ ¼ 50% and α ≤ 7=3 and C⋆ ¼ 30% and α ≤ 5=3. The
decrease of hP23i and σ23 for the same large amplitudes but
larger α is again in line with what we expect from
stimulated transitions. The reduced amplitude of the modes
that have wavelengths of order the eigenvalue splittings
mean the stimulated transitions are not as strong and the
distribution of P23 will no longer be uniform.
At smaller turbulence amplitudes our explanation for the

results changes. In the range 0.1%≲ C⋆ ≲ 10% the mean
value of P23 and the standard deviation σ23 are independent
of α fixed at apparently arbitrary values. Only if we push
further to even smaller turbulence amplitudes,C⋆ ≲ 0.01%,
do we see the dependence upon C⋆ and α re-emerge but
when it re-emerges the trend that both hP23i and the
standard deviation σ23 increase as the power spectrum
becomes softer. This behavior of hP23i and σ23 for C⋆ ≤
10% must be explained by using the distorted phase model

so let us use this model to try and predict the actual values
found in 4 and 5 for the E ¼ 45 MeV neutrinos in this
amplitude range. From analyzing the evolution without
turbulence—figure 2—we find the transition probabilities
for these neutrinos at the reverse and forward shocks give
Pa ¼ 0.57 and at the second Pb ¼ 0.93. These can be
combined to give P⋆ ¼ 0.44 and Δ ¼ 0.25. Since the
transition probability in the absence of turbulence is P23 ¼
0.20 we deduce Φ ¼ 163°. With this information in hand
we predict the distribution of the transition probability P23

when we insert the turbulence will lie in the range of P⋆ −
Δ ¼ 0.19 to P⋆ þ Δ ¼ 0.69. When the concentration κ is
small we expect an arcsine distribution for P23 with a mean
hP23i ¼ P⋆ ¼ 0.44 and standard deviation Δ=

ffiffiffi
2

p ¼ 0.18.
These predictions match the data well so we interpret
our results as meaning that in the range 0.1%≲ C⋆ ≲ 10%
the 45 MeV neutrinos are experiencing a strong distorted
phase effect. At smaller turbulence amplitudes when the
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FIG. 5 (color online). The standard deviation of P12 (top row), P13 (middle row) and P23 (bottom row) as a function of the power
spectral index. The leftmost column is for 5 MeV neutrinos, the middle for 15 MeVand the rightmost is 45 MeV. In all panels the curves
correspond to C⋆ ¼ 0.5 (filled circles), C⋆ ¼ 0.3 (filled squares), C⋆ ¼ 0.1 (filled diamonds), C⋆ ¼ 10−2 (filled triangles), C⋆ ¼ 10−3

(open circles), C⋆ ¼ 10−4 (open squares) and C⋆ ¼ 10−5 (open diamonds). Again, for the sake of clarity, not all lines appear in each
panel; where a line is missing it should be taken to be negligibly different from the smallest value of C⋆ shown in the panel.
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concentration κ is larger the distribution will be like a half-
Gaussian because the turbulence-free value of P23 ¼ 0.20
is close to the lower limit of the distribution.
The frequency distribution of P23 for 45 MeV neutrinos

atC⋆ ¼ 10−3, C⋆ ¼ 10−4 andC⋆ ¼ 10−5 is shown in Fig. 6
and these expected shapes of the distributions is seen in the
numerical results. At C⋆ ¼ 10−3 the distribution is sym-
metric around P23 ¼ 0.44 peaking at the extremes P23 ¼
0.19 and P23 ¼ 0.69 as an arcsine distribution should. At
C⋆ ¼ 10−4 and C⋆ ¼ 10−5 the symmetry is lost and the
distribution looks more like an exponential or half-
Gaussian. The running of hP23i and σ23 with α for the
E ¼ 45 MeV neutrinos and smaller turbulence amplitudes
is also in line with our expectations from the distorted phase
model because we see σ23 increase with α e.g. C⋆ ¼ 10−4.
Let us now consider the other mixing channels at this

same energy. Compared to P23, the mean of the transition
probabilities hP12i and hP13i for the E ¼ 45 MeV neu-
trinos appear quite unremarkable differing from the turbu-
lence free limit only when C⋆ ¼ 0.5 and then possessing
only a soft dependence upon α. The standard deviations σ12
and σ13 evolve similarly. At this energy the distorted phase
effect of turbulence does not operate in these channels
because the jumps in P12 and P13 across the discontinuities
are small. The sensitivity to the turbulence is entirely

through the stimulated transition mechanism. But as
previously mentioned, the large separation between the
turbulence densities and the L resonance MSW density at
this energy means not every realization will cause a
stimulated transition to occur in these channels so it is
quite natural to expect the ensemble to be divided into two
subsets. When we look we find this is exactly the case. The
frequency distribution of the P12 and P13 transition
probabilities are mixtures of a very narrow distribution
which peaks at zero—the neutrinos unaffected by the
turbulence—and an exponential distribution—the subset
where stimulated transitions occurred.

2. E ¼ 15 MeV

We now consider the energy E ¼ 15 MeV. For this
energy the evolution of the distributions of P23 is again
explained by a transition from stimulated transitions at
large C⋆/small α to the distorted phase effect at smaller C⋆/
larger α. The frequency distributions of P23 for 15 MeV
neutrinos at fixed α ¼ 5=3 as several amplitudes C⋆ are
shown Fig. 7. In all three cases shown the mean value of
P23 is approximately the same, around hP23i ≈ 0.5, but the
distributions are clearly different depending upon C⋆: for
the large amplitude C⋆ ¼ 0.1 the distribution is almost
uniform—the bin 0.95 ≤ P23 ≤ 1 appears low—whereas
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FIG. 6 (color online). Frequency distribution of the transition
probability P23 for the case of a 45 MeV neutrino. The spectral
index is set to α ¼ 5=3 and, from top to bottom, the turbulence
amplitude is C⋆ ¼ 10−3, C⋆ ¼ 10−4 and C⋆ ¼ 10−5.
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FIG. 7 (color online). The frequency distribution of P23 for
15 MeV neutrinos at α ¼ 5=3. In the top panel C⋆ ¼ 10%, in the
middle panel C⋆ ¼ 1%, and in the bottom panel C⋆ ¼ 0.1%.
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the distribution for C⋆ ¼ 0.001 has a very peculiar shape
with the extreme values of P23 more common than the
mean. These distributions reflect the two different mech-
anisms by which the turbulence affects the neutrinos—the
top panel is what we would expect from stimulated
transitions in the depolarized limit with two flavors whereas
the distribution in the lower panels is the indirect, distorted
phase effect since they are consistent with an arcsine
distribution, similar to that seen in the top panel of
Fig. 6, albeit on the interval of zero to unity.
The mean values of P12 and the standard deviations σ12

shown in Figs. 4 and 5 do not match the expected values
from the our model distributions and this is because, as with
the E ¼ 45 MeV neutrinos, we find the ensembles are
mixtures of distributions. At C⋆ ¼ 0.5 inspection indicates
the mixing distributions in ν1 − ν2 for this energy are a
sharp distribution which peaks at zero—the neutrinos with
no turbulence effects—and a three flavor depolarized
distribution which are the neutrinos that experienced
stimulated transitions. But when we consider a slightly
smaller value of C⋆ ¼ 0.3 we find the mixing distributions
for P12 are the same narrow distribution peaked at zero but
the second distribution is now an exponential. The fre-
quency distributions of P12 at C⋆ ¼ 0.3 and E ¼ 15 MeV
at three values of α are shown in Fig. 8 and in the figure we

observe a flattening of the exponentially distributed com-
ponent as α increases.

3. E ¼ 5 MeV

Finally we switch to the 5 MeV neutrinos. Here neither
the H resonance nor the L resonance are too far from the
densities where we insert the turbulence so the product of
instantaneous mixing matrix elements ŬeiŬ

⋆
ej are not small

in any mixing channel. This allows stimulated transitions to
occur between all three states simultaneously. The simul-
taneous mixing in all three channels indicates we might
find that at sufficiently large amplitudes and hard spectral
indices we could reach three-flavor depolarization. When
we look indeed this is found for C⋆ ≳ 50% and α ¼ 4=3
shown in Fig. 9 where we see the frequency distributions of
the transition probabilities are triangular as predicted. Thus
Fig. 4 and 5 reveal the three-flavor depolarized limit is
reached for P12 only for C⋆ ¼ 50% and α ≤ 5=3 whereas
the same limit appears somewhat easier to reach for P23

because even C⋆ ¼ 10% amplitude turbulence saturates at
hP23i ¼ 1=3 and σ23 ¼ 0.23 for α ¼ 4=3 or at C⋆ ¼ 50%
we are able to relax the spectral index to α ¼ 2. This is not
surprising given the location of the turbulence in the profile
with respect to the ν2 − ν3 mixing resonance density shown
in Fig. 1. Note also the figures do not indicate there are
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FIG. 8 (color online). The frequency distribution of the neutrino
transition probability P12 when E ¼ 15 MeV and C⋆ ¼ 0.3. In
the top panel α ¼ 4=3, in the middle α ¼ 5=3, and in the bottom
panel α ¼ 2.
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FIG. 9 (color online). The frequency distribution of the tran-
sition probabilities P12, P13 and P23 for the case of a 5 MeV
neutrino. The spectral index is α ¼ 4=3 and the turbulence
amplitude is C⋆ ¼ 0.5.
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combinations of C⋆ and α where we achieve two flavor
depolarization instead of three because we do not see
hP23i ≈ 0.5 or σ23 ≈ 0.28 as one would expect in that limit.
As we move to smaller turbulence amplitudes what we

observe in Figs. 4 and 5 might seem at first to be
contradictory. The mean transition probability in the
ensembles is the same as the value in the turbulence free
limit tempting one to conclude that turbulence has no
effect, but the standard deviations do not support this
conclusion because it is not until C⋆ ≲ 0.001% that the
turbulence effect actually disappears. The contradictions
can be resolved when one realizes what the figures are
showing is that between 0.001%≲ C⋆ ≲ 1% the distribu-
tions of the transition probabilities are simply centered on
the turbulence-free limits. As with the E ¼ 45 MeV
neutrinos, the acute sensitivity to C⋆ is due to the distorted
phase effect with the twist that now both P23 and P12 (and
P̄12) are affected.
The distributions of P12 and P23 when 0.001%≲ C⋆ ≲

10% are mixtures of an exponential and the distorted phase
distributions and the evolution of hP12i and hP23i are
actually due to the evolution of the exponentially distrib-
uted subset, not the subset where the turbulence only
distorts the phase. This can be seen in Fig. 10 where we
show the distributions for P12 for the E ¼ 5 MeV neutrinos

at three values of α when C⋆ ¼ 0.3. Note the similarity of
the low end of the distribution for α ¼ 7=3 and α ¼ 3.

B. Anti-neutrinos

Even though we are considering just a normal hierarchy,
large amplitude turbulence certainly does affect the anti-
neutrinos. In Figs. 11 and 12 we show the results for the
means and standard deviations of the ensembles of anti-
neutrino transition probabilities. Let us again try to sum-
marize what we observe in the figures.

(i) The antineutrino channel which is most sensitive to
the turbulence is P̄12 and this sensitivity is similar to
the sensitivity of P12 seen in Figs. 4 and 5. P̄13 and
P̄23 are quite different from P13 and P23.

(ii) We also observe that at the largest value of C⋆
shown, the evolution of hP̄13i and σ̄13 with the
antineutrino energy appears to be counter that of
hP̄12i, hP̄23i, σ̄12 and σ̄23.

We now try to understand these results. First, a description
of the turbulence effects upon the antineutrinos for a normal
hierarchy in terms of MSW resonances would obviously
not work well because there are no resonances in the
antineutrino mixing channels. Second, except for P̄12 at
E ¼ 5 MeV, the distorted phase effect will not be promi-
nent because the adiabaticity of the transitions for the
antineutrinos across the discontinuities in the profile are
large. It is this lack of distorted phase effects that explains
the greatly reduced sensitivity of the neutrinos to the
turbulence amplitude. The absence of distorted phase
effects in the majority of the results shown in Figs. 11
and 12 makes their interpretation much easier than the
neutrino transition probabilities. The only explanation that
applies is that stimulated transitions.
If we look closely we see for the case of P̄12 when E ¼ 5

and E ¼ 15 MeV we see that P̄12 appears to be as sensitive
to the turbulence as the neutrinos in the P12 channel. This
can be explained by the stimulated transition model. In the
turbulent region the eigenvalue splitting δk12 and δk̄12 are
both approximately equal to the MSW potential Vee and so
the coupling between the states, ŬeiŬ

⋆
ej and

˘̄Uei
˘̄U⋆
ej are also

approximately equal. This equivalence means it should be
as easy to stimulate a transition between states ν̄1 and ν̄2 as
it is between ν1 and ν2 so the response to the turbulence will
be the same.
But in all other cases the antineutrinos are not as

sensitive to the turbulence as the neutrinos which, again,
can be explained stimulated transition description. The
difficulty of stimulating transitions between antineutrino
states is twofold: first, in the normal hierarchy, the splitting
between the eigenvalues are larger which means we require
shorter wavelength Fourier modes in order to fulfill the
parametric resonance condition and, with an inverse power
law power spectrum, the amplitudes of these modes are
smaller. Secondly the coupling between the states, ˘̄Uei

˘̄U⋆
ej,

is also generally smaller in the antineutrinos. Both smaller
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FIG. 10 (color online). The frequency distribution of P12 for
E ¼ 5 MeV neutrinos at C⋆ ¼ 0.3. In the top panel α ¼ 5=3, in
the middle α ¼ 7=3, and in the bottom panel α ¼ 3.
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amplitudes for the resonance modes and smaller coupling
lengthen the distance λ over which the transition occurs.
Since we need λ to be smaller than the density scale height
rρ in order to see a stimulated transition, it requires very
large C⋆ before stimulated transitions appear in the anti-
neutrino mixing channels as Figs. 11 and 12 indicate.
Hardening the spectrum has the simultaneous effect of
raising the amplitude of the resonance modes and decreas-
ing the amplitudes of modes which cause suppression so we
expect a strong dependence upon α up to the point where
the combination of large amplitude and hardness of the
turbulence power spectrum means the antineutrinos reach
depolarization. Beyond that point, the dependence upon
amplitudes and power spectral indices is lost. From Figs. 11
and 12 it appears a two-flavor depolarization is approached
in P̄12 for E ¼ 5 MeV and α ≲ 2 and in P̄13 for E ¼
45 MeV and α ∼ 4=3 only when C⋆ ¼ 0.5.
Except in these cases of very large amplitudes and hard

spectra, inspection reveals the distributions of the proba-
bilities clearly posses two components. For example, the

distributions for P̄12 when E ¼ 45 MeV and C⋆ ¼ 0.5 are
mixtures of sharp, zero-peaked distribution and an expo-
nential distribution. When we look closely we often find the
fraction of the distribution affected by stimulated transi-
tions decreases with α but, simultaneously, the effect of the
stimulated transitions grows with α. This is seen in Fig. 13
where we plot the frequency distributions of P̄12 at the
energy of E ¼ 15 MeV and C⋆ ¼ 0.3. The two mixing
distributions are clearly seen in the bottom panel where
α ¼ 2. At α ¼ 4=3 the mixing distributions are a sharp,
zero-peaked distribution and an exponential; at α ¼ 2 this
has changed to a sharp, zero-peaked distribution and a two-
flavor depolarized distribution. These distributions can be
compared with those of P12 in Fig. 8 for the same energy.
The mixing channel P̄13 is also, generally, a mixture of
exponential and narrow distribution which peaks at zero.
The two cases shown which do not match this pattern are
for the E ¼ 15 MeV and E ¼ 45 MeV antineutrinos at
C⋆ ¼ 0.5 and α≲ 5=3 where the distribution is very close
to uniform.
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FIG. 11 (color online). The mean values of P̄12 (top row), P̄13 (middle row) and P̄23 (bottom row) as a function of the power spectral
index. The leftmost column is for 5 MeV neutrinos, the middle for 15 MeV and the rightmost is 45 MeV. In all panels the curves
correspond to C⋆ ¼ 0.5 (filled circles), C⋆ ¼ 0.3 (filled squares), C⋆ ¼ 0.1 (filled diamonds), C⋆ ¼ 10−2 (filled triangles). For the sake
of clarity, not all lines appear in each panel.
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Finally, the one case where distorted phase effects occur
are in P̄12 when E ¼ 5 and E ¼ 15 MeV. This should be
expected because in Fig. 2 we see that the changes in P12

and P̄12 are occurring when the density is between the H
and L resonances for the E ¼ 5 and E ¼ 15 MeV
neutrinos.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the effect of modifying
the turbulence power spectrum inserted into a supernova
density profile upon the neutrinos and antineutrinos for
three different representative neutrino energies. We have
seen the turbulence alters the transitions probabilities of the
neutrinos via two effects: the direct stimulation of tran-
sitions between the states via parametric resonances, and
the more subtle effect of changing the phase between semi-
adiabatic resonances and/or discontinuities if they are
present. The two effects depend upon the turbulence power
spectrum in different fashions and whether a dependence

upon the spectral index is present or not for neutrinos of a
given energy depends upon the progenitor structure, the
postbounce epoch, the turbulence amplitude and the
neutrino energy.
The two most important factors that determine the extent

to which turbulence affects the neutrinos is the location of
the turbulence in relation to the neutrino’s resonance
densities and the turbulence amplitude. Turbulence effects
are largest when the turbulence is located in the profile in
the vicinity of the neutrino resonances (both L and H)
because both effects depend upon the mixing matrix having
both large diagonal and off-diagonal entries in the region
where the turbulence is located and the MSW resonances
are the locations where these entries are equal in magni-
tude. In this paper we have used a density profile at a fixed
snapshot time and considered three different neutrino
energies in order to demonstrate this dependence between
the turbulence effects and MSW densities. Fixing the
neutrino energy and changing the snapshot time would
produce similar results. In Fig. 14 we show the regions of
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FIG. 12 (color online). The standard deviation of P̄12 (top row), P̄13 (middle row) and P̄23 (bottom row) as a function of the power
spectral index. The leftmost column is for 5 MeV neutrinos, the middle for 15 MeVand the rightmost is 45 MeV. In all panels the curves
correspond to C⋆ ¼ 0.5 (filled circles), C⋆ ¼ 0.3 (filled squares), C⋆ ¼ 0.1 (filled diamonds), C⋆ ¼ 10−2 (filled triangles), C⋆ ¼ 10−3

(open circles),C⋆ ¼ 10−4 (open squares) andC⋆ ¼ 10−5 (open diamonds). Again, for the sake of clarity, not all lines appear in each panel.

JAMES P. KNELLER AND NEEL V. KABADI PHYSICAL REVIEW D 92, 013009 (2015)

013009-16



C⋆ and αwhere we find the various turbulence effects in the
mixing between ν2 and ν3. To construct the figure we have
extracted various contours of σ23 from Fig. 5. For each
energy we find no effect from turbulence when C⋆ ≤ 10−5

so have set this as a lower limit in each case. For the E ¼
45 MeV neutrinos the boundary between the weak and
saturated phase effects is taken to be where σ23 ¼ 0.1, the
boundary between saturated phase effects and stimulated
transitions as where σ23 ¼ 0.2.. For the E ¼ 15 MeV
neutrinos the boundary between the weak and saturated
phase effects is taken to be where σ23 ¼ 0.3, and this same
value of σ23 forms the boundary between saturated phase
effects and stimulated transitions. For the boundary
between the depolarization region and the stimulated
transitions we use σ23 ¼ 0.25. Finally, for the E ¼
5 MeV neutrinos we do not find a boundary between
saturated and weak phase effects, the boundary between
saturated phase effects and stimulated transitions is where
σ23 ¼ 0.1 and depolarization is taken to occur when
σ23 ≥ 0.2. We caution the reader that these boundaries
are somewhat fuzzy in the sense that on the boundaries the
distributions are often mixtures and furthermore these
values of σ23 have no meaning in themselves. Let us use
this figure to summarize what we have found.
If we optimize the location of the turbulence by careful

selection of the profile, we find the stimulated transition

effects appear in every mixing channel—even antineutrinos
—when the turbulence amplitude exceeds C⋆ ≳ 1%. As
one expects for the epoch chosen, the turbulence effects are
strongest in the H resonant channel followed by the mixing
in ν1 − ν2 and ν̄1 − ν̄2. The sensitivity of the H resonant
channel at this epoch is largely the same for all three
energies. The extent to which ν1 − ν2 and ν̄1 − ν̄2 are
affected at this epoch does depend upon the neutrino
energy because of the difference of the relation between
the turbulent densities and the L resonance for different
energies. Thus, at this epoch, we see lower energies
affected by turbulence to a greater degree than higher
energies due to the greater coupling between the states ν1
and ν2. But even though stimulated transition effects
may be present, the neutrinos do not always exhibit a
dependence upon the turbulence power spectral index
because stimulated transitions possess a strong limit of
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FIG. 13 (color online). The frequency distribution of the
antineutrino transition probability P̄12 when E ¼ 15 MeV and
C⋆ ¼ 0.3. In the top panel α ¼ 4=3, in the middle α ¼ 5=3, and
in the bottom panel α ¼ 2.

FIG. 14 (color online). The regions of the C⋆ − α plane where
the different turbulence effects occur in the H resonant channel
P23 for different energies. In the top panel E ¼ 5 MeV, in the
center E ¼ 15 MeV, and in the bottom panel E ¼ 45 MeV and in
each the acronyms stand for depolarization (D), stimulated
transitions (ST), saturated phase effects (SPE), weak phase effects
(WPE), and the region where only MSW effects occur, i.e. no
turbulence, is labeled as MSW.
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depolarization and a weak limit. In the strong limit no α
dependence is found because the distributions of the
transition probabilities are depolarized, either two or three
flavor; in the weak limit the distributions are found to be
exponential and are sensitive to α. The boundary between
the two regimes shown in Fig. 14 depends upon α and the
turbulence amplitude C⋆ with a greater proportion of
depolarization at fixed C⋆ when the power spectrum is
hardened.
Stimulated transitions occur when the product of turbu-

lence amplitude and diagonal/off-diagonal mixing matrix
elements is large. When this product is not above threshold
the distorted phase effect of turbulence can become
apparent. The boundary between stimulated transitions
and phase effects is the dot-dashed line in Fig. 14. In fact,
if we optimize the location of the turbulence then the
sensitivity to C⋆ via the distorted phase effect can be
extreme with turbulence amplitudes as small as C⋆ ∼ 10−4

causing an effect. Note this amplitude is comparable with
the amplitude of the density fluctuations in the progenitor
[55,56] and furthermore the boundary between weak phase
effects and the MSWonly region in Fig. 14 varies with the
epoch: at earlier epochs the boundary lies at much higher
values of C⋆ because the turbulence is far from the H
resonant region. Like stimulated transitions, the distorted
phase effect has a strong and weak limit: in the strong limit
the phase difference between discontinuities is distributed
uniformly leading to arcsine distributions for the transition
probabilities. When this occurs the parameters describing
the arcsine distribution are determined by the jumps in the
transition probabilities at the discontinuities and not the
turbulence between them. For this reason the neutrinos are
not affected by changes in the power spectral index. In the
weak limit of the distorted phase effect the sensitivity to
the power spectrum re-emerges due to the dominance of the
long wavelength modes. Counter-intuitively, this sensitivity
to the longest wavelengths means harder spectra have less
of an effect than soft spectra for a given C⋆. This difference
in the dependence upon α explains the downward slope of
the boundary between strong and weak distorted phase
effects in Fig. 14.
While the dependence of turbulence effects upon neu-

trino energy, turbulence amplitude, spectral index etc. can
be complicated, it is possible to use our results to piece
together the expected evolution of the turbulence effects
that neutrinos of a given energy will experience as a
function of time. For neutrinos of a given energy there
will be no sensitivity to the turbulence during the early
phase of the burst signal because the turbulence is at
densities far from the MSW resonances. This requirement
that the turbulence be close to the resonance density is the
reason there were no turbulence effects seen by Reid,
Adams and Seunarine [20] when they put turbulence into
the postshock region in profiles appropriate for the

accretion epoch. As the forward shock and turbulence
move out into the star turbulence effects will start to appear.
Initially these are due to distorted phase effects in the H
resonance channel and, remarkably, the greater the spectral
index α the greater the sensitivity to the turbulence of a
given amplitude. As time progresses the distorted phase
effects for a given neutrino energy will saturate to a limit
where the sensitivity to α and C⋆ is lost. As time progresses
further stimulated transition effects will begin to appear if
the amplitude is greater than C⋆ ≳ 1%. Stimulated tran-
sitions appear first in the H resonance channel and again,
initially, exhibit a sensitivity to α but now we find that
smaller values of α lead to greater turbulence effects for a
given C⋆. As time progresses further still, yet again that
dependence upon α and C⋆ may disappear if the turbulence
amplitude is sufficiently great to cause depolarization. If
that occurs, turbulence effects will begin to appear in the
mixing between other states most prominently between
ν1 − ν2 and in the antineutrinos in the ν̄1 − ν̄2 channel. The
mixing in ν1 − ν2 and ν̄1 − ν̄2 follows the same sequence as
the mixing in the H resonant channel; i.e. it starts off as
weak distorted phase effects sensitive to α and C⋆ that then
saturates before stimulated transitions appear if C⋆ is
sufficiently large. If stimulated transitions do start to affect
the ν1 − ν2 and ν̄1 − ν̄2 evolution while mixing in the H
resonant channel is still occurring then it is possible in a
normal hierarchy to transition to three flavor depolarization
if α is sufficiently small and C⋆ sufficiently large. Finally,
as the turbulent region sweeps further out into the star, the
turbulence effects will decrease in the H resonance channel
and concentrate in the mixing between ν1 − ν2 and ν̄1 − ν̄2
which will then themselves eventually fade as the turbu-
lence reaches the very outer edges of the star. The extent to
which the turbulence effects at these late times are visible
will depend upon the exact shape of the progenitor profile
because the rapidly fading neutrino luminosity will make
the statistics of detection very poor. This expected sequence
of turbulence events allows us to answer our original
question of whether the neutrinos exhibit sensitivity to
the turbulence power spectrum. We conclude it indeed
appears, in principal, there is sensitivity to the power
spectral index in the signal from a Galactic supernova
and further analyses along the lines of Borriello et al. [29]
but for three-dimensional simulations would be very
welcome.
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