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Assuming the Majorana nature of neutrinos, we investigate the singular one texture zero neutrino mass
matrices in the flavor basis. We find that for the normal mass ordering withm1 ¼ 0, all six one texture zero
classes are now ruled out at 3σ confidence level, whereas for inverted mass ordering withm3 ¼ 0 only four
classes out of the six total can accommodate the latest neutrino oscillation data at 3σ confidence level.
Moreover, only two classes can accommodate the present data at 1σ confidence level. We examine the
phenomenological implications of the allowed classes for the effective Majorana mass and Dirac and
Majorana CP-violating phases. Working within the framework of the type-I seesaw mechanism, we present
simple discrete Abelian symmetry models leading to all the phenomenologically allowed classes.

DOI: 10.1103/PhysRevD.92.013006 PACS numbers: 14.60.Pq, 11.30.Hv, 14.60.St

I. INTRODUCTION

In the last three years, T2K, MINOS, Double Chooz,
Daya Bay, and RENO experiments [1–5] have established a
nonzero and relatively large value of the reactor mixing
angle θ13. The result has further motivated experimentalists
to pin down the longstanding problem of CP violation and
mass ordering in the neutrino sector. Recent global fits of
neutrino oscillations [6,7], have reported best fit points
and 1σ errors on the Dirac CP-violating phase δ. On the
theoretical side, in order to explain the pattern of neutrino
masses and mixing, several ideas have been proposed in the
literature which reduce the number of free parameters in the
neutrino mass matrix; e.g., some elements of the neutrino
mass matrix are considered to be zero [8–11] or equal [12],
or both the possibilities are taken together [13]. Similarly,
some cofactors of the neutrino mass matrix are considered
to be zero [14], equal [12], or both [15]. The analysis of two
texture zero neutrino mass matrices in the flavor basis
restricts the number of experimentally compatible classes
to seven. The phenomenological implications of one
texture zero neutrino mass matrices have also been inves-
tigated in the literature [16–18] and it has been found that
all six possible classes with one texture zero in the neutrino
mass matrix are experimentally viable.
In the flavor basis where the charged lepton mass matrix

is diagonal, the Majorana neutrino mass matrix, being
complex symmetric, contains six independent entries. If
one of the elements is assumed to be zero, then we have six
possible one texture zero classes, which are shown in
Table I. The condition of a single texture zero in the
neutrino mass matrix is less restrictive (and hence less
predictive) than the condition of two texture zeros.

However, one can further reduce the number of free
parameters of one texture zero Majorana neutrino mass
matrices by considering one of the neutrino masses to be
zero, which is still an experimentally viable scenario. In
Refs. [17,19], particular attention has been paid to neutrino
mass matrices with one texture zero and a vanishing
neutrino mass, which is termed as the singular one texture
zero model. Recently, individual classes of one texture zero
with a vanishing neutrino mass have been studied by some
authors; e.g., in Ref. [20] the authors have considered
classes P4 and P5 with the additional constraint of a new
kind of constrained sequential dominance (CSD2) [20,21].
In Ref. [22] classes P1, P4, and P5 have been explored with
the motivation of linking the ratio of mass-squared
differences and the (1, 3) element of the neutrino mixing
matrix. Class P4 has also been studied in Ref. [23] and class
P3 has been studied in Ref. [24]. In Ref. [25] all the
singular one texture zero classes along with other new
texture structures have been obtained by systematically
scanning the zeros of the Dirac and the right-handed
Majorana neutrino mass matrices within the context of
the type-I seesaw mechanism [26].
Classes P4, P5, and P6 have also been derived in

Ref. [27] in the minimal type-I seesaw model considering

TABLE I. Possible structures of neutrino mass matrices having
one texture zero. × denotes the nonzero elements.

P1 P2 P3 
0 × ×
× × ×
× × ×

!  × × ×
× 0 ×
× × ×

!  × × ×
× × ×
× × 0

!

P4 P5 P6 × 0 ×
0 × ×
× × ×

!  × × 0

× × ×
0 × ×

!  × × ×
× × 0

× 0 ×

!
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only two right-handed heavy Majorana neutrinos. Further,
these minimal models have been reinvestigated in Ref. [28]
by keeping the minimum number of parameters which can
lead to successful leptogenesis and considering the rela-
tively large value of θ13. Recently, the renormalization
group effects on neutrino mixing parameters corresponding
to classes P4, P5, and P6 have been considered in Ref. [29].
In view of the refined measurement of reactor mixing

angle θ13 and with the motive of carrying out a complete
phenomenological analysis of all the classes of singular one
texture zero, we investigate neutrino mass matrices with
one texture zero and a vanishing neutrino mass. Working
within the framework of the type-I seesaw mechanism [26],
we construct simple neutrino mass models, based on Z8

discrete symmetry, which lead to the experimentally
allowed classes studied in the present work.
The rest of the paper is structured as follows: In Sec. II,

we discuss the methodology employed to obtain the
constraint equations for one texture zero. Section III is
devoted to numerical analysis. In Sec. IV, we give the
details of symmetry realization of all the allowed classes. In
Sec. V, we summarize our work.

II. METHODOLOGY

The effective Majorana neutrino mass matrix ðMνÞ
contains nine parameters which include three neutrino
masses (m1, m2, m3), three mixing angles (θ12, θ23, θ13),
and three CP-violating phases (δ, ρ, σ). In the flavor basis,
the Majorana neutrino mass matrix can be expressed as

Mν ¼ VMdiagVT; ð1Þ

where Mdiag ¼ diagðm1; m2; m3Þ is the diagonal matrix of
neutrino masses and V is the flavor mixing matrix. The
above equation can be rewritten as

Mν ¼ U

0
B@

λ1 0 0

0 λ2 0

0 0 λ3

1
CAUT; ð2Þ

where λ1¼m1e2iρ;λ2¼m2e2iσ;λ3¼m3. For our analysis,
we consider the following parametrization of V [30]:

V ≡UP ¼

0
B@

c12c13 s12c13 s13
−c12s23s13 − s12c23e−iδ −s12s23s13 þ c12c23e−iδ s23c13
−c12c23s13 þ s12s23e−iδ −s12c23s13 − c12s23e−iδ c23c13

1
CAP; ð3Þ

where cij ¼ cos θij and sij ¼ sin θij. Here, U is a 3 × 3
unitary matrix consisting of three flavor mixing angles
(θ12, θ23, θ13) and one Dirac CP-violating phase δ, and
P ¼ diagðe2iρ; e2iσ; 1Þ is a diagonal phase matrix consisting
of two Majorana CP-violating phases ρ and σ.
If one of the elements of Mν is considered zero, i.e.,

Mlm ¼ 0, we obtain the following constraint equation,X
i¼1;2;3

UliUmiλi ¼ 0; ð4Þ

where l, m run over e, μ, and τ. Two independent mass-
squared differences δm2 (solar) and Δm2 (atmospheric) are
defined as

δm2 ¼ ðm2
2 −m2

1Þ; ð5Þ

Δm2 ¼ jm2
3 −m2

2j: ð6Þ

The ratio of above mass-squared differences is given by

Rν ¼
δm2

jΔm2j : ð7Þ

If we consider one of the neutrino masses to be zero,
then since m2 > m1 has already been confirmed by solar

neutrino oscillation data [31,32], m2 cannot be equal to
zero. Thus, we are left with two possibilities where
either m1 or m3 can vanish corresponding to normal
(m1 ¼ 0; m2 < m3) or inverted (m1 < m2; m3 ¼ 0) mass
ordering, respectively. The vanishing lowest neutrino mass
along with one texture zero condition puts constraints on
the parameter space of neutrino masses, neutrino mixing
angles, and CP-violating phases.
In the case of one texture zero neutrino mass matrices,

there exists a permutation symmetry between certain
classes. This corresponds to a permutation of the 2-3 rows
and 2-3 columns of Mν. The corresponding permutation
matrix is

P23 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð8Þ

As a result of permutation symmetry between different
classes, one obtains the following relations among the
oscillation parameters,

θX12 ¼ θY12; θX23 ¼ 90° − θY23;

θX13 ¼ θY13; δX ¼ δY − 180°; ð9Þ
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where X and Y denote the classes related by 2-3 permu-
tation. The following one texture zero classes are related via
permutation symmetry:

P2 ↔ P3; P4 ↔ P5: ð10Þ

Classes P1 and P6 transform into themselves under the
action of P23.
Case I: m1 ¼ 0 (normal mass ordering)
Using Eq. (4), we get the following expressions for the

neutrino mass ratio ðm2

m3
Þ and the Majorana phase σ:

m2

m3

¼ jUl3Um3j
jUl2Um2j

; ð11Þ

σ ¼ 1

2
arg

�
−
Ul3Um3

Ul2Um2

�
: ð12Þ

Since m1 is zero, therefore, Majorana phase ρ becomes
unphysical in this case. Using Eqs. (5) and (6), neutrino
masses (m1, m2, m3) can be expressed in terms of
experimentally known mass-squared differences (δm2,
Δm2) as

m1 ¼ 0; m2 ¼
ffiffiffiffiffiffiffiffi
δm2

p
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δm2 þ Δm2

p
:

ð13Þ
Hence, we obtain

m2

m3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rν

1þ Rν

s
: ð14Þ

Using Eqs. (11) and (14), we can express Rν in terms of
mixing angles (θ12, θ23, θ13) and the Dirac CP-violating
phase (δ) as

Rν ¼
�jUl2Um2j2
jUl3Um3j2

− 1

�
−1
: ð15Þ

Case II: m3 ¼ 0 (inverted mass ordering)
The expressions for the neutrino mass ratio ðm2

m1
Þ and

Majorana phase difference ðρ − σÞ are given by

m2

m1

¼ jUl1Um1j
jUl2Um2j

; ð16Þ

ρ − σ ¼ 1

2
arg

�
−
Ul2Um2

Ul1Um1

�
: ð17Þ

In the case of inverted mass ordering, the phase difference
ðρ − σÞ is the relevant physical phase. From Eq. (17), it is
clear that Majorana phases (ρ; σ) are linearly corelated.
The neutrino mass spectrum for inverted mass ordering is
given by

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2 − δm2

p
; m2 ¼

ffiffiffiffiffiffiffiffiffiffi
Δm2

p
; m3 ¼ 0:

ð18Þ

The mass ratio ðm2

m1
Þ is related to Rν and is given by

m2

m1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Rν

p : ð19Þ

Using Eqs. (16) and (19), we can express Rν in terms of
mixing angles (θ12, θ23, θ13) and the Dirac CP-violating
phase (δ) as

Rν ¼ 1−
����Ul2Um2

Ul1Um1

����2: ð20Þ

The expression for the Jarlskog rephasing parameter JCP,
which is a measure of CP violation, is given by

JCP ¼ s12c12s23c23s13c213 sin δ: ð21Þ

III. NUMERICAL ANALYSIS

The experimental constraints on neutrino parameters at
1σ, 2σ, and 3σ confidence levels (C.L.) are given in
Table II. The effective Majorana mass term relevant for
neutrinoless double beta (0νββ) decay is given by

jMeej ¼ jm1c212c
2
13e

2iρ þm2s212c
2
13e

2iσ þm3s213j: ð22Þ

Observation of 0νββ decay will imply lepton number
violation and the Majorana nature of neutrinos. For reviews
on 0νββ decay, see Refs. [33,34]. A large number of
projects such as CUORICINO [35], CUORE [36], GERDA
[37], MAJORANA [38], SuperNEMO [39], EXO [40], and
GENIUS [41] aim to achieve a sensitivity up to 0.01 eV for
jMeej. We take the upper limit on jMeej to be 0.5 eV [34].
Data from the Planck satellite [42] combined with other
cosmological data put a limit on the sum of neutrino
masses as

Σ ¼
X3
i¼1

mi < 0.23 eV at 95% C:L: ð23Þ

In the present analysis, we assume a more conservative
upper limit Σ < 1 eV, on the sum of neutrino masses.
Since we are considering one of the neutrino masses to

be zero, we have two possibilities, i.e., either m1 ¼ 0 or
m3 ¼ 0 corresponding to normal or inverted mass order-
ings, respectively. Eqs. (15) and (20) incorporate the
constraints of a vanishing neutrino mass and one texture
zero, for normal and inverted mass orderings, respectively.
We span the parameter space of input neutrino oscillation
parameters (θ12, θ23, θ13, Δm2, Δm2) lying in their 3σ
ranges by randomly generating points of the order of 107.
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Since the Dirac CP-violating phase δ is experimentally
unconstrained at the 3σ level, we vary δ within its full
possible range [0°, 360°]. Using Eqs. (15) and (20) and the
experimental inputs on neutrino mixing angles and mass-
squared differences, the parameter space of δ, ρ, σ, and
jMeej can be subsequently constrained.
It is found from our analysis that for one texture zero

neutrino mass matrices with m1 ¼ 0, all six patterns are
now inconsistent with the latest global fits of neutrino
oscillation data at the 3σ level. This result is mainly due to
the reduced 3σ errors on the experimentally measured
values of θ13. On the other hand, for singular one texture
zero neutrino mass matrices with m3 ¼ 0, only classes P2,
P3, P4, P5 are found to be compatible with the latest
experimental data at 3σ level. We have also performed the
numerical analysis by considering 1σ and 2σ ranges of
neutrino mixing angles and mass-squared differences.
Case I: m1 ¼ 0 (normal mass ordering)
Classes P2; P3; P6 with m1 ¼ 0 have already been ruled

out in Ref. [17]. In the following we check the viability of
the rest of the classes viz. P1; P4; P5 with current exper-
imental data.
Class P1: Using Eq. (15), the exact analytical expression

of Rν in terms of θ13 is given by

Rν ¼
t413

ðs412 − t413Þ
; ð24Þ

where t13 ¼ tan θ13. With the experimentally allowed
ranges of θ12 and θ13, we find that Rν turns out to be
below its experimentally allowed 3σ range and hence is in
conflict with the latest data.
Class P4: With the help of Eq. (15), we obtain the

following expression for Rν in the leading order approxi-
mation of s13:

Rν ≈
t223s

2
13

s212c
2
12

: ð25Þ

The latest mixing data lead to rather higher values
of Rν, lying in the range (0.05–0.5) as compared to the
allowed 3σ range (0.0279–0.0372) of Rν, and hence class
P4 is excluded by current experimental data at 3σ C.L.
Class P5 : We obtain the following expression for Rν in

the leading order approximation of s13:

Rν ≈
s213

t223s
2
12c

2
12

: ð26Þ

Since classes P5 and P4 are related via the permutation
symmetry given in Eq. (8), their phenomenological impli-
cations are similar. As in the case of class P4 the latest
mixing data lead to values of Rν above its experimentally
allowed 3σ range; hence, class P5 is also ruled out by the
latest experimental data. Reference [28] has also found
classes P4 and P5 to be incompatible with the recent data
for normal mass ordering. Further, in Ref. [29] it has been
shown that these classes remain disfavored even after
taking into account the renormalization group effects.
Classes P4 and P5 with normal mass ordering have been

studied in Ref. [20] with the additional constraint of CSD2
[20,21]. In Ref. [22], classes P1, P4, and P5 with normal
mass ordering have been examined with the outcome that
the (1, 3) element of the neutrino mixing matrix and the
parameter Rν are found to be linked for these classes.
All these classes are now incompatible with the recent

data [6] for the normal mass ordering and one has to
consider modifications to these classes for them to be
compatible with the latest data. In this direction, small
charged lepton contributions to classes P4 and P5, along
with the CSD2 constraint, have been considered in
Ref. [21], where a unified indirect family symmetry model
has been constructed, which leads to θ13 ∼ 8°—9°.
Case II: m3 ¼ 0 (inverted mass ordering)
For the inverted neutrino mass ordering case, classes P2,

P3, P4, P5 are found to be compatible with the latest
neutrino oscillation data at 3σ C.L. Interestingly, classes P2

and P3 cannot satisfy the experimental data at 1σ C.L.

TABLE II. Current neutrino oscillation parameters from global fits at 1σ, 2σ, and 3σ confidence level [6]. NO (IO)
refers to normal (inverted) neutrino mass ordering.

Parameter Best fit 1σ 2σ 3σ

δm2 ð10−5 eV2Þ 7.60 7.42–7.79 7.26–7.99 7.11–8.18
jΔm2

31j ð10−3 eV2Þ (NO) 2.48 2.41–2.53 2.35–2.59 2.30–2.65
jΔm2

31j ð10−3 eV2Þ (IO) 2.38 2.32–2.43 2.26–2.48 2.20–2.54
θ12 34.6° 33.6°–35.6° 32.7°–36.7° 31.8°–37.8°
θ23 (NO) 48.9° 41.7°–50.7° 40.0°–52.1° 38.8°–53.3°
θ23 (IO) 49.2° 46.9°–50.7° 41.3°–52.0° 39.4°–53.1°
θ13 (NO) 8.6° 8.4°–8.9° 8.2°–9.1° 7.9°–9.3°
θ13 (IO) 8.7° 8.5°–8.9° 8.2°–9.1° 8.0°–9.4°
δ (NO) 254° 182°–353° 0°–360° 0°–360°
δ (IO) 266° 210°–322° 0°–16° ⊕ 155°–360° 0°–360°
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while remaining classes P4 and P5 predict the Dirac phase δ
to be near 270° at the same confidence level. The
correlation plots for these classes are given in Figs. 1–3
using 3σ ranges of the known neutrino oscillation param-
eters while numerical results at 1σ, 2σ, and 3σ C.L. are
given in Table II. Discussed below are the phenomeno-
logical implications of the experimentally allowed classes.
Class P2: To the leading order in s13 we get the following

expression for the mass ratio ðm2

m1
Þ:

m2

m1

≈ t212

�
1þ 2cδs13t23

s12c12

�
; ð27Þ

Some of the interesting plots for class P2 are shown in
Figs. 1 and 2. In Fig. 1(a) we have shown the correlation
plot between the two Majorana phases ρ and σ. In the case
of m3 ¼ 0, one has the freedom to make an overall phase
rotation of neutrino masses so that the Majorana phase
associated with one of the nonzero neutrino masses, i.e.,m1

or m2, may be rotated away and we are left with only one
phase difference which is physical. In Fig. 1(b) we have
shown the correlation plot between the physical Majorana
phase difference ðρ − σÞ and Dirac phase δ. One can see
that ðρ − σÞ and δ are constrained to small ranges for class
P2. A vanishing δ is still possible for class P2 which allows
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FIG. 1 (color online). Correlation plots for class P2.
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FIG. 2 (color online). Correlation plots for classes P3 (a) and P2 (b) depicting the 2-3 interchange symmetry.
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for vanishing JCP along with nonzero values [Fig. 1(c)].
The effective Majorana mass jMeej has been plotted against
δ in Fig. 1(d). It is clear that only a narrow range for
jMeej∼ð0.0102–0.0205Þ eV is allowed for class P2.
Class P3: Since class P3 is related to class P2 via

permutation symmetry [Eq. (8)], the phenomenological
implications for class P3 can be obtained from class P2

using Eq. (9). The 2-3 interchange symmetry between
classes P2 and P3 is shown in Fig. 2. From Fig. 2(a) [2(b)]
one can see that for higher values of θ13, the lower (upper)
quadrant of θ23 is preferred for class P3 ðP2Þ. Figs. 2(a)
and 2(b) may appear to show a slight deviation from
the 2-3 interchange symmetry relation:

θP3

23 ¼ 90° − θP2

23 : ð28Þ

However, this apparent deviation is just because the
experimentally allowed 3σ range for θ23 is not symmetric
around θ23 ¼ 45°.
Class P4: We have the following expression for the mass

ratio ðm2

m1
Þ in leading order terms of s13:

m2

m1

≈
�
1þ cδs13t23

s12c12

�
: ð29Þ

The correlation plots for class P4 have been compiled in
Fig. 3. Figure 3(a) shows the correlation plot between the

Majorana phases ρ and σ. The physically relevant phase
difference ðρ − σÞ has been plotted against the Dirac phase
δ in Fig. 3(b). Both ðρ − σÞ and δ have very small allowed
ranges for class P4. The allowed parameter space for δ is
constrained near 90° and 270°, which leads to the result that
JCP cannot vanish for this class [Fig. 3(c)]. A very narrow
range for jMeej ∼ ð0.0412–0.0520Þ eV is allowed for class
P4 [Fig. 3(d)].
Class P5: As class P5 is related to class P4 via

permutation symmetry [Eq. (8)], the phenomenological
implications for class P5 can be obtained from class P4

using Eq. (9). The allowed values of jMeej for classes P4

and P5 are on the larger side, having no overlap with classes
P2 and P3 (Table III). Thus, jMeej can be used to
distinguish between diagonal and off-diagonal one texture
zero classes with a vanishing neutrino mass.

IV. SYMMETRY REALIZATION

Singular one texture zero neutrino mass matrices can be
realized using a discrete Abelian flavor symmetry within
the context of the type-I seesaw mechanism [26]. Such
texture structures were realized earlier in Ref. [17] using
Z12 × Z2 symmetry, requiring six (seven) SUð2ÞL doublet
Higgs bosons for the classes where the texture zero is
present on the diagonal (off-diagonal) elements. Here, we
show how the phenomenologically allowed singular one
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FIG. 3 (color online). Correlation plots for class P4.
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texture zero classes can be realized with a much smaller
number of Higgs doublets and a smaller symmetry group.
For the classes where the texture zero corresponds to
diagonal elements we need only two Higgs doublets and
for the off-diagonal texture zero classes only three Higgs
doublets are required. The symmetry group used to realize
these texture structures is Z8.
Within the framework of the type-I seesaw mechanism,

the effective neutrino mass matrix is given by

Mν ≈MDM−1
R MT

D; ð30Þ

where MD and MR are the Dirac and the right-handed
neutrino mass matrices, respectively. To realize the texture
structures within the framework of the type-I seesaw
mechanism, we extend the standard model by adding three
right-handed neutrinos (νeR; νμR; ντR) and a SUð2ÞL singlet
scalar (χ).
For illustration, we show in detail the symmetry reali-

zation of class P2 where the (2, 2) element of Mν is zero.
For class P2 we assume the following transformation
properties of the leptonic fields under the cyclic group Z8:

D̄eL → ω7D̄eL; eR → ωeR; νeR → νeR;

D̄μL → ω4D̄μL ; μR → ω4μR; νμR → ω4νμR;

D̄τL → ω5D̄τL; τR → ω5τR; ντR → ωντR; ð31Þ

where ω ¼ ei2π=8, DfL ðf ¼ e; μ; τÞ denote SUð2ÞL dou-
blets and lfR, νfR denote the right-handed SUð2ÞL singlet
charged lepton and neutrino fields, respectively. According

to the above transformations of the leptonic fields, the
bilinears D̄fLlgR, D̄fLνgR, and νTfRC

−1νgR relevant for Ml,
MD and MR, respectively, transform as

D̄fLlgR ∼

0
B@

1 ω3 ω4

ω5 1 ω

ω6 ω ω2

1
CA;

D̄fLνgR ∼

0
B@

ω7 ω3 1

ω4 1 ω5

ω5 ω ω6

1
CA;

νTfRC
−1νgR ∼

0
B@

1 ω4 ω

ω4 1 ω5

ω ω5 ω2

1
CA: ð32Þ

We introduce two SUð2ÞL doublet Higgs (ϕ1;ϕ2) trans-
forming as ϕ1 → ϕ1 and ϕ2 → ω6ϕ2 under the action of Z8.
These transformation properties of ϕ1 and ϕ2 will lead to
the following Z8 invariant Yukawa Lagrangian for class P2:

−LY ¼ Y1ðD̄eLeRÞϕ1 þ Y2ðD̄μLμRÞϕ1 þ Y3ðD̄τLτRÞϕ2

þ Y4ðD̄eLντRÞ ~ϕ1 þ Y5ðD̄μLνμRÞ ~ϕ1

þ Y6ðD̄τLντRÞ ~ϕ2 þ H:c:; ð33Þ

where ~ϕj ¼ iτ2ϕ�
j (j ¼ 1; 2). When the Higgs fields (ϕj)

acquire nonzero vacuum expectation values hϕjio ≠ 0, we

TABLE III. The allowed ranges of the Dirac CP-violating phase δ, physical Majorana phase difference ðρ − σÞ, effective Majorana
mass jMeej, and Jarlskog rephrasing invariant JCP for the experimentally allowed classes with m3 ¼ 0.

Class C.L. δ ρ − σ jMeej (eV) JCP

P1 1σ × × × ×
2σ × × × ×
3σ × × × ×

P2 1σ × × × ×
2σ 0°–16° ⊕ 317°–360° ð−90.00°Þ–ð−74.80°Þ ⊕ 83.82°–90.00° 0.0122–0.0187 ð−0.0240Þ–0.0102
3σ 0°–53° ⊕ 306°–360° ð−90.0°Þ–ð−70.5°Þ ⊕ 71.0°–90.0° 0.0102–0.0205 ð−0.03Þ–0.03

P3 1σ × × × ×
2σ 154.7°–214.0° ð−90.0°Þ–ð−81.5°Þ ⊕ 78.5°–90.0° 0.0123–0.0167 ð−0.0206Þ–0.0156
3σ 130°–230° ð−90°Þ–ð−73°Þ ⊕ 73°–90° 0.0102–0.0187 ð−0.029Þ–0.029

P4 1σ 267.8°–269.9° 9.45°–11.55° 0.0446–0.0482 ð−0.0356Þ–ð−0.0327Þ
2σ 266.8°–271.7° 7.4°–12.5° 0.0428–0.0501 ð−0.0369Þ–ð−0.0308Þ
3σ 87.2°–94.2° ⊕ 265.9°–272.9° ð−13.5°Þ–ð−6.7°Þ ⊕ 6.7°–13.5° 0.0412–0.0520 ð−0.0385Þ–ð−0.0295Þ

⊕ 0.0295–0.0385
P5 1σ 268.5°–270.6° ð−8.90°Þ–ð−7.26°Þ 0.0449–0.0485 ð−0.0560Þ–ð−0.0327Þ

2σ 267.6°–272.3° ð−11.2°Þ–ð−6.6°Þ 0.0431–0.0502 ð−0.0369Þ–ð−0.0309Þ
3σ 86.5°–93.5° ⊕ 266.5°–273.5° ð−12.5°Þ–ð−6°Þ ⊕ 6°–12.5° 0.0413–0.0521 ð−0.0385Þ–ð−0.0295Þ

⊕ 0.0295–0.0385
P6 1σ × × × ×

2σ × × × ×
3σ × × × ×
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get the charged lepton mass matrix Ml and the Dirac
neutrino mass matrix MD of the following form,

Ml ¼

0
B@

me 0 0

0 mμ 0

0 0 mτ

1
CA; ð34Þ

MD ¼

0
B@

0 0 a

0 b 0

0 0 c

1
CA; ð35Þ

where me ¼ Y1hϕ1io, mμ ¼ Y2hϕ1io, mτ ¼ Y3hϕ2io,
a ¼ Y4hϕ�

1io, b ¼ Y5hϕ�
1io, and c ¼ Y6hϕ�

2io. For the
right-handed Majorana neutrino mass matrix, we assume
a SUð2ÞL singlet scalar (χ) transforming as χ → ω3χ under
Z8; thus χ will lead to the nonzero (2, 3) element of MR.
Also, nonzero (1, 1) and (2, 2) elements of MR arise from
bare Majorana mass terms which are already invariant
under Z8. This leads to the following form of MR:

MR ¼

0
B@

A 0 0

0 B C

0 C 0

1
CA: ð36Þ

Using the type-I seesaw mechanism, theseMD andMR lead
to an effective neutrino mass matrix having a zero (2, 2)
element and a vanishing neutrino mass (class P2).
By assigning suitable transformation properties to the

leptonic and Higgs fields under the action of Z8, one can
realize the remaining phenomenologically allowed classes

of singular neutrino mass matrices with one texture zero.
The structures of MD and MR for all the phenomenologi-
cally allowed classes are summarized in Table IV. The
leptonic and Higgs field transformation properties under
Z8, leading to all viable one texture zero classes with a
vanishing neutrino mass, are given in Table V.

V. SUMMARY

We have done a systematic analysis of all the one texture
zero neutrino mass matrices with a vanishing neutrino mass
using the latest global fits of neutrino oscillation param-
eters. We find that all six classes with normal mass ordering
are now ruled out at 3σ confidence level, whereas in the
case of inverted mass ordering only four classes
(P2; P3; P4; P5) out of six total are consistent with the
latest experimental data. Furthermore, only classes P4 and
P5 are found to be compatible with the latest data at 1σ
confidence level. For classes P4 and P5 with inverted mass
ordering, the parameter space of the Dirac CP-violating
phase δ is restricted to values near δ ≈ 90°, 270° (δ ≈ 270°)
at 3σ (1σ) confidence level. We have shown how the
experimentally allowed classes can be realized within the
context of the type-I seesaw mechanism using Z8 discrete
symmetry and a small number of Higgs doublets. Classes
where the texture zero corresponds to diagonal elements
can be distinguished from the off-diagonal one texture zero
classes on the basis of allowed 3σ ranges of effective
Majorana mass for these classes. For all the experimentally
allowed classes we get ranges for the effective Majorana
mass, which lie within the sensitivity limits of future
neutrinoless double beta decay experiments.
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TABLE IV. Structures ofMD andMR leading to experimentally
allowed singular one texture zero effective neutrino mass
matrices.

Class MD MR

P2
 
0 0 a
0 b 0

0 0 c

!  A 0 0

0 B C
0 C 0

!

P3
 a 0 0

b 0 0

0 0 c

!  
0 0 A
0 B 0

A 0 C

!

P4
 a 0 0

0 0 b
c 0 d

!  A 0 0

0 B 0

0 0 C

!

P5
 a 0 0

b 0 c
0 0 d

!  A 0 0

0 B 0

0 0 C

!

TABLE V. Transformation properties of lepton and scalar fields
under Z8 for classes P2, P3, P4, and P5.

Class D̄eL, D̄μL, D̄τL eR, μR, τR νeR, νμR, ντR ϕ1 ϕ2 ϕ3 χ

P2 ω7, ω4, ω5 ω, ω4, ω5 1, ω4, ω 1 ω6 � � � ω3

P3 ω7, ω5, ω4 ω, ω5, ω4 ω, 1, ω4 1 ω6 � � � ω3

P4 1, ω6, ω3 1, ω, ω4 1, ω4, ω5 1 ω ω3 ω6

P5 1, ω3, ω6 1, ω4, ω 1, ω4, ω5 1 ω ω3 ω6
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