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The complex Langevin method aims at performing path integral with a complex action numerically
based on complexification of the original real dynamical variables. One of the poorly understood issues
concerns occasional failure in the presence of logarithmic singularities in the action, which appear, for
instance, from the fermion determinant in finite density QCD. We point out that the failure should be
attributed to the breakdown of the relation between the complex weight that satisfies the Fokker-Planck
equation and the probability distribution associated with the stochastic process. In fact, this problem can
occur, in general, when the stochastic process involves a singular drift term. We show, however, in a simple
example that there exists a parameter region in which the method works, although the standard reweighting
method is hardly applicable.
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I. INTRODUCTION

The path integral formulation plays an important role in
nonperturbative studies of quantum field theories due to the
possibility of using Monte Carlo methods. The basic idea is
to generate field configurations with a probability e−S and to
evaluate the path integral by taking a statistical average. It is
not straightforward, however, to apply such an approach to
cases with a complex action S since one can no longer view
e−S as the probability distribution. This “complex action
problem” occurs, for instance, in QCD at finite density or
with a theta term, in Chern-Simons gauge theories, and in
chiral gauge theories. It also appears in supersymmetric
gauge theories and matrix models, which are relevant in
nonperturbative studies of superstring theory.
The complex Langevin method (CLM) [1,2] attempts to

solve this problem by extending the idea of stochastic
quantization [3] for ordinary systems with a real action to
the case with a complex action. This necessarily requires
complexifying the real dynamical variables that appear in
the original path integral. A stochastic process for the
complexified variables is defined by the Langevin equation
with the complex action, and expectation values in the
original path integral are calculated from an average of
corresponding quantities over the stochastic process. See
Ref. [4] for a pedagogical review on this method.
One of the recent developments in this method is the

clarification of a necessary condition for convergence to
correct results [5]. In fact, there is a lot of freedom in
defining the stochastic process that corresponds formally to
the original path integral. By using this freedom, one can
try to satisfy the conditions for convergence. The so-called
gauge cooling [6] is a new technique of this kind, which has

made it possible to study finite density QCD in the high
temperature (deconfined) phase [7].
Despite these developments, there is still a puzzle con-

cerning the treatment of logarithmic singularities in the
action [8–10]. For instance, the effective action for QCD
involves the logarithm of a determinant, which represents the
effects of dynamical quarks. At finite density, the determi-
nant Δ becomes complex in general, which causes the
complex action problem. In this case, the effective action
has an ambiguity due to the branch cut of the logarithm; the
phase of the determinant can be defined onlymodulo 2π. For
instance, one may use the drift term ∂ logΔ ¼ Δ−1∂Δ in the
complex Langevin equation, which corresponds to regarding
the− logΔ term in the action as amultivalued function. It has
been found, however, that theCLMwith this prescription can
give wrong results in a simplified model when the phase of
the determinant rotates frequently during the stochastic
process [8]. The wrong results turn out to be close to (but
not equal to) the results obtained for the phase-quenched
model, in which the phase of the determinant is quenched.
This problem has not shown up yet in recent QCD simu-
lations at finite density [11,12].
Here we provide new insights into this issue from the

viewpoint of the Fokker-Planck (FP) equation. We start with
simple examples and discuss more general cases towards
the end.

II. ONE-VARIABLE CASE

A. Formulation of the CLM

Let us consider a simple example defined by the partition
function

Z ¼
Z

dxwðxÞ; wðxÞ ¼ ðxþ iαÞpe−x2=2; ð1Þ*jnishi@post.kek.jp
†simasaki@post.kek.jp
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where x is a real variable and α and p are real parameters.
For α ≠ 0 and p ≠ 0, the weight wðxÞ is complex, and the
idea of important sampling cannot be applied to Eq. (1) by
regarding wðxÞ as the Boltzmann weight.
Following the usual procedure in CLM, we define the

drift term

vðxÞ ¼ wðxÞ−1 ∂wðxÞ∂x ¼ p
xþ iα

− x; ð2Þ

and complexify the variable as x↦ z ¼ xþ iy. The action

SðzÞ ¼ − logwðzÞ ¼ −p logðzþ iαÞ þ z2=2 ð3Þ

after the complexification has a logarithmic singularity at
z ¼ −iα for p ≠ 0, which causes the aforementioned
ambiguity due to the branch cut. However, we emphasize
that this is not an issue, in general, because all we need in
formulating the CLM, as we show below, is the single-
valuedness of the drift term vðzÞ after the complexification
and the single-valuedness of the complex weight wðxÞ as a
function of x. These are satisfied in the present case even
for a noninteger p.
The complex Langevin equation corresponding to the

partition function [Eq. (1)] can be written as

dz
dt

¼ vðzÞ þ ηðtÞ ¼ p
zþ iα

− zþ ηðtÞ; ð4Þ

where ηðtÞ represents a real Gaussian noise satisfying
hηðtÞηðt0Þi ¼ 2δðt − t0Þ. We define the probability distri-
bution Pðx; y; tÞ of xðtÞ and yðtÞ at the Langevin time t. Its
time evolution follows the FP-like equation

∂
∂t P ¼ LP ð5Þ

¼ ∂
∂x

�
−ðRevÞz¼xþiy þ

∂
∂x

�
P

þ ∂
∂y f−ðImvÞz¼xþiyPg: ð6Þ

The crucial point in the CLM is that there exists a
complex weight ρðx; tÞ, which is related to the probability
distribution Pðx; y; tÞ through

Z
OðxÞρðx; tÞdx ¼

Z
Oðxþ iyÞPðx; y; tÞdxdy ð7Þ

under certain conditions [5], where OðxÞ are observables
that admit holomorphic extension to Oðxþ iyÞ. The
evolution of ρ follows the usual FP equation

∂
∂t ρ ¼ L0ρ; ð8Þ

L0 ¼
∂
∂x

�
−vðxÞ þ ∂

∂x
�
; ð9Þ

which has a time-independent solution ρðx; tÞ ∝ wðxÞ, with
wðxÞ given in Eq. (1) since it is annihilated by the operator
in parenthesis in Eq. (9). Thus, the necessary and sufficient
conditions for being able to calculate the expectation value
of O with respect to Eq. (1) by the CLM are:

(i) The relation between ρ and P holds [Eq. (7)].
(ii) The solution ρðx; tÞ of the FP equation [Eq. (8)]

asymptotes to wðxÞ as t → ∞ up to some constant
factor.

As possible observables in the present example [Eq. (1)],
we consider O ¼ xk, where k is a positive integer.
Assuming the ergodicity of the stochastic process, the
right-hand side of Eq. (7) at t ¼ ∞ can be evaluated by
taking the time average of zðtÞk, where zðtÞ is obtained by
solving Eq. (4). We find numerically that this method gives
correct results only for sufficiently large jαj for each p. In
what follows, we clarify the reason why it fails at small jαj.

B. Spectrum of the “FP Hamiltonian”

First we have investigated numerically the eigenvalue
spectrum of the FP Hamiltonian ð−L0Þ defined by Eq. (9),
assuming that the complex weight ρðxÞ falls off rapidly
as jxj → ∞.
As is clear from what we wrote above, we have an

eigenfunction ρðxÞ ¼ wðxÞ with zero eigenvalue for arbi-
trary p and α. When p is a positive odd integer and α ¼ 0,
we have another zero mode ρðxÞ ¼ jxjpe−x2=2. For p > 1,
negative eigenvalues appear in the small jαj region. [Note
that, when α ¼ 0, we have an eigenfunction ρðxÞ ¼
xe−x

2=2, which corresponds to the smallest eigenvalue λ ¼
−ðp − 1Þ for any p.] Thus, we find that the desired solution
ρðx; tÞ ∝ wðxÞ is obtained in the long-time limit of the FP
equation [Eq. (8)] at arbitrary α for p < 1 and at suffi-
ciently large jαj for p > 1.
In the parameter region where we have negative modes,

the complex weight diverges as ρðx; tÞ ∝ ejλminjtρminðxÞ,
where λmin is the smallest eigenvalue and ρminðxÞ is the
corresponding eigenfunction. Clearly this behavior is
incompatible with the relation [Eq. (7)] considering that
Pðx; y; tÞ ≥ 0 and

R
dxdyPðx; y; tÞ ¼ 1. This implies that

the relation [Eq. (7)] between ρ and P must be broken at
least in this region.
Applying this kind of argument to a general multi-

variable case, we find that the condition like (ii) in Sec. II A
is automatically satisfied if the condition like (i) holds, as
far as the probability distribution P asymptotes to a unique
function.

C. The relation between ρ and P

Let us then consider what can go wrong with Eq. (7). In
the derivation of Eq. (7) given in Ref. [5], the authors use
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Z
Oðxþ iyÞPðx; y; tÞdxdy

¼
Z

Oðxþ iy; tÞPðx; y; 0Þdxdy; ð10Þ

where Oðxþ iy; tÞ is defined by solving

d
dt

Oðxþ iy; tÞ ¼ L⊤Oðxþ iy; tÞ ð11Þ

with the initial condition Oðxþ iy; 0Þ ¼ Oðxþ iyÞ. The
symbol L⊤ represents an operator satisfying hL⊤f; gi ¼
hf; Lgi, where hf; gi≡ R

fðx; yÞgðx; yÞdxdy, assuming
that f and g are regular functions with sufficiently fast
falloff as jxj; jyj → ∞.
In order to prove Eq. (10), they consider the quantity in

Ref. [5],

FðτÞ ¼
Z

Oðxþ iy; τÞPðx; y; t − τÞdxdy; ð12Þ

for 0 ≤ τ ≤ t, which interpolates both sides of Eq. (10).
Taking the derivative with respect to τ, they get

d
dτ

FðτÞ ¼
Z

fL⊤Oðxþ iy; τÞgPðx; y; t − τÞdxdy

−
Z

Oðxþ iy; τÞLPðx; y; t − τÞdxdy: ð13Þ

Naively, the two terms cancel through integrating by parts,
which implies that FðτÞ is independent of τ and hence
Eq. (10). In order to justify the partial integration, however,
one should be able to neglect the boundary terms. This
requires that Pðx; y; tÞ decreases sufficiently fast as
jxj; jyj → ∞ [5]. In addition to this requirement, one also
needs the holomorphy of the drift and of the observables to
prove Eq. (7).

D. Diverging boundary terms due to singularity

In the present example, the fast falloff of Pðx; y; tÞ as
jxj; jyj → ∞ is satisfied due to the −z term in Eq. (4).
However, we should be careful of the singularity at
ðx; yÞ ¼ ð0;−αÞ. In order for the boundary terms to be
neglected, it is required that the limits

lim
x→0

�
x
Z

Oðz; τÞ
jzþ iαj2 Pðx; y; t − τÞdy

�
; ð14Þ

lim
y→−α

�
ðyþ αÞ

Z
Oðz; τÞ
jzþ iαj2 Pðx; y; t − τÞdx

�
ð15Þ

should exist for arbitrary t and τ. Note, in particular, that
Oðz; τÞ obtained by solving Eq. (11) is highly singular at
z ¼ −iα since the operator L appearing on the right-hand
side of Eq. (11) involves the singularity. For instance, let us

take the nth derivative of the above expressions with
respect to τ at τ ¼ 0. Using Eq. (11), we obtain terms
such as

lim
x→0

�
x
Z ðL⊤ÞnOðzÞ

jzþ iαj2 Pðx; y; tÞdy
�
; ð16Þ

which diverges as ∼ 1
jxjð2n−1Þ for n ≥ 1 if Pðx; y; tÞ is nonzero

at ðx; yÞ ¼ ð0;−αÞ.
In order to describe the actual situation, let us define the

radial distribution

φðrÞ¼ 1

2πr

Z
Pðx;y;∞Þδð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þðyþαÞ2

q
−rÞdxdy ð17Þ

around the singular point ðx; yÞ ¼ ð0;−αÞ. For small jαj,
we observe that φðrÞ ∼ r at small r as long as p is not very
large. In this case, the term (16) still diverges for suffi-
ciently large n, and the relation [Eq. (7)] between ρ and P
can be violated. Indeed we find that the CLM yields wrong
results in such a parameter region.

E. Results for large p

In the partition function [Eq. (1)], it is the prefactor
ðxþ iαÞp that causes the complex action problem. In view
of this, one might think that the CLM fails when the phase
of ðzðtÞ þ iαÞp rotates frequently during the time evolution
from Eq. (4). We find that this is not necessarily the case.
In order to demonstrate this point, we present our results

for large p. Figure 1 shows that the CLM reproduces the
exact results for jαj ≳ 14 at p ¼ 50. From Fig. 2, we find
for α ¼ 14 that φðrÞ ¼ 0 at r≲ 6, although we observe that
the phase of ðzðtÞ þ iαÞ50 rotates frequently during the
stochastic process.
We would also like to mention that the complex action

problem is extremely severe at α ¼ 14 and p ¼ 50. As a
standard quantity that measures the severeness of the
complex action problem, let us consider

-100

-50

 0

 50

 100

 0  5  10  15  20  25  30

R
e 

<
x2 >

α

p=50

exact
CLM

FIG. 1 (color online). The real part of the expectation value hx2i
obtained by the CLM [Eq. (4)] is plotted against α for p ¼ 50.
The solid line represents the exact result obtained analytically by
the Gaussian integration.
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R ¼
	

wðxÞ
jwðxÞj



0

¼
	ðxþ iαÞp
jxþ iαjp



0

¼ Z
Z0

; ð18Þ

where Z0 is the partition function of the phase-quenched
model Z0 ¼

R
dxjwðxÞj and the expectation value h·i0 is

taken with respect to it. In the present case, both Z and Z0

can be calculated analytically by performing the Gaussian
integration. We find that R ∼ −7.4 × 10−5 at α ¼ 14 and
p ¼ 50. One can imagine how hard it is to obtain correct
results if one performs a Monte Carlo simulation of the
phase-quenched model and applies the standard reweight-
ing formula to obtain the expectation values with respect to
the original partition function [Eq. (1)]. Thus, the advantage
of the CLM over the reweighting method can be appre-
ciated even in this simple one-variable case.

F. Nonlogarithmic singularities

Another interesting implication of our argument is that
the possible failure of the CLM is not specific to loga-
rithmic singularities in the action. Indeed we have found
that the CLM can fail for the weight wðxÞ ¼ e−SðxÞ with the
action

SðxÞ ¼ βðxþ iαÞ−2 þ x2=2: ð19Þ

Note that the action SðzÞ after complexification does not
involve a logarithmic singularity, which means, in particu-
lar, that there is no issue of ambiguity associated with the
branch cut. Nevertheless, we find that the CLM fails at
jαj≲ 1.2 for β ¼ 1 and at jαj≲ 1.7 for β ¼ −1. On the
other hand, from the studies of the eigenvalue spectrum of
ð−L0Þ, we find that ρðx; tÞ ∝ e−SðxÞ is obtained in the long-
time limit of the FP equation [Eq. (8)] for arbitrary α with
β ¼ �1. Therefore, the failure of the CLM at small jαj
should be attributed to the violation of Eq. (7) due to the
singularity in the drift term vðzÞ ¼ 2βðzþ iαÞ−3 − z. This
is also confirmed from the behavior of the radial distribu-
tion [Eq. (17)].

III. TWO-VARIABLE CASE

Our argument applies also to the case with multiple
variables. To make this clear, let us consider a case with two
variables given by

Z ¼
Z

dx1dx2wðx1; x2Þ; ð20Þ

wðx1; x2Þ ¼ ðx1 þ ix2Þpe−ðx1Þ2=2−ðx2−αÞ2=2; ð21Þ

where x1 and x2 are real variables. The parameter α is real,
while p is a positive integer.
We have studied numerically the eigenvalue spectrum

of the operator ð−L0Þ, assuming that the complex
weight ρðx1; x2Þ falls off rapidly as ðx1Þ2 þ ðx2Þ2 → ∞.
First we obtain the desired zero mode ρðx1; x2Þ ¼ wðx1; x2Þ
for arbitrary p and α. When α ¼ 0, we have another
zero mode ρ ¼ jx1 þ ix2jpe−ðx1Þ2=2−ðx2Þ2=2 for any p.
For p > 1, negative modes appear at small jαj. [Note
that, when α ¼ 0, we have an eigenfunction ρ ¼
ðx1 þ ix2Þe−ðx1Þ2=2−ðx2Þ2=2, which corresponds to the small-
est eigenvalue λ ¼ −ðp − 1Þ for any p.] Thus, we can make
an argument analogous to the one-variable case [Eq. (1)].
Indeed we find for p ¼ 1, 2, 3 that the CLM with
complexified variables z1 and z2 gives wrong results at
small jαj. This can be understood from the behavior of the
radial distribution for r ¼ jz1 þ iz2j.

IV. IMPLICATIONS TO FINITE DENSITY QCD

Let us discuss the implication of our argument to
finite density QCD, which involves the complex fermion
determinant detðDþmÞ in the partition function,
where D represents the Dirac operator and m is the quark
mass. The determinant can be written as the product of the
eigenvalues λk of ðDþmÞ. The drift term of the complex
Langevin equation involves

P
kðλkÞ−1∂λk, where ∂ repre-

sents the derivative with respect to the complexified
gauge field.
According to our argument, the problem we discussed

does not appear as long as the distribution of λk is
practically zero at the origin, even if the phase of the
fermion determinant rotates frequently during the stochas-
tic process. (See our results for large p in the one-variable
case.) This is consistent with the results of recent QCD
simulations at finite density, where the distribution of λk has
the desired property due either to large quark mass [11] or
to high temperature [12].
On the other hand, the eigenvalues of D obtained in the

CLM are speculated to accumulate at the origin in the chiral
limit (corresponding to the m → 0 limit) when the chiral
symmetry is spontaneously broken [13]. If true, the CLM
will have problems in that parameter regime unless some
new idea is invoked.
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FIG. 2 (color online). The radial distribution φðrÞ defined in
Eq. (17) is plotted for p ¼ 50with α ¼ 13 (solid line) and α ¼ 14
(dashed line).
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V. SUMMARY

We have discussed the issue in the CLM concerning the
logarithmic singularities in the action. The standard drift
term corresponds to regarding the logarithm in the action as
a multivalued function of the complexified variables. The
CLM with this drift term is known to give wrong results in
some cases. Theoretical understanding of this problem is
important, for instance, in applying the method to finite
density QCD in the low temperature (confined) phase with
light quark mass.
First we emphasized that the multivaluedness of loga-

rithmic terms in the action cannot be considered the cause
of the problem since one can formulate the method without
referring to the action, as we have done in Sec. II A. This is
also indicated by the example in Sec. II F.
Rather, the problem should be attributed to the possible

breakdown of the key relation between ρ and P due to the
singularities in the drift term of the complex Langevin
equation. In particular, we pointed out that the relation can
be violated due to the boundary terms appearing from
integrating by parts in proving Eq. (10), which diverges

unless P is practically zero around the singularities. This
assertion was supported by simple examples. A more
quantitative analysis will be reported in the forthcoming
publication.
The FP Hamiltonian can have negative modes only if the

key relation between ρ and P is violated. Note, however,
that the key relation can be violated even if the FP
Hamiltonian does not have negative modes. Hence, the
appearance of the negative modes should be regarded
merely as an indicator of the violation of the key relation,
the latter being the cause of the problem.
To conclude, we hope that the new insights gained in this

work will be useful in developing the method further in
cases with singularities in the drift term.
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