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I. INTRODUCTION

The spontaneous breaking of global and space-time
symmetries leaves universal fingerprints in the IR behavior
of quantum field theories. In particular, the Goldstone
theorem ensures that massless modes should appear in the
IR spectrum. In the case of spontaneously broken N ¼ 1

rigid supersymmetry, we expect a massless Weyl fermion in
the IR spectrum, the Goldstino.
The spontaneous breaking of N ¼ 1 supersymmetry in

4d QFTs can be studied purely from the operator point of
view [1]. In particular, the Goldstino appears as a massless
pole in the supercurrent two-point correlator [2], while
supersymmetryWard identities relate the pole residue to the
nonzero vacuum energy.
When the field theory dynamics is strongly coupled, its

operators cannot be written in terms of fundamental fields
and the theory becomes incalculable. In such a situation,
the AdS/CFT correspondence [3–5] provides a powerful
tool, allowing one to construct (at least in principle)
supergravity backgrounds which are holographically dual
to strongly coupled gauge theories.
While much effort has been devoted to the study of

supergravity backgrounds dual to strongly coupled QFTs
which spontaneously break supersymmetry, very little has

been done to understand how the holographic map can be
extended to the supercurrent sector [6]. This is particularly
interesting because a holographic handle on the super-
current correlators can be used to identify the appearance of
the Goldstino mode from the bulk perspective. More
generally, the supersymmetry Ward identities which con-
strain the boundary field theory should be encoded auto-
matically in the dual supergravity theory.
The primary objective of this paper is to fill the above

mentioned gap in the literature, providing a holographic
derivation of the Ward identities. This will allow us to
identify the appearance of the Goldstino mode in the
supercurrent two-point correlator.
Previous works have already shown how the holographic

renormalization procedure relates (broken) gauge
symmetry/diffeomorphisms in the bulk and (broken) fla-
vor/conformal symmetry at the boundary [7–9]. Our work
will complement these ideas by studying the connection
between the (broken) bulk supersymmetry and the global
supersymmetry of the boundary theory.
In the remainder of this section we outline the general

philosophy underlying our analysis. We elucidate general
properties supersymmetric QFTs (SQFT) should enjoy, as
well as those of the dual supergravity backgrounds.
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A. Supersymmetry Ward identities and the
Goldstino mode

A necessary condition for a supersymmetric field theory
to develop a Poincaré invariant supersymmetry-breaking
vacuum is that conformality should be broken explicitly.
Let us then focus on 4d SQFTs which can be described by
renormalization group (RG) flows departing from a UV
fixed point by means of a relevant operator. Their action
can be schematically written as

S ¼ SSCFT þ λ

Z
d4xd2θOþ H:c:; ð1:1Þ

where SSCFT is an N ¼ 1 superconformal field theory and
O is a chiral operator with 1 ≤ ΔO < 3 which triggers the
RG flow [10]. Its operator components are specified as
O ¼ OS þ

ffiffiffi
2

p
θOψ þ θ2OF. In principle, one can deform

the SCFT with more than one relevant operator. We make
the simplifying assumption of having only one such
operator.
In any SQFT, among all the supermultiplets of gauge

invariant operators that one can construct, a prominent role
is played by the supercurrent multiplet which contains the
energy-momentum tensor Tμν and the supersymmetry
current Sμα. For nonconformal theories, as the one under
consideration, this multiplet is described [11] by two
superfields ðJ μ; XÞ satisfying the on-shell relation

−2D _ασμα _αJ μ ¼ DαX; ð1:2Þ

with J μ a real superfield and X a chiral superfield. The
latter contains trace operators, in particular those of the
energy-momentum tensor and the supercurrent, and van-
ishes for a SCFT (we refer to [2] and [12] for details). In
(1.1) O is related to X as

X ¼ 4

3
ð3 − ΔOÞλO: ð1:3Þ

From here on we take ΔO ¼ 2 and hence X ¼ 4
3
λO.

Nothing relevant of what we discuss below depends on
this choice. Notice that Eq. (1.3), being an operator identity,
holds inside any correlation function and in any vacuum.
The theorycanbe ina supersymmetricor a supersymmetry-

breaking vacuum, depending on whether the operator O (or
any other operator of the strongly coupled field theory)
acquires a nonvanishing vacuum expectation value (VEV)
for its F-term component. The structure of one- and two-point
functions of operatorsbelonging to theFZmultiplet can easily
tell if this is the case. Indeed, regardless of the vacuum one is
considering, the supersymmetry algebra implies the Ward
identities

h∂μSμαðxÞSν _βð0Þi ¼ −δ4ðxÞhδαSν_βi ¼ −2σμα _βhTμνiδ4ðxÞ
ð1:4Þ

h∂μSμαðxÞOψβð0Þi ¼ −δ4ðxÞhδαOψβi ¼
ffiffiffi
2

p
hOFiεαβδ4ðxÞ;

ð1:5Þ

where hTμνi is a function of both λ and hOFi that vanishes if
either of the two does [from Eq. (1.3) it follows that
ημνhTμνi ¼ 2λRehOFi].The twoWard identities above imply
the presence of the following structures in the two-point
functionsof thesupercurrentwith itself andwith the fermionic
operator Oψ :

hSμαðxÞSν _βð0Þi ¼ � � � − i
4π2

hTiðσμσρσνÞα _β
xρ
x4

ð1:6Þ

hSμαðxÞOψβð0Þi ¼ � � � − i
2π2

ffiffiffi
2

p
hOFiεαβ

xμ
x4

; ð1:7Þ

where hTi ¼ ημνhTμνi. Upon Fourier transform, the expres-
sions above display in the simplest and cleanest way the
massless pole associated to the Goldstino, which is
the lowest energy excitation in both Sμ and Oψ . Indeed, in
the deep IR, one can write Sμ ¼ σμG, where G is the
Goldstino field. Plugging this relation in (1.6), one recovers,
up to an overall normalization, the Goldstino propagator.
Finally, Eq. (1.3) implies also that σμα _αS

_α
μ ¼ 2

ffiffiffi
2

p
λOψα,

which in turn provides identities between a priori different
correlation functions, e.g.

hσμα _αS _α
μðxÞOψ _βð0Þi ¼ 2

ffiffiffi
2

p
λhOψαðxÞOψ _βð0Þi: ð1:8Þ

B. Field/operator map

The quantum field theory (1.1) can be holographically
described with a five-dimensional N ¼ 2 supergravity
theory containing just one hypermultiplet besides the
always present graviton multiplet. The former contains a
Dirac hyperino and two complex scalars, ρ and ϕ. The role
of the hypermultiplet is twofold. First, some nontrivial
scalar profile is needed in order to describe holographically
a nonconformal QFT. Second, from the field/operator
map, one easily understands that the degrees of freedom
of the hypermultiplet are needed to match those of the
FZ multiplet whenever X ≠ 0 [2]. Indeed, the hypermul-
tiplet is dual to the operator O which, in turn, is related
to X.
Since O is a relevant operator, the dual backgrounds are

asymptotically anti–de Sitter (AAdS), meaning that we can
use, to a large extent, standard AdS/CFT techniques
[13–15]. In particular, we can use the well-known formula

m2 ¼ ΔðΔ − 4Þ; ð1:9Þ
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which relates the (AdS) mass of a scalar field with the
dimension of the dual QFT operator. Since ΔðOÞ ¼ 2, the
dimensions of the two scalar operators are ΔðOSÞ ¼ 2 and
ΔðOFÞ ¼ 3. This implies, from Eq. (1.9), that the two
hyperscalars should have m2 ¼ −4;−3, with the following
field/operator map:

ρ ⟷ OS; ϕ ⟷ OF: ð1:10Þ

Working in a coordinate system where the AAdS metric is

ds2 ¼ 1

z2
ðFðzÞdx2 þ dz2Þ; Fð0Þ ¼ 1; ð1:11Þ

and the AdS boundary is at z ¼ 0, the near-boundary
expansion for the two scalar fields is

ϕ ∼ zðaþ bz2Þ þOðz5Þ; ρ ∼ z2ðc log zþ dÞ þOðz4Þ;
ð1:12Þ

where we take a; b; c; d to be independent of the 4d
coordinates in order to preserve Poincaré invariance at
the boundary. Since the equations of motion for the scalars
are second order, a given choice of the leading and the
subleading modes in the near-boundary expansion deter-
mines the scalar profiles univocally. Switching on each of
these modes corresponds to a specific deformation of the
dual field theory which we classify here below.

(i) a corresponds to a source for the operator OF and is
related to the QFT coupling λ. As such, it should
always be nonvanishing in order to describe the
setup of (1.1);

(ii) b is related to the VEV of OF and hence to the
spontaneous breaking of supersymmetry;

(iii) c is a source for the QFT operator OS and hence
corresponds to a coupling which explicitly breaks
supersymmetry. This soft breaking term is not
present in (1.1) and should then be put to zero;

(iv) d is related to the supersymmetry preserving VEVof
OS and can be nonvanishing in any (either super-
symmetry preserving or supersymmetry-breaking)
vacuum.

In the backgrounds we consider, in which supersym-
metry is either preserved or spontaneously broken, the
scalar ρ should then have a vanishing value for the leading
mode c. In fact, without affecting any of the main aspects
we want to discuss, we could (and will) reduce to back-
grounds where also d ¼ 0, and hence ρ ¼ 0 altogether. In
such single-scalar backgrounds, the difference between
supersymmetric and nonsupersymmetric vacua will then
depend on the value of the subleading mode b.
In the remainder of this paper we put the general

ideas outlined above in a concrete setting. In Sec. II we
present the simple gauged supergravity model we focus
on, and discuss its corresponding supersymmetric and

supersymmetry-breaking solutions. In Secs. III and IV
we perform holographic renormalization for the on-shell
supergravity boundary action, a necessary step in order to
compute holographically the correlators (1.4)–(1.8).
Section V contains the key results of our paper. In
particular, using the well-known AdS/CFT prescription
[4,5], we derive Eqs. (1.4)–(1.8) holographically. We
conclude in Sec. VI with a summary of our results and
an outlook. Two appendices contain technical details that
we have omitted from the main text.

II. THE SUPERGRAVITY MODEL

The model we consider is a simplified version of the one
studied for example in [16]. This isN ¼ 2 5d supergravity
coupled to one hypermultiplet, with scalar manifold M ¼
SUð2; 1Þ=ðUð1Þ × SUð2ÞÞ and with the graviphoton gaug-
ing a proper U(1) subgroup of the isometries of M. The
gauging, which determines the scalar potential and in turn
the scalar masses, is fixed according to our choice for the
dimension of the dual operatorO. In fact, there exists a one
parameter family of possible gaugings, which would allow
us to describe deformations by operators of any dimension.
We refer to Appendix A for further details on the model.
As anticipated, we want to focus on backgrounds with a

single scalar having a nontrivial profile [17]. We then start
with the action

S5D ¼
Z

d5x
ffiffiffiffiffiffiffi
−G

p �
1

2
R − ∂Mϕ∂Mϕ − UðϕÞ

�
; ð2:1Þ

which is obtained by setting to zero all the fields but the
metric and ϕ in (A8) and where the scalar potential for ϕ is
given by

UðϕÞ ¼ 1

12
ð10 − coshð2ϕÞÞ2 − 51

4
: ð2:2Þ

We look for solutions of the model (2.1) taking the flat
domain-wall ansatz (1.11) and requiring ϕ to depend only
on the holographic coordinate z. Within these assumptions,
the equations of motion for the bosonic sector read

6

�
1 −

zF0

2F

�
2

¼ z2ϕ02 −UðϕÞ ð2:3aÞ
�
1 −

zF0

2F

�0
¼ 2

3
zϕ02 ð2:3bÞ

z2ϕ00 −
�
3 − 2

zF0

F

�
zϕ0 ¼ 1

2
∂ϕUðϕÞ; ð2:3cÞ

where 0 denotes derivatives with respect to z.
Equation (2.3b) being redundant, a generic solution of
the system (2.3) is fixed by three integration constants. One
of these constants is fixed by the normalization of the
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metric in (1.11) while the other two are conveniently
chosen to be a and b [i.e. the boundary conditions for
the leading and the subleading mode of ϕ in (1.12)].
Supersymmetric solutions must satisfy the following

BPS system of first order differential equations [18]:

1 −
zF0

2F
¼ WðϕÞ ð2:4aÞ

zϕ0 ¼ 3

2
∂ϕWðϕÞ; ð2:4bÞ

where the superpotential W is given by

WðϕÞ ¼ 1

6
ð5þ coshð2ϕÞÞ; ð2:5Þ

and satisfies the relation (A11). One can easily verify that
the BPS system above implies the equations of motion
(2.3). Since the order of the equation of motion for ϕ is
reduced, we expect a supersymmetric solution to be
realized only for a specific relation between a and b.
One supersymmetric solution of the system (2.4) is just

pure AdS, with FAdS ¼ 1 and a ¼ b ¼ 0. Around this AdS
solution the scalar mass is

m2
ϕ ¼ 1

2
∂2
ϕUð0Þ ¼ −3; ð2:6Þ

in units of the AdS radius. This shows that the scalar field ϕ
is indeed suitable to be dual to an operator of dimension 3,
such as OF.
Besides the pure AdS solution, the BPS system has other

z-dependent solutions. Their general form, which can be
found analytically, depends on the choice of one integration
constant and reads

ϕðzÞ ¼ 1

2
log

�
1þ az
1 − az

�

FðzÞ ¼ ð1 − a2z2Þ1=3: ð2:7Þ

Comparing with (1.12) one sees that b ¼ bsusy ¼ a3=3. The
solution (2.7) represents a supersymmetric vacuum of the
theory (1.1), where awill be identified with the coupling λ.
The pure AdS solution is recovered for a ¼ 0.
Let us now turn to the analysis of the second order

equations of motion. The system (2.3) cannot be solved
analytically, nonetheless it can be easily integrated numeri-
cally. The general solution depends on two parameters and
its expression for small z is given by the expansions

ϕðzÞ ¼ azþ bz3 þOðz5Þ

FðzÞ ¼ 1 −
a2

3
z2 þ a4 − 9ab

18
z4 þOðz6Þ; ð2:8Þ

which reduce to the BPS case for b ¼ bsusy. Conversely, for
different values of b, the solutions are nonsupersymmetric.
Therefore, from here on we define the supersymmetry-
breaking order parameter as β ¼ a3

3
− b. This will

discriminate supersymmetric solutions, β ¼ 0, from non-
supersymmetric ones, β ≠ 0. Recalling the discussion in
Sec. I B, we then expect the VEVof the operator OF to be
proportional to β.
In Fig. 1 we show the profiles of the warp factor F and

the scalar ϕ for supersymmetric and nonsupersymmetric
solutions. They are both singular and in fact approach the
singularity in a very similar way. These solutions are
presented merely as an existence proof, and in the follow-
ing wewill not need to discuss their properties in any detail.
In particular, the nature of the singularity does not affect our
final results.
To wrap up, we see that the model presented here is in

fact a concrete example of the general picture outlined in
Secs. I A and I B. The scalar ϕ is dual to a relevant operator
of dimension 3 which triggers a nontrivial RG flow out of
some given UV SCFT fixed point. The solutions (2.8)
represent such nontrivial RG flows. The dual QFT can find
itself in a supersymmetric vacuum, hOFi ¼ 0, or a non-
supersymmetric one hOFi ≠ 0. Likewise, the background
solution can preserve bulk supersymmetry, β ¼ 0, or break
it, β ≠ 0. One is then led, as already stressed, to identify β
with the VEVof the QFT operator OF. In what follows we
will prove this to be indeed the case by a direct holographic
computation.

0 0.2 0.4 0.6 0.8 1
z0

0.2

0.4

0.6

0.8

1
F z

0 0.2 0.4 0.6 0.8 1
z0

1

2

3
z

FIG. 1. FðzÞ and ϕðzÞ profiles for a BPS solution (dashed) with
a ¼ 1 and β ¼ 0, and a supersymmetry-breaking one (solid) with
a ¼ 1 and β ¼ −2=3. While the behavior is the same, switching
on β the position of the singularity moves closer to the z ¼ 0
boundary.
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III. HOLOGRAPHIC RENORMALIZATION:
BOSONIC SECTOR

In order to derive holographically the identities (1.4)–
(1.5), we have to compute the one-point functions of the
energy-momentum tensor and of OF, which appear on the
right-hand side of Eqs. (1.4) and (1.5), respectively. This is
done by applying standard holographic renormalization
techniques to the coupled system of gravitational degrees of
freedom and the scalar ϕ.
Let us then consider the fluctuations of both the scalar ϕ

and the metric around their background values (2.8)

ϕ ¼ ϕðzÞ þ φðz; xÞ

ds2 ¼ 1

z2
ðdz2 þ FðzÞðημν þ hμνðz; xÞÞdxμdxνÞ; ð3:1Þ

where we fix the gauge hzz ¼ hzμ ¼ 0. We now have to
evaluate the on-shell action at the boundary z ¼ 0, and
differentiate it with respect to the corresponding sources.
For later convenience we decompose the 4d metric as

hμν ¼ httμν þ ημνhþ ∂ðμHνÞ: ð3:2Þ

Since our goal here is just to compute one-point functions,
we focus on the part of the on-shell action which is linear in
the fluctuations, namely

SBbdy ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
3 −

3zF0

2F

�
ð1þ 2hþ � � �Þ þ 2zϕ0φ

�
;

ð3:3Þ

where the … stand for Hν contributions, which are not
relevant for what we do next. Evaluating the action at the
boundary z ¼ 0, we get (as usual in AdS/CFT) a divergent
result. Hence, following the standard holographic renorm-
alization procedure [9], we regularize it at z ¼ ϵ and add
covariant counterterms to subtract the divergent pieces.
Such procedure, however, contains ambiguities in the form
of finite counterterms that one can arbitrarily add. In our
case, the natural choice is a supersymmetric subtraction
scheme. This can be enforced requiring the renormalized
on-shell action to vanish on supersymmetric configura-
tions. In this way we fix completely the set of counterterms
we need, both divergent and finite.
As it is well known [8], the counterterm action in a

supersymmetric scheme always contains a term propor-
tional to the superpotential

SBc:t: ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
3Wðϕþ φÞ; ð3:4Þ

with W defined in Eq. (2.5). Such counterterm does not
remove all divergences for a general solution with
x-dependent boundary conditions. However, in our case,

at linear order in the fluctuations the counterterm action
(3.4) turns out to reabsorb all divergences coming
from (3.3).
The final renormalized action then reads

SBren ¼ lim
ϵ→0

ðSBbdy þ SBc:t:Þ ð3:5Þ

¼ −
Z

d4x½aβð1þ 2h0 þ � � �Þ þ 4βφ0�; ð3:6Þ

where h0 and φ0 are the leading boundary modes of the
fields h and φ, respectively. Notice that this action vanishes
when the background is supersymmetric, β ¼ 0.
Furthermore, as expected, the coefficient of the metric
fluctuation h0 is proportional to both the background
source a and the supersymmetry-breaking VEV β.

IV. HOLOGRAPHIC RENORMALIZATION:
FERMIONIC SECTOR

Let us now consider the fermionic sector and the
corresponding equations of motion for the gravitino and
the hyperino. Within the gauging we have chosen, the
fermionic part of the supergravity action is

SF5D ¼
Z

d5x
ffiffiffiffiffiffiffi
−G

p
f−ΨMΓMNPDNΨP − 2ζΓMDMζ

þ i∂NϕðζΓMΓNΨM −ΨMΓNΓMζÞ
þ 2N ðϕÞðΨMΓMζ þ ζΓMΨMÞ
þmðϕÞΨMΓMNΨN − 2MðϕÞζζg; ð4:1Þ

where N , m and M are defined in (A12), and it is
understood that ϕ and the metric are set to their background
values (2.8). We observe that, around the AdS solution,
we have

mΨ ≡mð0Þ ¼ 3

2
; mζ ≡Mð0Þ ¼ −

1

2
; N ð0Þ ¼ 0:

ð4:2Þ

The equations of motion derived from the action (4.1) are

ΓMDMζþMζ −
i
2
ΓMΓNΨM∂Nϕ−NΓMΨM ¼ 0 ð4:3aÞ

ΓMNRDNΨR −mΓMNΨN þ iΓNΓMζ∂Nϕ

− 2NΓMζ ¼ 0: ð4:3bÞ

In fact, the bulk action (4.1) has to be supplemented by
boundary terms in order for it to be stationary on the
equations of motion. Eventually the on-shell action reduces
to the following boundary term [19]:
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SFbdy ¼
Z
∂M

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ΨmΓmnΨn − ζζ

�
; ð4:4Þ

where g is the determinant of the induced metric on the
boundary, gmn ¼ F

z2 ηmn. From here on we split the 5d
curved indices as M ¼ m; z, using latin alphabet for 4d
curved indices and the letter z to indicate indices along the
fifth direction (we reserve μ for 4d flat indices). We will
also work in the axial gauge, Ψz ¼ 0, which is the natural
choice in a holographic setup. The 4d components of the
gravitino will be further split as

Ψm ¼ ψm þ ∂mϑþ Γmχ; ∂mψm ¼ Γmψm ¼ 0:

ð4:5Þ

Accordingly, the equations of motion (4.3) break down into
a transverse traceless part, which is decoupled (slashed
quantities are contracted with the curved Γm, while γ5 ≡
1
z Γ

z is the flat one)

�
z∂z − 1þ zF0

2F
þmγ5 þ γ5∂

�
ψm ¼ 0; ð4:6Þ

and a coupled system of equations for the longitudinal and
traceful parts of the gravitino and the hyperino

�
z∂z − 2þ zF0

F
þMγ5 þ γ5∂

�
ζ

þ 1

2
ðizϕ0 − 2N γ5Þð∂ϑþ 4χÞ ¼ 0 ð4:7aÞ

3γ5∂χ þ
�
−
3

2
þ 3zF0

4F
−mγ5

�
ð∂ϑþ 4χÞ

þ ðizϕ0 − 2N γ5Þζ ¼ 0 ð4:7bÞ

�
3z∂z − 3þ 3zF0

2F
−mγ5

�
ð∂ϑþ 4χÞ

− 2ð3izϕ0 þ 2N γ5Þζ ¼ 0 ð4:7cÞ

3

�
z∂z − 3þ 3zF0

2F
þmγ5

�
∂χ − ðizϕ0 − 2N γ5Þ∂ζ ¼ 0:

ð4:7dÞ

Provided one uses the equations of motion of the back-
ground (2.3), it is possible to show that only three of the
above equations are independent. It is also worth noticing
that the system of equations of motion above is invariant
under the local transformations

δϑ ¼ ϵ

δχ ¼ 1

3

�
mðϕÞ þ 3

2

�
zF0

2F
− 1

�
γ5
�
ϵ

δζ ¼
�
N ðϕÞ þ i

2
zγ5ϕ0

�
ϵ; ð4:8Þ

provided, again, that ϕ and F are restricted to their
background values [i.e., they are solution to (2.3)], and
that the local spinor parameter ϵðz; xÞ satisfies the differ-
ential equation �

z∂z þ
m
3
γ5
�
ϵ ¼ 0: ð4:9Þ

The transformations (4.8) are the local supersymmetry
transformations of the supergravity theory restricted to a
domain-wall background. The requirement (4.9) comes
from the axial gauge fixing.
The near-boundary expansions for the components of the

gravitino field, up to the order we will need to write the on-
shell action, are

�
ψþ
m ¼ z−1=2ðψþ

m0 þ ψþ
m2z

2Þ þOðz7=2Þ
ψ−
m ¼ z1=2ðψ−

m1 þ ψ−
m3z

2 log zþ ~ψ−
m3z

2Þ þOðz9=2Þ
ð4:10Þ

�
ϑþ ¼ z−1=2ðϑþ0 þ ϑþ2 z

2Þ þOðz7=2Þ
ϑ− ¼ z1=2ðϑ−1 þ ϑ−3 z

2 log zþ ~ϑ−3 z2Þ þOðz9=2Þ
ð4:11Þ

�
χþ ¼ z7=2 ~χþ3 þOðz11=2Þ
χ− ¼ z1=2ðχ−0 þ χ−2 z

2Þ þOðz9=2Þ ð4:12Þ

while for the hyperino

�
ζþ ¼ z5=2ðζþ1 log zþ ~ζþ1 Þ þOðz9=2Þ
ζ− ¼ z3=2ζ−0 þOðz7=2Þ;

ð4:13Þ

where the � superscript denotes that the spinor is an
eigenstate of γ5 with eigenvalue �1, i.e. γ5Φ� ¼ �Φ�.
Using the equations of motion (4.6)–(4.7) we get the

following relations among the coefficients of the near-
boundary expansions. The transverse coefficients are
given by

ψ−
m1 ¼ −

1

2
∂ψþ

m0; ψ−
m3 ¼ −

1

12
ð4a2 − 3□Þ∂ψþ

m0

ψþ
m2 ¼ −

1

12
ða2 − 3□Þψþ

m0: ð4:14Þ

The longitudinal coefficients separate into the untilded
ones, which do not depend on the supersymmetry-breaking
parameter β
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ζþ1 ¼−ia∂χ−0 −∂ζ−0 ; ϑ−1 ¼ χ−0 ; ϑ−3 ¼
2

3
a2χ−0 −

2

3
aiζ−0 ;

ϑþ2 ¼−
a2

12
ϑþ0 ; χ−2 ¼

a2

12
χ−0 þ

a
3
iζ−0 ; ð4:15Þ

and the tilded ones which do depend on β

~ϑ−3 ¼ −
2

3
β

�
a
∂
□
ϑþ0 þ 4a

□
χ−0 − i

4

□
ζ−0

�

−
a2

4
χ−0 þ i

a
3
ζ−0 þ i

2

3
a
∂
□

~ζþ1

~χþ3 ¼ β

6

�
aϑþ0 þ 4a

∂
□
χ−0 − i4

∂
□
ζ−0

�
: ð4:16Þ

This leaves us with six independent coefficients: two
transverse, ψþ

m0; ~ψ
−
m3, and four longitudinal, ϑþ0 ; χ

−
0 ; ζ

−
0 ; ~ζ

þ
1 .

In order to compute correlators in the dual QFT, we have
to evaluate the fermionic action on-shell, and take its
derivatives with respect to the corresponding sources.
The bulk part of the action actually vanishes on shell, thus
we just have to consider the boundary terms (4.4). As in the
bosonic case, this yields a divergent result at z ¼ 0 and we
regularize it at z ¼ ϵ. Direct computation shows that the
regularized result contains terms which diverge as ϵ−2 and
log ϵ. The divergences can be canceled by adding the
counterterm action

SFc:t: ¼
Z
z¼ϵ

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ΨmΓmrn∂rΨn þ log ϵ

�
−2ζ∂ζ

−
1

4
ΨmΓmrn

□∂rΨn þ
1

3
ϕ2ΨmΓmrn∂rΨn

−
1

6
ð∂nΨmΓmnÞ∂ðΓrs∂rΨsÞ

−
2

3
iϕ½ζðΓrs∂rΨsÞ − ð∂nΨmΓmnÞζ�

��
: ð4:17Þ

Summing the actions (4.4) and (4.17) and sending ϵ to zero
one gets, by construction, a collection of finite terms. After
some algebra, using relations (4.15)–(4.16) one gets the
following result:

SFren ¼ lim
ϵ→0

ðSFbdy þ SFc:t:Þ ¼
Z

d4x

�
1

2
ðψþ

m0 ~ψ
−
m3 þ ~ψ−

m3ψ
þ
m0Þ

− ~̄ζ
þ
1 ðζ−0 þ iaχ−0 Þ − ðζ̄−0 − iaχ̄−0 Þ~ζþ1 þ βa

2
ϑ̄þ0 ∂ϑþ0

− iβϑ̄þ0 ðζ−0 þ iaχ−0 Þ þ iβðζ̄−0 − iaχ̄−0 Þϑþ0
þ scheme-dep

�
: ð4:18Þ

Notice that θþ0 appears only in terms proportional to β, that
is only when supersymmetry is spontaneously broken and

the longitudinal component of the gravitino is expected to
play a role. Similarly χ−0 always appears in combination
with a, the parameter which controls the breaking of
conformal invariance.
In principle, we would need to solve for the fermionic

fluctuations in the bulk to determine how ~ζþ1 depends on the
sources. However, it is possible to fix such dependence
simply considering the transformation properties of the on-
shell bulk fields under (4.8). We just need the asymptotic
solution to (4.9)

ϵðx; zÞ ¼ z−1=2ϵþ0 ðxÞ þ z1=2ϵ−0 ðxÞ þOðz3=2Þ: ð4:19Þ

Under this residual gauge transformation the on-shell bulk
fields transform as

δϑþ0 ¼ ϵþ0 ; δχ−0 ¼ ϵ−0 ;

δζ−0 ¼ −iaϵ−0 ; δ~ζþ1 ¼ −iβϵþ0 ; ð4:20Þ

implying that the following two combinations are invariant:

δðζ−0 þ iaχ−0 Þ ¼ 0; δð~ζþ1 þ iβϑþ0 Þ ¼ 0: ð4:21Þ

Then, a general solution of the bulk fluctuations is

~ζþ1 ¼ −iβϑþ0 þ ∂fð□Þðζ−0 þ iaχ−0 Þ þ f̄ð□Þaðζ̄−0 − iaχ̄−0 ÞT;
ð4:22Þ

with f and f̄ two nonlocal functions. By substituting the
above relation into (4.18) one gets

SFren ¼
Z

d4x

�
βa
2
ϑ̄þ0 ∂ϑþ0 − 2iβϑ̄þ0 ðζ−0 þ iaχ−0 Þ

þ 2iβðζ̄−0 − iaχ̄−0 Þϑþ0 þ Fðζ−0 ; χ−0 Þ þ scheme-dep

�
;

ð4:23Þ

where the dependence on ϑþ0 is completely fixed. As we
will show next, this is all we need in order to derive the
supercurrent Ward identities.
In the above action spinors are written in Dirac notation,

the natural one in five dimensions, from which (4.23) has
been derived. However, since it is in fact a (boundary) 4d
action, it is useful to move from four to two-component
spinor notation, the one we used to write down the Ward
and operator identities discussed in Sec. I A. In fact, the
boundary leading modes of all bulk fermions, Eqs. (4.10)
and (4.11), do have a definite chirality (either þ or −) and
hence they source QFT operators with a definite chirality.
The precise translation dictionary from a Dirac spinor λþ or
χ− to their Weyl components is
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λþ ¼ λα; λ̄þ ¼ λ̄ _α; χ− ¼ χ̄ _α; χ̄− ¼ χα:

ð4:24Þ

This way, the renormalized action (4.23) can be rewritten as

SFren ¼
Z

d4x

�
i
βa
2
ϑ̄0∂ϑ0 þ 2βϑ0ðiζ0 þ aχ0Þ

−2βϑ̄0ðiζ̄0 − aχ̄0Þ þ…

�
; ð4:25Þ

where contraction between Weyl spinors is defined as
λχ ¼ λαχα and λ̄ χ̄ ¼ λ̄ _αχ̄

_α, and we use conventions where
λχ ¼ χλ and ðλχÞ† ¼ χ̄ λ̄.

V. GOLDSTINO FROM HOLOGRAPHIC
WARD IDENTITIES

In this section, after spelling out the exact field/operator
map, we show that from the renormalized actions (3.5)
and (4.25) all QFT Ward identities and operator identities
(1.4)–(1.8) can be holographically derived.
The field/operator map can be read from the 4d linear

coupling between the real vector superfield Hμ, where the
leading supergravity modes of the graviton multiplet sit,
and the FZ multiplet J μ [12,20], and that between the
hypermultiplet and the QFT operator O. Upon integration
in superspace this reads

Z
d4x

�
1

2
hμν0 Tμν þ

1

2
ðiΨμ

0Sμ þ c:c:Þ þ 2ðφ0OF þ c:c:Þ

−
ffiffiffi
2

p
ðiζ0Oψ þ c:c:Þ þ � � �

�
; ð5:1Þ

where the… stand for fields we are not presently interested
in, as the graviphoton or hyperscalars other than ϕ. The
relative normalization between the FZ and O multiplets is
just fixed to get, eventually, a equal to λ. From the above
action we get the following field/operator map:

hμν0 ⟷
1

2
Tμν; Ψμα

0 ⟷
i
2
Sμα ð5:2Þ

φ0 ⟷ 2OF; ζα0 ⟷ −i
ffiffiffi
2

p
Oψα: ð5:3Þ

Using the decompositions (3.2) and (4.5), the map in the
gravitational sector for the operators of interests reads

h0 ⟷
1

2
T; ϑα0 ⟷ −

i
2
∂μSμα; χ̄0_α ⟷

1

2
σ̄μ _ααSμα:

ð5:4Þ

From the action (3.5) we get

hTi ¼ 2
δSBren
δh0

¼ −4βa ð5:5aÞ

hOFi ¼
1

2

δSBren
δφ0

¼ −2β ð5:5bÞ

which reproduce the operator identity hTi ¼ 2λRehOFi,
upon the identification a ¼ λ. From (4.25) we have

h∂μSμαðσνS̄νÞβi ¼ −4
δ2SFren
δϑα0δχ

β
0

¼ −8βaεαβ: ð5:6Þ

This, together with (5.5a) implies

h∂μSμαðσνS̄νÞβi ¼ 2εαβhTi; ð5:7Þ

which exactly reproduces (the σ-trace of) the QFT Ward
identity (1.4). From the latter one can derive Eq. (1.6), i.e.
the massless mode associated to the Goldstino. This shows
that hTi is associated to the Goldstino residue in the
supercurrent two-point function, as expected for a vacuum
with spontaneously broken supersymmetry. Note that from
the holographic point of view, this is a complementary, and
completely scheme independent way of deriving the VEV
of T. That hTi is associated to the Goldstino residue,
implies it must be positive, because of unitarity. This in turn
discriminates between the different signs of βa, allowing
only for βa > 0 which gives both a positive residue
and a positive vacuum energy. Let us finally notice that
taking the divergence of (1.4), one finds a contact term
which is consistently reproduced by the first term in the
action (4.25).
Similarly, one gets from the same action

h∂μSμαOψβi ¼
ffiffiffi
2

p
i
δ2SFren
δϑα0δζ

β
0

¼ −2
ffiffiffi
2

p
βεαβ ð5:8Þ

which, combined with (5.5b), exactly reproduces the Ward
identity (1.5)

h∂μSμαOψβi ¼
ffiffiffi
2

p
hOFiεαβ: ð5:9Þ

It is worth emphasizing that in order to get Eqs. (5.7) and
(5.9), the only information one needs to know about the
subleading mode ~ζþ1 is its local dependence on the source,
which we fixed using simple symmetry arguments. In
particular, one does not need to know the explicit expres-
sion of the nonlocal function f in Eq. (4.22), which instead
depends on the detailed structure of the interior. This is the
holographic counterpart of the fact that Ward identities hold
in any vacuum and hence independently of the dynamics
which generates the VEVs.
Let us finally consider the identity (1.8). Since the

sources χ0 and ζ0 enter (4.25) and (4.22) only through
the combination ðζ0 − iaχ0Þ, we have
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δSFren
δχα0

¼ −ia
δSFren
δζα0

ð5:10Þ

which is nothing but the holographic version of the operator
identity σμS̄μ ¼ 2

ffiffiffi
2

p
λOψ. From the action (3.5) one can

extract similar identities between bosonic operators.
Notice, however, that these identities stand on a different
footing with respect to the Ward identities (1.4)–(1.5). The
latter contain more dynamical information. In particular,
they prove the existence of the Goldstino, which is one of
the relevant degrees of freedom of the low energy effective
action. This dynamical information cannot be unveiled
from an analysis of one-point functions only.
Further differentiating (5.10) with respect to ζ̄0, we find

hσμ
α _β
S
_β
μOψ _αi ¼ 2

ffiffiffi
2

p
ahOψαOψ _αi; ð5:11Þ

which gives (1.8). Notice that the correlator (5.11) should
display the massless Goldstino pole. However, in this case
this does not arise from contact terms, but rather from the
strongly coupled dynamics. Holographically, this means
that one would have to solve for the nontrivial fluctuations
in the bulk and get the dependence of the subleading modes
from the leading ones, which the near-boundary analysis
cannot capture.

VI. CONCLUSIONS

In this work we have provided a holographic description
of a general class of supersymmetric quantum field theories
in which supersymmetry is spontaneously broken at strong
coupling. In particular, by a careful treatment of the
holographic renormalization procedure in the fermionic
sector, we have recovered a set of Ward identities involving
the supercurrent, which encode the presence of the
Goldstino, the massless mode associated to the breaking
of supersymmetry.
Our results provide a nice check for the validity of the

AdS/CFT duality. In particular, it is rather nontrivial from
the bulk side (and consistent with field theory expect-
ations), how the derivation of the Ward identities does not
rely on the details of the bulk solution in the deep interior.
The approach we used can be applied beyond the class of
theories the action (1.1) and its generalizations describe.
Our results provide a powerful tool to distinguish between
spontaneous and explicit supersymmetry-breaking back-
grounds dual to strongly coupled QFTs, independently
from issues related to singularity resolution, and in fact
from any precise knowledge of the QFT itself. For instance,
following our strategy, one could inspect several string
theory supersymmetry-breaking backgrounds proposed in
the literature.
There are several directions one can push further. Our

model is a step forward with respect to previous 5d
constructions. In particular, differently from the solutions

[21–23] used in previous analyses [23–25], our back-
grounds break the conformal invariance of the dual
SCFT explicitly but in a supersymmetric fashion, like in
[26], a necessary condition for a SQFT to allow for vacua
with spontaneously broken supersymmetry. On the other
hand, an important generalization would be to depart from
AAdS-ness, and discuss the existence of supersymmetry-
breaking vacua in more general theories, where the operator
responsible for the breaking of conformal invariance is only
marginally relevant, like in cascading theories [27], see [28]
for a recent attempt.
In the same vein, one should consider the issue of (meta)

stable dynamical supersymmetry breaking in top-down
models directly related to holographic set ups in string
theory, like in [29–31]. In this perspective, it would be
important to find viable nonsingular backgrounds, or at
least backgrounds where the singularity is as harmless as
possible.
On the other hand, the Goldstino propagator by itself

does not probe the stability of the supersymmetry-breaking
vacuum. In order to say more about vacuum stability one
can try to use holography, and the strategy pursued here, to
control the behavior of e.g. the pseudomodulus (the usual
suspect as far as tachyonic modes are concerned).
Moreover, going beyond the two-point function, one can
hope to get a holographic control on the Goldstino effective
action [1,32] in a strongly coupled setup, in the spirit
of [33].
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APPENDIX A: THE SUPERGRAVITY MODEL:
MORE DETAILS

The model we consider is N ¼ 2 5d supergravity
coupled to one hypermultiplet, with scalar manifold M ¼
SUð2; 1Þ=ðUð1Þ × SUð2ÞÞ and the graviphoton gauging a
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proper U(1) subgroup of the isometries ofM. See [16] for a
general treatment of this class of theories.
The bosonic field content of the theory includes

the metric, one gauge field and four real scalars, qX.
The fermionic fields in the theory are the gravitino, ΨM,
and the hyperino, ζ, which are both Dirac spinors in our
notations. We use capital letters from the middle of the
alphabet, M;N for curved spacetime indices and capital
letters from the beginning of the alphabet, A;B, for flat
indices. Our conventions for 5d Dirac matrices are such that

fγA; γBg ¼ 2ηAB; η ¼ diagð−1; 1; 1; 1; 1Þ: ðA1Þ

The explicit representation we use is

γμ ¼
�

0 iσμ

iσ̄μ 0

�
; μ ¼ 0;…; 4; and γ5 ¼

�
1 0

0 −1

�
;

ðA2Þ

where the 2 × 2 σ-matrices are defined as σμ ¼
ð−I; σ1; σ2; σ3Þ. The Dirac conjugate is defined as

Ψ̄ ¼ iΨ†γ0: ðA3Þ

The part of the supergravity action which is independent
of the gauging can be read from e.g. [34,35]. Neglecting
cubic and higher terms for spinor and vector fields, it is

Sungauged ¼
Z

d5x
ffiffiffiffiffiffiffi
−G

p �
1

2
R −ΨMΓMNPDNΨP

− 2ζΓMDMζ −
1

4
FMNFMN −

1

2
gXY∂MqX∂MqY

þ ζΓMΓNΨMfX∂NqX þΨMΓNΓNζfX∂NqX
�
;

ðA4Þ

where fX and gXY are functions of the scalar fields and
depend on the geometry of the σ-model target manifold.
In particular, gXY is the metric of a quaternionic manifold
parametrized by the four real scalar in the hypermultiplet.
Following [16], we choose this manifold to be
SUð2; 1Þ=ðUð1Þ × SUð2ÞÞ. This is known to be also a
Kähler manifold and the metric can be derived from the
Kähler potential

K ¼ −
1

2
log ðSþ S − 2CCÞ: ðA5Þ

A convenient parametrization in terms of real coordinates is
given by the redefinition

S ¼ e2ϕ − 1þ iσ; C ¼ tanhðρÞeϕþiα: ðA6Þ

In this coordinate system the quaternionic metric reads

dqXdqX ¼ 2ðdϕ2 þ dρ2Þ þ 2 sinh2ðρÞðdϕ2 þ dα2Þ

þ 1

2
ðe−2ϕ cosh2ðρÞdσ þ 2 sinh2ðρÞdαÞ2: ðA7Þ

The full isometry group of the metric above is SU(2,1) of
which we choose to gauge a U(1) subgroup [36]. The
gauging procedure, besides promoting the derivatives in
(A4) to their gauge-covariant counterparts, introduces a
potential for the scalar fields as well as interaction terms for
the fermions. As anticipated in the main text, we are here
interested in single-scalar backgrounds. We thus simplify
our model fixing σ ¼ ρ ¼ α ¼ 0. The gauged action,
truncated to the desired field content and neglecting
four-fermion interactions, reads

S5D¼
Z

d5x
ffiffiffiffiffiffiffi
−G

p �
1

2
R−ΨMΓMNPDNΨP−2ζΓMDMζ

−∂Mϕ∂Mϕ−UðϕÞþ i∂NϕðζΓMΓNΨM−ΨMΓNΓMζÞ
þ2N ðϕÞðΨMΓMζþ ζΓMΨMÞþmðϕÞΨMΓMNΨN

−2MðϕÞζ̄ζ
�
; ðA8Þ

where we also neglect the terms containing the gravipho-
ton, since they will play no role in the following discussion.
The derivatives are standard space-time covariant deriva-
tives. When acting on a spinor they read

DM ¼ ∂M þ 1

4
ωMABγ

AB; ðA9Þ

with ω the space-time spin connection. The scalar potential
and superpotential are given by

UðϕÞ ¼ 1

12
ð10 − coshð2ϕÞÞ2 − 51

4
;

WðϕÞ ¼ 1

6
ð5þ coshð2ϕÞÞ ðA10Þ

where the former is related to the latter through the equation

U ¼ 9

4
∂ϕW∂ϕW − 6W2: ðA11Þ

The other quantities which enter (A8) are given by

mðϕÞ ¼ 3

2
WðϕÞ ¼ 1

4
ð5þ coshð2ϕÞÞ; ðA12aÞ

MðϕÞ ¼ 9

2
WðϕÞ − 5 ¼ −

1

4
ð5 − 3 coshð2ϕÞÞ; ðA12bÞ

N ðϕÞ ¼ −
3

4
i∂ϕWðϕÞ ¼ −

i
4
sinhð2ϕÞ: ðA12cÞ
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APPENDIX B: BOUNDARY TERMS FOR
GRAVITINO AND HYPERINO

In this appendix we briefly outline how to obtain the
fermionic boundary action, following the procedure given
for instance in [37].
Let us start from the action (4.1), written for simplicity in

a pure AdS background since it will become clear that the
boundary term will not depend on the nontrivial bulk
profiles

SF5D ¼
Z

d5x
ffiffiffiffiffiffiffi
−G

p �
−Ψ̄MΓMNPDNΨP − 2ζ̄ΓMDMζ

−
3

2
Ψ̄MΓMNΨN þ ζ̄ζ

�
: ðB1Þ

The masses actually are there just to instruct us on what is
the behavior in z and the chirality of the leading fermionic
modes near the boundary

Ψm ¼ Ψþ
m0z

−1=2 þ…; ζ ¼ ζ−0 z
3=2 þ…: ðB2Þ

Up to a boundary term, the action (B1) can be recast into an
explicitly real expression

SF5D ¼
Z

d5x
ffiffiffiffiffiffiffi
−G

p �
−
1

2
Ψ̄MΓMNPDNΨP

þ 1

2
DNΨ̄MΓMNPΨP − ζ̄ΓMDMζ þDM ζ̄ΓMζ þ…

�
:

ðB3Þ

We now take the variation of the above action, keeping the
leading modes fixed at the boundary. In other words, the
(leading) variations of the gravitino and hyperino will be of
the opposite chiralities with respect to (B2). On shell the
variation of (B3) still yields a nontrivial boundary term

δSF5D ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Ψ̄þ

mΓmnδΨ−
n −

1

2
δΨ̄−

mΓmnΨþ
n

− ζ̄−δζþ − δζ̄þζ−
�
: ðB4Þ

In order for the action to be stationary on the bulk equations
of motion, we need to supplement it with a boundary term
whose variation exactly cancels the one above. Such a
boundary term is the following:

SFbdy ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Ψ̄mΓmnΨn − ζ̄ζ

�
: ðB5Þ

It is then straightforward to see that the above boundary
term coincides with the on-shell action, since the bulk part
(B3) exactly vanishes on the fermionic equations of
motion.
We remark that the end result above does not agree with

some previous attempts in the literature for a massive
gravitino (see for instance [38]).

[1] Z. Komargodski and N. Seiberg, J. High Energy Phys. 09
(2009) 066.

[2] R. Argurio, M. Bertolini, L. Pietro, F. Porri, and D.
Redigolo, J. High Energy Phys. 04 (2014) 123.

[3] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[4] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.

B 428, 105 (1998).
[5] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[6] Some related aspects have been studied at finite temperature

in the context of holographic models for strongly coupled
fluids [39–43].

[7] M. Henningson and K. Skenderis, J. High Energy Phys. 07
(1998) 023.

[8] M. Bianchi, D. Z. Freedman, and K. Skenderis, J. High
Energy Phys. 08 (2001) 041.

[9] M. Bianchi, D. Z. Freedman, and K. Skenderis, Nucl. Phys.
B631, 159 (2002).

[10] As shown in [44] the superpotential deformation in (1.1) is
actually the only possible relevant deformation one can
write.

[11] In what follows we assume that a Ferrara-Zumino
(FZ) multiplet can always be defined. See [12,45] for a
discussion of the physical requirements underlying this
assumption.

[12] Z. Komargodski and N. Seiberg, J. High Energy Phys. 07
(2010) 017.

[13] L. Girardello, M. Petrini, M. Porrati, and A. Zaffaroni, J.
High Energy Phys. 12 (1998) 022.

[14] L. Girardello, M. Petrini, M. Porrati, and A. Zaffaroni, Nucl.
Phys. B569, 451 (2000).

[15] D. Freedman, S. Gubser, K. Pilch, and N. Warner, Adv.
Theor. Math. Phys. 3, 363 (1999).

[16] A. Ceresole, G. Dall’Agata, R. Kallosh, and A. Van
Proeyen, Phys. Rev. D 64, 104006 (2001).

[17] We can always choose it to be real without loss of generality.
[18] As usual, BPS equations are obtained as necessary con-

ditions for the vanishing of the supergravity variations of the
fermionic fields.

[19] To the best of our knowledge the gravitino boundary action
has been derived by [46] in the pure AdS case. In

HOLOGRAPHIC GOLDSTINO PHYSICAL REVIEW D 91, 126016 (2015)

126016-11

http://dx.doi.org/10.1088/1126-6708/2009/09/066
http://dx.doi.org/10.1088/1126-6708/2009/09/066
http://dx.doi.org/10.1007/JHEP04(2014)123
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://dx.doi.org/10.1088/1126-6708/2001/08/041
http://dx.doi.org/10.1088/1126-6708/2001/08/041
http://dx.doi.org/10.1016/S0550-3213(02)00179-7
http://dx.doi.org/10.1016/S0550-3213(02)00179-7
http://dx.doi.org/10.1007/JHEP07(2010)017
http://dx.doi.org/10.1007/JHEP07(2010)017
http://dx.doi.org/10.1088/1126-6708/1998/12/022
http://dx.doi.org/10.1088/1126-6708/1998/12/022
http://dx.doi.org/10.1016/S0550-3213(99)00764-6
http://dx.doi.org/10.1016/S0550-3213(99)00764-6
http://dx.doi.org/10.1103/PhysRevD.64.104006


Appendix B we provide a derivation for AAdS back-
grounds.

[20] L. Di Pietro, M. Dine, and Z. Komargodski, J. High Energy
Phys. 04 (2014) 073.

[21] S. S. Gubser, arXiv:hep-th/9902155.
[22] J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88, 031601

(2002).
[23] R. Argurio, D. Musso, and D. Redigolo, arXiv:1411.2658.
[24] R. Argurio, M. Bertolini, L. Di Pietro, F. Porri, and D.

Redigolo, J. High Energy Phys. 08 (2012) 086.
[25] R. Argurio, M. Bertolini, L. Di Pietro, F. Porri, and D.

Redigolo, J. High Energy Phys. 10 (2012) 179.
[26] M. Bertolini, L. Di Pietro, and F. Porri, J. High Energy Phys.

08 (2013) 071.
[27] I. R. Klebanov and M. J. Strassler, J. High Energy Phys. 08

(2000) 052.
[28] S. Kuperstein, B. Truijen, and T. Van Riet, arXiv:

1411.3358.
[29] S. Kachru, J. Pearson, and H. L. Verlinde, J. High Energy

Phys. 06 (2002) 021.
[30] R. Argurio, M. Bertolini, S. Franco, and S. Kachru, J. High

Energy Phys. 01 (2007) 083.
[31] R. Argurio, M. Bertolini, S. Franco, and S. Kachru, J. High

Energy Phys. 06 (2007) 017.

[32] D. Volkov and V. Akulov, Phys. Lett. 46B, 109 (1973).
[33] C. Hoyos, U. Kol, J. Sonnenschein, and S. Yankielowicz, J.

High Energy Phys. 10 (2013) 181.
[34] A. Ceresole and G. Dall’Agata, Nucl. Phys. B585, 143

(2000).
[35] G. Sierra, Phys. Lett. 157B, 379 (1985).
[36] In the conventions of [16] [see formula (4.19)], the U(1)

gauging corresponds to the choice β ¼ −1=3, γ ¼ −1=6.
[37] M. Henneaux, arXiv:hep-th/9902137.
[38] R. Rashkov, Mod. Phys. Lett. A 14, 1783 (1999).
[39] G. Policastro, J. High Energy Phys. 02 (2009) 034.
[40] J. P. Gauntlett, J. Sonner, and D. Waldram, Phys. Rev. Lett.

107, 241601 (2011).
[41] J. P. Gauntlett, J. Sonner, and D. Waldram, J. High Energy

Phys. 11 (2011) 153.
[42] K. Kontoudi and G. Policastro, J. High Energy Phys. 11

(2012) 044.
[43] J. Erdmenger and S. Steinfurt, J. High Energy Phys. 07

(2013) 018.
[44] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa, and

B. Wecht, J. High Energy Phys. 06 (2010) 106.
[45] T. T. Dumitrescu and N. Seiberg, J. High Energy Phys. 07

(2011) 095.
[46] A. Volovich, J. High Energy Phys. 09 (1998) 022.

ARGURIO et al. PHYSICAL REVIEW D 91, 126016 (2015)

126016-12

http://dx.doi.org/10.1007/JHEP04(2014)073
http://dx.doi.org/10.1007/JHEP04(2014)073
http://arXiv.org/abs/hep-th/9902155
http://dx.doi.org/10.1103/PhysRevLett.88.031601
http://dx.doi.org/10.1103/PhysRevLett.88.031601
http://arXiv.org/abs/1411.2658
http://dx.doi.org/10.1007/JHEP08(2012)086
http://dx.doi.org/10.1007/JHEP10(2012)179
http://dx.doi.org/10.1007/JHEP08(2013)071
http://dx.doi.org/10.1007/JHEP08(2013)071
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://arXiv.org/abs/1411.3358
http://arXiv.org/abs/1411.3358
http://dx.doi.org/10.1088/1126-6708/2002/06/021
http://dx.doi.org/10.1088/1126-6708/2002/06/021
http://dx.doi.org/10.1088/1126-6708/2007/01/083
http://dx.doi.org/10.1088/1126-6708/2007/01/083
http://dx.doi.org/10.1088/1126-6708/2007/06/017
http://dx.doi.org/10.1088/1126-6708/2007/06/017
http://dx.doi.org/10.1016/0370-2693(73)90490-5
http://dx.doi.org/10.1007/JHEP10(2013)181
http://dx.doi.org/10.1007/JHEP10(2013)181
http://dx.doi.org/10.1016/S0550-3213(00)00339-4
http://dx.doi.org/10.1016/S0550-3213(00)00339-4
http://dx.doi.org/10.1016/0370-2693(85)90384-3
http://arXiv.org/abs/hep-th/9902137
http://dx.doi.org/10.1142/S0217732399001887
http://dx.doi.org/10.1088/1126-6708/2009/02/034
http://dx.doi.org/10.1103/PhysRevLett.107.241601
http://dx.doi.org/10.1103/PhysRevLett.107.241601
http://dx.doi.org/10.1007/JHEP11(2011)153
http://dx.doi.org/10.1007/JHEP11(2011)153
http://dx.doi.org/10.1007/JHEP11(2012)044
http://dx.doi.org/10.1007/JHEP11(2012)044
http://dx.doi.org/10.1007/JHEP07(2013)018
http://dx.doi.org/10.1007/JHEP07(2013)018
http://dx.doi.org/10.1007/JHEP06(2010)106
http://dx.doi.org/10.1007/JHEP07(2011)095
http://dx.doi.org/10.1007/JHEP07(2011)095
http://dx.doi.org/10.1088/1126-6708/1998/09/022

