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We investigate the behavior of the lowest nonhydrodynamic modes in a class of holographic models
which exhibit an equation of state closely mimicking the one determined from lattice QCD. We calculate
the lowest quasinormal mode frequencies for a range of scalar self-interaction potentials and find that the
damping of the quasinormal modes at the phase transition/crossover falls off by a factor of around two from
conformality after factoring out standard conformal temperature dependence. The damping encoded in the
imaginary part of the frequencies turns out to be correlated with the speed of sound and is basically
independent of the UV details of the model. We also find that the dynamics of the nonhydrodynamic
degrees of freedom remains ultralocal, even to a higher degree, as we deviate from conformality. These
results indicate that the role of nonhydrodynamic degrees of freedom in the vicinity of the crossover
transition may be enhanced.
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I. INTRODUCTION

The quark-gluon plasma produced in relativistic heavy-
ion collisions at RHIC and LHC is very successfully
described by phenomenological hydrodynamic models
[1]. Nevertheless, it is quite clear that the hydrodynamic
description is applicable only from a certain initial time
after an inherently nonequilibrium initial phase of expan-
sion. The estimation of this so-called “thermalization time”
has been at the focal point of much theoretical effort.
The main fundamental difficulty in studying such a

problem from first principles is that when the plasma is
strongly coupled we need a method which would be at the
same time nonperturbative and which would work directly
in Minkowski signature. For these reasons, methods of the
AdS/CFT correspondence have been applied in this con-
text, although predominantly for the case of the conformal
N ¼ 4 SYM theory [2,3]. Despite that, the results obtained
within this framework are very encouraging.
First, the appearance of a hydrodynamical description of

the resulting plasma system is not an input but rather a result
from a much more general dual gravitational description
which incorporates genuine nonhydrodynamical degrees of
freedom.Thusonecan study the transition tohydrodynamics
and its properties. Second, it has turned out that at the
transition to hydrodynamics, the components of the
energy-momentum tensor in the local rest frame are still
significantly anisotropic,meaning that theplasma is then still
quite far from thermal equilibrium which indicates that the

phrase “early thermalization” used in this context is really a
misnomer. Third, for numerous initial conditions, the plasma
behaves hydrodynamically with very good accuracy when
thedimensionlessproductof theproper timeand temperature
Tτ ∼ 0.6–0.7 [4,5]. Before that nonequilibrium degrees of
freedom1 are typically very important.
It is worth mentioning also numerous important results

on the dynamics of shock wave collisions [6–8] which we
do not describe in more detail here.
Since the full nonlinear dynamics in the deeply non-

equilibrium regime is very complicated as it is described by
higher dimensional Einstein’s equations and can be studied
essentially only using the methods of numerical general
relativity, it was suggested in [9,10] that it may be useful to
incorporate just the lowest, least damped nonhydrodynamic
degrees of freedom into the commonly used nonlinear
hydrodynamic description. On the dual gravity side these
degrees of freedom are the so-called quasinormal modes
(QNM) of a finite temperature black hole. The 4D
equations involving these nonequilibrium modes proposed
in [11] take as an input from the gravitational description
only their real and imaginary frequencies ωQNM ¼
�ωR þ iωI. Moreover, it turns out that the dependence
of these frequencies on the momentum k is very mild and
can be neglected in a first approximation. This property
leads to a certain “ultralocality” of the dynamics of the
nonequilibrium modes on top of a hydrodynamic flow.
All the above investigations were performed in the

context of the conformal N ¼ 4 SYM theory which, by
its very definition does not exhibit any kind of phase*romuald@th.if.uj.edu.pl
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1In the present paper we use this term to denote all non-
hydrodynamical degrees of freedom in the plasma.
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transition or crossover behavior. It is thus very interesting to
study what modifications to the above picture appear for a
nonconformal theory. There are various ways to model
nonconformal theories within the AdS/CFT correspon-
dence either following a top-down approach by studying
a specific nonconformal theory with a known string theory
construction, or a bottom-up approach where the gravita-
tional background is phenomenologically fixed to give
properties known from lattice QCD. In the present paper we
decided to concentrate on the latter approach partly for
simplicity and partly in order to deal with a gravitational
system which has a very similar equation of state to
real QCD.2

In this paper we will concentrate on the dynamics of the
lowest nonhydrodynamic degrees of freedom in the non-
conformal setting. In particular we will investigate how the
damping of these modes changes when we approach the
crossover temperature Tc (defined more precisely later).
This answers an important question whether the role of
nonhydrodynamic degrees of freedom becomes more
important or less important closer to the phase transition.
Second, we will investigate whether the “ultralocality”
property observed forN ¼ 4 SYM nonequilibrium degrees
of freedom (QNM) still holds in the nonconformal case,
especially close to the crossover/phase transition.
The plan of this paper is as follows. In Sec. II we will

review the family of gravitational backgrounds that we will
consider. In Secs. III and IV we will give some details on
their explicit numerical construction and on our procedure
for finding quasinormal mode frequencies. As far as we
know such a procedure has not been employed so far in
the literature and may be useful also in other contexts.
There we will also discuss the relation of scalar QNM with
the metric ones for these backgrounds and proceed, in
Sec. V, to describe our results. We close the paper with
conclusions.

II. THE NONCONFORMAL GRAVITY
BACKGROUNDS

In this paper we will study a family of black hole
backgrounds which follow from an action of gravity
coupled to a single scalar field with a specific self-
interaction potential:

S ¼ 1

16πG

Z
d5x

ffiffiffi
g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
: ð1Þ

This family of solutions has been introduced by Gubser and
collaborators in a series of papers [13–15] and used to
mimic the QCD equation of state by a judicious choice of
the potential. These backgrounds were then used to study
bulk viscosity (which identically vanishes in the conformal

case) and quite recently in [16], where second order
hydrodynamic transport coefficients have been calculated.
Reference [13] provided an approximate but quite accurate
formula for computing the equation of state (or more
precisely the speed of sound c2s),

c2s ¼
d logT
d logS

ð2Þ

directly in terms of the scalar potential VðϕÞ. Thus the
scalar potential parametrizes the physics of the particular
type of gauge theory plasma.
The family of scalar potentials that we consider is

VðϕÞ ¼ −12 coshðbϕÞ þ c2ϕ2 þ c4ϕ4 þ c6ϕ6: ð3Þ

The quadratic terms in ϕ (mass term) determine, according
to the standard AdS/CFT dictionary, the dimensionΔ of the
operator ΔðΔ − 4Þ ¼ m2L2, where L is the AdS radius
which we set to one.
In this paper we will mostly concentrate on a set of

parameter choices in (3) which approximately reproduce
the equation of state of lattice QCD as determined by the
Budapest-Wuppertal group in [17]. The resulting potentials
are listed in Table I and the corresponding speed of sound is
shown in Fig. 1. In that figure we show the speed of sound
extracted from a numerical construction of the correspond-
ing black hole solution, as described in the following
section, together with the lattice QCD data for c2s. Note that
in each case we are free to choose the units of temperature.
Here, following [16] we fix this freedom so that the
temperature corresponding to the lowest dip in c2s coincides
for all the potentials. This will also be our provisional
definition of the critical temperature Tc. According to [16]
this value should be 143.8 MeV for QCD. Note finally that
for high temperatures, the equation of state becomes
essentially conformal. Similarly other properties such as
the quasinormal frequencies also approach the conformal
values characteristic of N ¼ 4 SYM at high temperature.
In order to check that the qualitative conclusions are

generic, we also considered some other potentials leading
to different profiles of c2sðTÞ. We will discuss them in
Sec. V D.

TABLE I. The first group of potentials mimicking the QCD
equation of state, together with the dimensions Δ of the relevant
scalar operators. Potential V6 in Table II was first constructed in
[13], while V5 was recently used in [16].

Potential b c2 c4 c6 Δ

V1 0.606 2.06 −0.1 0.0034 3.93
V2 0.606 1.6 −0.1 0.0034 3.67
V3 0.606 1.4 −0.1 0.0034 3.55
V4 0.606 0.808 −0.1 0.0034 3.10
V5 0.606 0.703 −0.1 0.0034 3.00

2A paper investigating the complementary top-down approach
to this issue appeared simultaneously as this work [12].
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III. EDDINGTON-FINKELSTEIN COORDINATES

This section describes the black hole background
solutions for the quasinormal mode calculations. These
backgrounds are the same as those in [13], but since our
goal is to determine the quasinormal mode frequencies, it
will be convenient to express them in Eddington-
Finkelstein coordinates, rather than in the coordinates
used in [13]. We will discuss this point in more detail in
the following section.
The Ansatz for these solutions follows from the assumed

symmetries: translation invariance in the Minkowski direc-
tions as well as SOð3Þ rotation symmetry in the boundary
spatial part of the metric. This leads to the following form
of the line element:

ds2 ¼ gttdt2 þ gxxd~x2 þ grrdr2 þ 2grtdrdt; ð4Þ

where all the metric coefficients appearing in (4) are
functions of the radial coordinate r alone, as is the scalar
field ϕ. This form of the field Ansatz (determined so far
only by the assumed symmetries) allows two gauge
choices to be made. In [13] a Schwarzschild-like gauge
was adopted by taking grt ¼ 0, accompanied by the
condition ϕ ¼ r. The latter condition on the scalar field
lead to key simplifications which were used to solve the
field equations. The final form of the Ansatz in [13] was
thus

ds2 ¼ e2Að−hdt2 þ d~x2Þ þ e2B

h
dr2 ð5Þ

ϕ ¼ r; ð6Þ

where A, B, and h are functions of r (or, equivalently ϕ).
For the purpose of computing the quasinormal modes it

is very convenient to use a different gauge—the Eddington-
Finkelstein gauge grr ¼ 0. It is typically convenient to also

impose the gauge choice gtr ¼ 1, but for our purposes it
turns out to be very effective to use the remaining gauge
freedom to set ϕ ¼ r. Furthermore, if we label the metric
components as

ds2 ¼ e2Að−hdt2 þ d~x2Þ − 2eAþBdtdr ð7Þ

ϕ ¼ r; ð8Þ

then the field equations take the form

A00 − A0B0 þ 1

6
¼ 0 ð9Þ

h00 þ ð4A0 − B0Þh0 ¼ 0 ð10Þ

6A0h0 þ hð24A02 − 1Þ þ 2e2BV ¼ 0 ð11Þ

4A0 − B0 þ h0

h
−
e2B

h
V 0 ¼ 0 ð12Þ

where the prime denotes a derivative with respect to ϕ.
With the assumed labeling of metric coefficients (5),

Eqs. (9)–(12) are identical to those appearing in [13], and
so they can be solved following the method described there
(see also [16]). In the remainder of this section we review
this procedure for completeness.
We are interested in solutions possessing a horizon,

which requires that the function h should have a zero at
some ϕ ¼ ϕH:

hðϕHÞ ¼ 0: ð13Þ

It is easy to see that the solutions of Eqs. (9)–(12) can be
expressed in terms of a single function GðϕÞ≡ A0ðϕÞ:

AðϕÞ ¼ AH þ
Z

ϕ

ϕH

d ~ϕGð ~ϕÞ ð14Þ

BðϕÞ ¼ BH þ ln

�
GðϕÞ
GðϕHÞ

�
þ
Z

ϕ

ϕH

d ~ϕ

6Gð ~ϕÞ ð15Þ

hðϕÞ ¼ hH þ h1

Z
ϕ

ϕH

d ~ϕe−4Að ~ϕÞþBð ~ϕÞ: ð16Þ

In the expressions aboveAH,BH, hH and h1 denote constants
of integration which will be determined by requiring the
appropriate near-boundary behavior and Eq. (13).
As in [13] by manipulating the field equations (9)–(12)

one finds the nonlinear “master equation”

G0

Gþ V=3V 0 ¼
d
dϕ

ln

�
G0

G
þ 1

6G
− 4G −

G0

Gþ V=3V 0

�
:

ð17Þ

FIG. 1 (color online). The speed of sound c2s for the potentials
V1 − V5 correspond to deformations of the theory by operators of
dimensions 3.93, 3.67, 3.55, 3.10, 3.00 respectively given in
Table I, together with lattice QCD data from [17].
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The strategy is to solve this equation numerically by
integrating it from the horizon at ϕ ¼ ϕH down toward
the boundary at ϕ ¼ 0. Once G is known, the metric
coefficients can be recovered from Eqs. (14)–(16).
Solving Eq. (17) requires appropriate boundary

conditions, which can be determined by evaluating (11)
and (12) at the horizon and using (13). In this way one
finds

VðϕHÞ ¼ −3e−2BðϕHÞGðϕHÞh0ðϕHÞ;
V0ðϕÞ ¼ e−2BðϕHÞh0ðϕHÞ: ð18Þ

From this it follows that

GðϕHÞ ¼ −
VðϕHÞ
3V 0ðϕHÞ

: ð19Þ

Using (19) and (17) one finds the following near-horizon
expansion:

GðϕÞ ¼ −
VðϕHÞ
3V 0ðϕHÞ

þ 1

6

�
VðϕHÞV 00ðϕHÞ

V 0ðϕHÞ2
− 1

�
ðϕ − ϕHÞ

þOðϕ − ϕHÞ2: ð20Þ

In particular, the expansion (20) implies that

G0ðϕHÞ ¼
1

6

�
VðϕHÞV 00ðϕHÞ

V 0ðϕHÞ2
− 1

�
: ð21Þ

To summarize: to find a numerical solution of (17) we can
specify a value for ϕH and then use the conditions (19) and
(21) as boundary conditions for integrating (17). There is
however one technical complication in performing the
numerical integration outlined above: Eq. (19) implies that
at the horizon

GðϕHÞ þ VðϕHÞ=ð3V 0ðϕHÞÞ ¼ 0; ð22Þ

which makes some terms of (17) singular. Even though
such superficially singular terms cancel, their presence
makes numerical computations troublesome. In order to
circumvent this difficulty, instead of ϕH one can initialize
the integration at a point just outside the horizon, at
ϕ ¼ ϕH − ϵH, where ϵH ≪ 1. Then using (21) one can
calculate GðϕH − ϵHÞ and G0ðϕH − ϵHÞ and then use these
values as the boundary conditions. One also needs to
regularize at the boundary (ϕ ¼ 0) by integrating down
to a small, but finite value ϕ ¼ ϵB.
Having determinedG, one can find the metric from (14)–

(16). The constants of integration can be determined
following [13]. The result is

AH ¼ lnϕH

Δ − 4
þ
Z

ϕH

0

dϕ

�
GðϕÞ − 1

ðΔ − 4Þϕ
�

BH ¼ ln

�
−

4VðϕHÞ
Vð0ÞV 0ðϕHÞ

�
þ
Z

ϕH

0

dϕ
6GðϕÞ

hH ¼ 0

h1 ¼
1R

0
ϕH

dϕe−4AðϕÞþBðϕÞ : ð23Þ

This way the metric is determined for any given choice
of ϕH.
The Beckenstein-Hawking formula for entropy leads to

the following expression for the entropy density

s ¼ 2π

κ25
e3AH ð24Þ

and the standard argument requiring nonsingularity of the
Euclidean continuation at the horizon gives

T ¼ eAH−BH jh0ðrHÞj
4π

: ð25Þ

These equations lead to the formula

c2s ¼
d logT=dϕH

d log s=dϕH
≈
1

3
−
1

2

V 0ðϕHÞ2
VðϕHÞ2

; ð26Þ

where the latter equality, proposed in [13], is only approxi-
mate but works surprisingly well. In the present paper when
determining the speed of sound c2s , we always use the exact
formula and determine it from d logT=d log s with temper-
ature and entropy extracted from the exact numerical
solutions.

IV. QUASINORMAL MODES

A. Introductory remarks

It is convenient and enlightening to formulate the
problem of finding quasinormal modes in terms of gauge
invariant variables, which are diffeomorphism invariant
linear combinations of the perturbations. This approach is
well known in general relativity, and has been adopted in
the holographic context in [10], where the conformal case
of N ¼ 4 supersymmetric Yang-Mills theory was consid-
ered. The generalization to the nonconformal cases was
undertaken in [18]. In this section we briefly summarize our
findings in the context of the models under consideration in
this paper.
Under an infinitesimal diffeomorphism transformation,

the metric and the scalar field fluctuations transform as the
metric and the scalar field itself, i.e.

gμν → gμν −∇μξν −∇νξμ; ϕ → ϕ − ξμ∇μϕ: ð27Þ
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By examining linear combinations of the linearized per-
turbations one finds five gauge invariant channels: two
shear channels, one scalar channel, one sound channel and
one bulk channel3 [18].
We assume the plane wave e−iωtþikx dependence of the

fluctuations on boundary coordinates t; x and some non-
trivial dependence on the radial coordinate r. In general, the
equations for the shear and scalar channels are decoupled
from the rest, which have the same form as the conformal
case. However the sound and bulk channels have coupled
second order equations [18].
In the zero momentum limit, k → 0, the equation for the

sound mode becomes decoupled from the bulk mode and at
the same time the equations for the other channels reduce to
the equation for the QNM’s of a massless scalar field,
except for the equation of the bulk channel which is still
coupled to the sound mode. Interestingly, this has two
advantages. At k ¼ 0 it is enough to find the QNM’s for an
external massless scalar field for the conformal channels.
On top of that, the coupling of the bulk mode with the
sound mode means that the former has the same frequency
as the latter. So in this limit, all the information about the
QNM’s of the theory is summarized in the QNM’s of an
external massless scalar field.
In view of this, the following analysis is focused on the

QNM’s of an external massless scalar field in the non-
conformal backgrounds under consideration. Of course, in
general it would still be interesting to study the metric and
massive scalar field perturbations in detail.

B. QNM of a massless scalar field

In view of the results described in the previous section,
we turn to exploring the effects of conformal symmetry
breaking by considering the QNM of a massless scalar field
Ψ in the background (7). As discussed earlier, the equation
obtained for this case contains all the essential elements for
QNM perturbations of the background.
The field equation for a massless scalar is simply the

wave equation

∇A∇AΨ ¼ 0: ð28Þ
Quasinormal modes are solutions of the form

Ψ ¼ e−iωtþikxψðϕÞ; ð29Þ
which satisfy the ingoing boundary condition at the
horizon, which in the Eddington-Finkelstein coordinate
system reduces to regularity. Substituting (29) into Eq. (28)

and using the form of the background metric given in
Eq. (7) leads to the following equation for the amplitude
ψðϕÞ:

�
A0V 0 þ V

3

�
ψ 00 − e−A−BA00ðeAþBV 0 þ 2iωÞψ 0

þ e−2A−BA00ðk2eB − 3iωeAA0Þψ ¼ 0; ð30Þ

where primes denote derivatives with respect to ϕ. Note
that only the functions A and B appear here—the function h
drops out. Since we are imposing two boundary conditions,
this is an eigenvalue problem which can be solved only for
specific values of the complex QNM frequency ω.

C. Numerical approach

Quite generally, the chief advantage of using the
Eddington-Finkelstein coordinate system for finding qua-
sinormal mode frequencies is twofold. First, the ingoing
boundary condition at the horizon gets translated just to
ordinary regularity of the solution at the horizon. Second,
due to the special form of the temporal part of Eddington-
Finkelstein metric, the dependence on the mode frequency
of the relevant differential equation is linear. Hence the
problem of finding the quasinormal frequencies amounts to
solving a linear ODE of the form

L̂1Ψ ¼ ωL̂2Ψ; ð31Þ

where L̂1 and L̂2 are specific differential operators, with Ψ
satisfying essentially Dirichlet boundary conditions at the
boundary and being regular at the horizon. While many
approaches to the problem of finding quasinormal modes
have been described in the literature [19], we believe that
the approach we describe here is very effective in con-
junction with the spectral representation in terms of
Chebyshev polynomials [20]. This representation reduces
the task of solving Eq. (31) to a set of linear equations. The
differential operators appearing in (31) are represented as
matrices, and due to the linear dependence of this equation
on ω this reduces to a generalized matrix eigenvalue
problem which can be solved very efficiently.
In the case we are studying, the relevant equation is

Eq. (30). This equation is indeed linear in ω. We have
implemented the strategy outlined in the previous para-
graph and verified the stability of the resulting solutions
when varying the number of grid points in the Chebyshev
discretization. The results of these numerical calculations
are presented in Sec. V.

V. RESULTS

We are interested in the dependence of the QNM
frequencies on temperature and k in the vicinity of
k ¼ 0. Therefore, in line with the discussion in Sec. IV
A, we focus on the quasinormal modes of an external

3The bulk channel is a linear combination of transverse metric
fluctuations and massive scalar fluctuation. One reason we call it
“bulk” channel is it leads to nonzero bulk viscosity as well [14].
One could refer to it as the “nonconformal” channel and to the
rest, which are already known in conformal case, as conformal
channels.
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massless scalar field. By use of the term “external” we wish
to emphasize that this scalar is distinct from the scalar ϕ
appearing in the background geometry, as QNM modes of
the latter are mixed with the metric perturbations.4

A. The imaginary part of the QNM
frequencies—damping

In the left panel of Fig. 2 we show the imaginary parts of
the QNM frequencies in units of temperature which is the
natural scale in the problem i.e.

Imω

2πT
: ð32Þ

We observe that the damping significantly decreases (by a
factor of 2) close to the transition. This shows that in the
nonconformal case nonequilibrium dynamics become more
important close to Tc. Moreover, we find that the plots
basically lie on top of each other for the various potentials
from Table I. This indicates that the QNM frequencies are
not sensitive to the fine details of the potentials but are
essentially dependent just on the equation of state [speed of

sound c2sðTÞ], which was the common denominator of all
the potentials from Table I.
In order to parametrize the dependence of the damping

on deviation from conformality, we propose a phenom-
enological formula expressing this as a linear combination
of c2s − 1

3
and T d

dT c
2
sðTÞ. Specifically, we posit

Imω − Imωconf

2πT
≈ γ

�
c2sðTÞ −

1

3

�
þ γ0T

d
dT

c2sðTÞ; ð33Þ

where γ; γ0 are phenomenological parameters and Imωconf
2πT ¼

−1.373 is the conformal limit value. These parameters can
be fitted to the numerically calculated difference of the
damping with respect to the conformal case. For the
potential V2 in Table I we got

γ ¼ −3.729; γ0 ¼ 0.452: ð34Þ

In Fig. 2 (right) we show a plot of ðImω − ImωconfÞ=ð2πTÞ
together with the fit. This two parameter fit is surprisingly
good and may be thus used phenomenologically to estimate
the damping in a nonconformal theory with the QCD
equation of state. Since the quasinormal frequencies for the
family of potentials we used in the left panel of Fig. 2

FIG. 2 (color online). The imaginary parts of the lowest quasinormal mode at k ¼ 0 for the potentials from Table I (left). The
imaginary part for potential V2 together with the “phenomenological” according to Eq. (33) (right).

FIG. 3 (color online). The real part of the lowest quasinormal mode at k ¼ 0 for the potentials from Table I (left) and the ratio of the
real to the imaginary part (right).

4See the discussion in Sec. IVA
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basically coincide, the single choice of parameters given in
Eq. (34) works well for all of them.

B. The real part of the QNM frequencies

It is worth noting that similarly as for the imaginary part
of the quasinormal frequencies, the real parts of the
frequencies corresponding to the various potentials from
Table I are also very close to each other [see Fig. 3 (left)].
This signifies that the QNM frequencies are basically
insensitive to differences in the UV (since the various
potentials correspond to different Δ’s) and are governed by
IR physics i.e. essentially the equation of state.
In Fig. 3 (right), we also see an enhancement of the real

part of the frequencies slightly below Tc.

C. Ultralocality

As indicated in the Introduction, an interesting property
of the dispersion relation for the nonhydrodynamic degrees
of freedom in the conformal case of N ¼ 4 SYM theory is
the very mild dependence of the frequencies ωI and ωR on
the momentum k. In this section we show that for non-
conformal theories this property holds to an even higher
degree. Interestingly, the curvature of the damping i.e.
Imω00=2πT at k ¼ 0 follows the speed of sound squared to
a surprising accuracy (at least until T ∼ Tc):

c2s ≈ α
Im ω00ðk ¼ 0Þ

2πT
: ð35Þ

The constant of proportionality is determined in the
conformal high temperature limit (i.e. equivalently in N ¼
4 SYM) to be α ¼ 1.114. The relevant plot is shown in
Fig. 4. The plot for the other potentials in the same family
are basically the same.

D. Further examples

As discussed in Sec. II, the choice of scalar potential
translates into a specific equation of state for the QCD-like
gauge theory. In this subsection we argue how the results
discussed above apply to some additional cases listed in
Table II.
The potentials V6 and V11 have been introduced in [13].

The former was used to mimic the QCD equation of state
using holography while the latter has a second-order phase
transition at T ¼ Tc. Fixing b ¼ 0.606 corresponds to c2s ¼
0.15 in the infrared [13]. The variety of potentials leads to a
range of conformal weights 3 ≤ Δ ≤ 3.93 (Table II).
For all these cases the qualitative conclusions discussed

earlier in this section still hold. In Fig. 5 we plot the speed
of sound (left) and the imaginary parts of the lowest
damped QNM’s (right) for the potentials V6 − V11. Note
that in all cases there is a critical temperature, corresponds
to the lowest value of c2s , which might be considered as the
cross over/phase transition point (related to the potentials).
Damping of the lowest QNM’s decreases in the vicinity of

FIG. 4 (color online). The curvature at k ¼ 0 of the damping
frequency, overlayed with α≃ 1.114 and β≃ 0.342 for the
potential V2 in Table I.

TABLE II. The second group of potentials considered in the
present paper.

Potential b c2 c4 c6 Δ

V6 0.606 2.06 0 0 3.93
V7 0.606 1.8 0 0 3.79
V8 0.606 1.145 0 0 3.37
V9 0.606 0.808 0 0 3.10
V10 0.606 0.703 0 0 3.00
V11 1=

ffiffiffi
2

p
1.942 0 0 3.37

FIG. 5 (color online). The speed of sound c2s (left) and the imaginary parts of the lowest quasinormal modes at k ¼ 0 (right) for the
potentials from Table II. The one with cusp in the c2s (left) corresponds to the most decreased in damping (right).
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T ¼ Tc by a factor of 2–7 (depending on the potential)
relative to the conformal theory at high temperatures,
Fig. 5 (right).
Figure 6 shows the momentum dependence of the

imaginary part of QNM’s (left) and the ratio of the real
parts to the imaginary parts (right). The former indicates
that ultralocality still holds for this more diverse class of
potentials. Interestingly, comparing the plots in Fig. 5 (left)
and 6 (left) suggest that the phenomenological relation (35)
described in previous section is valid also for this class of
potentials (again until T ∼ Tc).
The ratio of real to imaginary parts of the lowest QNM’s

in Fig. 6 (right) shows a decrease at T ∼ Tc i.e. the lower c2s
at T ¼ Tc the bigger the reduction of Reω=Imω.
Surprisingly, even the potential V11 (which leads to a

second-order phase transition) exhibits qualitatively the
same behavior as the other potentials discussed in the
present paper.

VI. CONCLUSIONS

In this paper we carried out a study of the lowest
quasinormal modes in a class of nonconformal holographic
models which exhibit an equation of state very similar to
the one obtained using lattice QCD. This class of models
was introduced in [13] and incorporates 5-dimensional
gravity coupled to a scalar field with a given self-interaction
potential which parametrizes the model.
The frequencies of the lowest quasinormal modes

provide a scale for the importance of nonhydrodynamic
degrees of freedom, thus their determination is of a definite
phenomenological interest. Our main observations are the
following.
First we found that, within the class of considered

models, the imaginary part of the QNM frequency is
strongly correlated with the speed of sound characteristic
of the equation of state, once we factor out the trivial
conformal temperature dependence. In particular, it
decreases by a factor of around two at the point of the
QCD crossover transition. This means that nonequilibrium

effects will become more pronounced closer to the QCD
phase transition/crossover. This seems to be a robust
characteristic of this class of models and persists also
for models with other equations of state considered for
completeness in Sec. V D. We provided a phenomenologi-
cal formula (33) linking the damping with the speed of
sound. It is important to emphasize, that although the
numerical values of the coefficients in (33) are specific only
to the models mimicking the QCD equation of state, similar
fits, with coefficients of the same sign and similar order of
magnitude, work also for other models considered in
Sec. V D.
Second, we found that the quasinormal frequencies

practically coincide for a whole class of models (potentials)
which lead to the same equation of state (or more precisely
to the same speed of sound c2sðTÞ as a function of
temperature). In particular, they seem to be quite indepen-
dent of the particular UV properties of the concrete
potential such as the anomalous dimension of the operator
deforming the theory.
Third, we found that the property of ultralocality found

in [11], namely the very mild dependence of the quasi-
normal modes on the momentum k around k ¼ 0 persists
away from conformality. Even more so, it becomes more
pronounced. We also noticed an intriguing feature that the
curvature of the imaginary part of the QNM frequencies
around k ¼ 0 follows surprisingly well the speed of sound
squared c2s .
We believe that the above observations should be of

phenomenological interest, especially as they indicate a
more pronounced role of nonhydrodynamic degrees of
freedom close to the QCD phase transition/crossover. It
would be very interesting to gain some analytical under-
standing of these properties as well as to investigate directly
nonlinear dynamical evolution in such models.
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