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We study deformations of the Klebanov-Strassler background parametrized by the size of a dim-6 VEV.
In the UV, these solutions describe the usual duality cascade of Klebanov-Strassler; however, below the
scale ρ� set by the dim-6 VEV they exhibit hyperscaling violation over a range of the radial coordinate.
Focusing on the spectrum of scalar glueballs, we find a parametrically light state, the mass of which is
suppressed by ρ�, becoming massless in the limit of ρ� → ∞. Along the way, we clarify the choice of IR
and UV boundary conditions for the fluctuations in the bulk, and find agreement with previous calculations
for the spectrum of Klebanov-Strassler.
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I. INTRODUCTION

Gauge-gravity duality allows for the analytical study of
strongly coupled quantum field theories. Since its original
inception [1] which relates N ¼ 4 supersymmetric Yang-
Mills to type IIB string theory on AdS5 × S5, it has been
extended to numerous examples, including cases where
conformal symmetry is broken and the field theory confines
[2–4]. It is interesting to consider field theories with one
or more characteristic scales in addition to that of confine-
ment, thus allowing for more complex dynamics.
One possible application of such multiscale dynamics is

within the context of technicolor [5,6], the idea that electro-
weak symmetry is broken by the dynamics of a strongly
coupled field theory. In particular, walking technicolor
models [7,8] posit the existence of an energy regime, above
the confinement scale, inwhich the theory is nearlyconformal
as well as strongly coupled. An attractive feature of such
models is that they could potentially contain a light scalar in
the spectrumdue to the spontaneous breaking of approximate
scale invariance [8,9], and that this so-called technidilaton
would couple to the Standard Model in a similar way as the
Higgs [10–13]. Given that a boson with mass 126 GeV has
been observed at the LHC [14,15], it is of great interest to find
specific examples of strongly coupled field theories with
walking dynamics, and to study whether a composite light
dilaton exists in their spectra. This has been the subject of a
number of studies within the context of holographic models
from string theory [16–21], as well as studies on the lattice
[22]. While an elementary Higgs certainly is consistent with
current experimental data, it is still a possibility that the newly
observed particle is a technidilaton [23].
A string dual of a theorywithwalking dynamics was found

in [16] by considering a system of wrapped D5-branes, in the
sense that a suitably defined 4d gauge coupling [24] stays
nearly constant in an intermediate energy region.The lengthof
this walking region is related to the size of a dim-6 VEV.
Below the scale given by the VEV, the metric is hyperscaling

violating with exponent θ ¼ 4. In the case where the UV is
given by the asymptotics of Maldacena-Nunez (MN) [4], the
spectrum of scalar glueballs can be computed and contains a
light state [17,18], the mass of which is suppressed by the
lengthof thewalking region, thus suggesting that it is adilaton.
There exists a class of solutions that interpolates between

Klebanov-Strassler (KS) and MN [25]. The relevant
parameter is the size of a dim-2 VEV, which is equal to
zero for KS, and which for nonzero values takes the theory
out on the baryonic branch of KS. Since we know that MN
can be deformed by the dim-6 VEV linked to walking
dynamics, it is natural to ask whether this also is possible
on the baryonic branch of KS. Such solutions were found in
[19] by applying a solution-generating technique [26] to the
previously mentioned walking solutions of the D5 system
of [16]. Building on the work of [26,27], one can under-
stand the field theory of the new solutions that are
generated as follows. In the UV, the duality cascade of
KS continues down to a certain scale at which the theory is
Higgsed to a single gauge group. Below this scale, the
dynamics become the same as that of the original wrapped-
D5 solutions from which the new solutions were generated.
In this paper, we consider the case where the dim-2 VEV

is turned off, while the dim-6 VEV is turned on. This means
that the UV is that of KS deformed by the dim-6 VEV,
while below the scale set by this VEV the metric becomes
hyperscaling violating, again with the exponent θ ¼ 4. This
solution was originally given in [19], and similar defor-
mations have been considered previously in [28] (see also
[29]). It has the advantage of being simpler than the more
general walking solutions on the baryonic branch of KS,
while at the same time having a UV that is better behaved
than that of the deformations of MN.1

1A consequence of the UV asymptotics being that of MN is
that the spectrum contains a cut, leading to an infinite tower of
states converging on m ¼ 1 and a continuum above m > 1 (m is
the mass given in suitably defined units).
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In order to compute the spectrum of scalar glueballs, we
make use of the gauge invariant formalism developed in
[30] and generalized in [31]. Given a consistent truncation
to a nonlinear sigma model of scalars coupled to five-
dimensional gravity, this formalism allows one to system-
atically study the fluctuations of the metric as well as the
scalars in a given background. Suitable boundary condi-
tions [32] are applied at IR and UV cutoffs which are
eventually dispensed with by taking the appropriate limits.
In particular, we impose Dirichlet boundary conditions on
the fluctuations of the scalar fields in the IR and UV. We
find that in addition to a series of towers of states, the
spectrum contains a light scalar, the mass of which is
suppressed by the size of the dim-6 VEV. This is the main
result of this paper.
All the backgrounds mentioned that have the dim-6 VEV

turned on suffer from a singularity in the IR. This
singularity is of a mild type, in the sense that while (the
ten-dimensional) R2

μνρσ blows up, R2
μν and R stay finite.

Furthermore, in the cases that the Wilson loop has been
studied, it is well behaved [19,33]. Still, the singular
behavior is cause for some concern, in particular with
regard to the form of the boundary conditions imposed on
the fluctuations in the IR. We show that with our pre-
scription the spectrum converges as the IR cutoff is taken
closer and closer to the singularity.
The structure of this paper is as follows. In Sec. II, we

review the gauge invariant formalism for the holographic
computation of glueball spectra. In Sec. III, we review
the Papadopoulos-Tseytlin ansatz and the relevant 5D
truncation. In Sec. IV, we present the backgrounds that
are the topic of this paper, and find that for large dim-6
VEV there exists a good analytical approximation.
Section V contains the numerical study of the scalar
glueball spectrum, first of KS as a consistency check, and
later of the deformations thereof by the dim-6 VEV.
Finally, in Sec. VI, we conclude with a discussion of the
implications of our results as well as suggestions for
future directions of research.

II. FORMALISM

In this section, we review and summarize the gauge
invariant formalism for studying linearized fluctuations in
nonlinear sigma models consisting of a number of scalars
coupled to gravity (for further details see [30,32]). We
focus on the scalar sector of the fluctuations, and write
down a particularly simple version, Eq. (14), of their
boundary conditions in the IR and UV.

A. Action and backgrounds

We start with a dþ 1–dimensional nonlinear sigma
model consisting of n scalars Φaða ¼ 1;…; nÞ coupled
to gravity, whose action is given by

S ¼
Z

ddx
Z

r2

r1

dr
ffiffiffiffiffiffi
−g

p

×

�
R
4
−
1

2
gMNGabðΦÞ∂MΦa∂NΦb − VðΦÞ

�

−
Z

ddx
ffiffiffiffiffiffi
−~g

p �
K
2
þ λ1ðΦÞ

�����
r1

þ
Z

ddx
ffiffiffiffiffiffi
−~g

p �
K
2
þ λ2ðΦÞ

�����
r2

: ð1Þ

In the bulk part of the action, gMN is the dþ 1–dimensional
metric, GabðΦÞ is the nonlinear sigma model metric, and
VðΦÞ is the potential for the scalars. The parts of the action
localized at the boundaries riði ¼ 1; 2Þ contain the induced
metric ~gμν, the extrinsic curvature K that appears in the
Gibbons-Hawking terms, and boundary potentials λiðΦ) for
the scalar fields that end up determining the boundary
conditions for the background and fluctuations around it.
We are interested in backgrounds that only depend on the

radial coordinate r, and for which the metric has the form of
a domain wall

ds2dþ1 ¼ dr2 þ e2AðrÞdx21;d−1: ð2Þ

These satisfy the equations of motion

Φ̄00a þ dA0Φ̄0a þ Ga
bcΦ̄0bΦ̄0c − Va ¼ 0;

dðd − 1ÞA02 − 2Φ̄0aΦ̄0
a þ 4V ¼ 0; ð3Þ

where Gabc¼1
2
ð∂bGcaþ∂cGab−∂aGbcÞ, Va ¼ GabVb ¼

Gab ∂V
∂Φb, Φ̄0

a ¼ GabΦ̄0b, and prime denotes differentiation
with respect to r. The second equation is the Hamiltonian
constraint.
In certain cases, there exists a superpotentialW such that

V ¼ 1

2
WaWa −

d
d − 1

W2; ð4Þ

and solutions can then be found by solving the first-order
equations

Φ̄0a ¼ Wa;

A0 ¼ −
2

d − 1
W: ð5Þ

B. Equations of motion for fluctuations

Next, we study fluctuations fφa; ν; νμ; hTTμν; h; H; ϵμg
around the background,
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Φa ¼ Φ̄a þ φa;

gMN ¼
�
~gμν νν

νμ 1þ 2νþ νσν
σ

�
;

~gμν ¼ e2Aðημν þ hμνÞ;

hμν ¼ hTTμν þ ∂μϵν þ ∂νϵ
μ þ ∂μ∂ν

□
H þ 1

d − 1
δμνh; ð6Þ

where hTTμν is transverse and traceless, ϵμ is transverse,
□ ¼ ημν∂μ∂ν, and d-dimensional indices μ, ν are raised and
lowered by the boundary metric η. Expanding the equations
of motion to linear order, and introducing gauge invariant
variables

aa ¼ φa −
Φ̄0a

2ðd − 1ÞA0 h;

b ¼ ν −
∂rðh=A0Þ
2ðd − 1Þ ;

c ¼ e−2A∂μν
μ −

e−2A□h
2ðd − 1ÞA0 −

1

2
∂rH;

dμ ¼ e−2AΠμ
νν

ν − ∂rϵ
μ;

eμν ¼ hTTμν; ð7Þ

the spin-1ðdμÞ and spin-2ðeμνÞ sectors decouple, and
furthermore b and c can be solved for algebraically
in terms of aa, so that the equations of motion for the
scalar sector reduce to n coupled second-order differential
equations for aa given by

½D2
r þ dA0Dr þ e−2A□�aa −

�
Vajc −Ra

bcdΦ̄0bΦ̄0d

þ 4ðΦ̄0aVc þ VaΦ̄0
cÞ

ðd − 1ÞA0 þ 16VΦ̄0aΦ̄0
c

ðd − 1Þ2A02

�
ac ¼ 0: ð8Þ

Here, Vajb ¼ ∂Va

∂Φb þ Ga
bcVc, Ra

bcd ¼ ∂cGa
bd − ∂dGa

bc þ
Ga

ceGe
bd − Ga

deGe
bc is the Riemann tensor corresponding

to the sigma model metric, while the background covariant
derivative is defined as Draa ¼ ∂raa þ Ga

bcΦ̄0bac.
Explicitly expanding out the background covariant

derivatives Dr occurring in Eq. (8), we obtain

∂2
raa þ ð2Ga

bcΦ̄0c þ dA0δabÞ∂rab þ e−2A□aa−

×

�
∂bVa − ∂bGa

cdΦ̄0cΦ̄0d þ 4ðΦ̄0aVb þ VaΦ̄0
bÞ

ðd − 1ÞA0

þ 16VΦ̄0aΦ̄0
b

ðd − 1Þ2A02

�
ab ¼ 0; ð9Þ

which is sometimes more convenient to use.

C. Boundary conditions for fluctuations

Boundary conditions for the fields are obtained by
varying the action Eq. (1) with respect to the metric and
the scalar fields, and focusing on the boundary contribu-
tions. Expanding the boundary potentials λiðΦÞ as

λi ¼
�
−
d − 1

2
A0 þ Φ̄0

aφ
a þ 1

2
λiajbφaφb

�����
ri

; ð10Þ

where the first and second terms are chosen for consistency
at the level of the background itself, and the choice of λiajb
can be thought of as parametrizing the form of the
boundary conditions for the fluctuations. In particular, it
enters the boundary conditions for aa as follows:

�
δab þ

e2A

□
ðVa − dA0Φ̄0a − λi

ajcΦ̄0cÞ 2Φ̄0
b

ðd − 1ÞA0

�
Drabjri

¼
�
λi

ajb þ
2Φ̄0aΦ̄0

b

ðd − 1ÞA0 þ
e2A

□

2

ðd − 1ÞA0

× ðVa − dA0Φ̄0a − λi
ajcΦ̄0cÞ

�
4VΦ̄0

b

ðd − 1ÞA0 þ Vb

��
abjri :

ð11Þ

The limit of λiajb → �∞ (with the sign depending on
i ¼ 1; 2), corresponds to Dirichlet boundary conditions for
the scalar fluctuations φa,

φajri ¼ 0: ð12Þ

This is the choice that we will make in the following. In
terms of the gauge invariant variables aa, it translates to

−
e2A

□

2Φ̄0a

ðd − 1ÞA0

�
Φ̄0

bDr −
4VΦ̄0

b

ðd − 1ÞA0 − Vb

�
abjri ¼ aajri :

ð13Þ

We can simplify Eq. (13) further by noticing that the matrix
multiplying aa is of the form Ma

b ¼ δab þ XaYb, whose
inverse is given by ðM−1Þab ¼ δab −

XaYb
1þXcYc

, and hence

e2A□−1Φ̄0aΦ̄0
bDrabjri þ

ðd − 1ÞA0

2

×

�
1þ e2A□−1 A

0

2
∂r

�
A00

A02

��
aajri ¼ 0; ð14Þ

where we have also used that

A0

2
∂r

�
A00

A02

�
¼ −

2

d − 1

Φ̄0a

A0

�
Va þ

4V
d − 1

Φ̄0
a

A0

�
: ð15Þ
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III. PAPADOPOULOS-TSEYTLIN ANSATZ
AND 5D TRUNCATION

The type IIB supergravity backgrounds that we will
study fall into the Papadopoulos-Tseytlin ansatz [34]
(which in turn is a truncation of [35]). Furthermore, they
can be discussed in terms of a five-dimensional sigma
model that is a consistent truncation of the original ten-
dimensional system, thus lending themselves well to the
formalism discussed in the previous section.

A. Papadopoulos-Tseytlin ansatz

The Papadopoulos-Tseytlin ansatz is given by

ds2 ¼ e2p−xds25 þ ðexþg þ a2ex−gÞðe21 þ e22Þ
þ ex−gðe23 þ e24 þ 2aðe1e3 þ e2e4ÞÞ þ e−6p−xe25;

ð16Þ

ds25 ¼ dr2 þ e2Adx21;3; ð17Þ

F3 ¼ N½−e5∧ðe4∧e3 þ e2∧e1 þ bðe4∧e1 − e3∧e2ÞÞ
þ dr∧ð∂rbðe4∧e2 þ e3∧e1ÞÞ�; ð18Þ

H3 ¼ −h2e5∧ðe4∧e2 þ e3∧e1Þ
þ dr∧½∂rh1ðe4∧e3 þ e2∧e1Þ− ð19Þ

∂rh2ðe4∧e1 − e3∧e2Þ þ ∂rχð−e4∧e3 þ e2∧e1Þ�; ð20Þ

F5 ¼ ~F5 þ ⋆ ~F5; ~F5 ¼ −Ke1∧e2∧e3∧e4∧e5; ð21Þ

where

e1 ¼ − sin θdϕ; ð22Þ

e2 ¼ dθ; ð23Þ

e3 ¼ cosψ sin ~θd ~ϕ − sinψd~θ; ð24Þ

e4 ¼ sinψ sin ~θd ~ϕþ cosψd~θ; ð25Þ

e5 ¼ dψ þ cos ~θd ~ϕþ cos θdϕ; ð26Þ

and with constraints

K ¼ M þ 2Nðh1 þ bh2Þ; ð27Þ

∂rχ ¼ ðe2g þ 2a2 þ e−2ga4 − e−2gÞ∂h1 þ 2að1 − e−2g þ a2e−2gÞ∂rh2
e2g þ ð1 − a2Þ2e−2g þ 2a2

: ð28Þ

In addition, there is also the dilaton field ϕ. The back-
ground fields fg; x; p;ϕ; a; b; h1; h2g as well as the warp
factor A are presumed to depend only on the radial
coordinate r. M and N are constants associated with the
number of D3- and D5-branes, respectively.

B. 5D truncation

There exists a consistent truncation to a 5D sigma model
consisting of the scalars Φ ¼ fg; x; p;ϕ; a; b; h1; h2g
appearing in the Papadopoulos-Tseytlin ansatz (now

promoted to 5D fields) coupled to gravity, and described
by the action [30]

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

4
R −

1

2
GabðΦÞ∂MΦa∂MΦb − VðΦÞ

�
;

ð29Þ

with kinetic terms

Gab∂MΦa∂NΦb ¼ 1

2
∂Mg∂Ngþ ∂Mx∂Nxþ 6∂Mp∂Npþ 1

4
∂Mϕ∂Nϕ

þ 1

2
e−2g∂Ma∂Naþ 1

2
N2eϕ−2x∂Mb∂Nb

þ e−ϕ−2x

e2g þ 2a2 þ e−2gð1 − a2Þ2
�
ð1þ 2e−2ga2Þ∂Mh1∂Nh1

þ 1

2
ðe2g þ 2a2 þ e−2gð1þ a2Þ2Þ∂Mh2∂Nh2 þ 2aðe−2gða2 þ 1Þ þ 1Þ∂Mh1∂Nh2

�
ð30Þ

and potential
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V ¼ −
1

2
e2p−2x½eg þ ð1þ a2Þe−g� þ 1

8
e−4p−4x½e2g þ ða2 − 1Þ2e−2g þ 2a2�

þ 1

4
a2e−2gþ8p þ 1

8
N2eϕ−2xþ8p½e2g þ e−2gða2 − 2abþ 1Þ2 þ 2ða − bÞ2�

þ 1

4
e−ϕ−2xþ8ph22 þ

1

8
e8p−4x½M þ 2Nðh1 þ bh2Þ�2:

Any solution to the equations of motion following from this
5D model can be uplifted to a 10D solution in type IIB
supergravity.
Finally, note that (as long as N ≠ 0) the change of

variables

~h1 ¼
M
2
þ Nh1; ~h2 ¼ Nh2; ~ϕ ¼ ϕþ 2 logN ð31Þ

removes all dependence on M and N from the 5D model.

IV. BACKGROUNDS

In this section, we describe the type IIB supergravity
backgrounds that we will study. They are deformations of
Klebanov-Strassler corresponding to a dim-6 VEV.

A. Klebanov-Strassler and deformations

The backgrounds that we are interested in can be found
by further truncating the system as

a ¼ tanhðyÞ; g ¼ − logðcoshðyÞÞ; ð32Þ
in which case there exists a superpotential

W ¼ 1

2
ðe4p−2xð ~h1 þ b ~h2Þ − e4p coshðyÞ − e−2p−2xÞ:

ð33Þ
It is practical to change the radial coordinate from r to ρ

defined by

dρ ¼ 1

2
e4pdr; ð34Þ

after which we can write down solutions to the equations of
motion Eq. (5) given by

y ¼ 2arctanhðe−2ρÞ;
~ϕ ¼ ~ϕ0;

b ¼ 2ρ

sinhð2ρÞ ;

~h1 ¼ e ~ϕ0ð2ρ cothð2ρÞ − 1Þ cothð2ρÞ;
~h2 ¼ e ~ϕ0

1 − 2ρ cothð2ρÞ
sinhð2ρÞ ;

p ¼ 1

6
log

�
3

4

f0 − 4ρþ sinhð4ρÞ
sinh2ð2ρÞ

�
−
x
3
;

A ¼ A0 þ
~ϕ0

2
þ xþ log sinhð2ρÞ

3
; ð35Þ

where ~ϕ0, f0, and A0 are integration constants, and x
satisfies the differential equation

∂ρxþ 2ð ~h1 þ b ~h2Þe−2x − 2e−2x−6p ¼ 0: ð36Þ

We fix the boundary conditions in the UV so that xmatches
the solution due to Klebanov-Tseytlin [36]

xKT ¼
~ϕ0

2
þ 1

2
log

�
3ρ −

3

8

�
: ð37Þ

Essentially, this corresponds to fixing an integration con-
stant so that the divergence of x in the UV is softened. We
can write solutions to Eq. (36) satisfying this boundary
condition as

x ¼
~ϕ0

2
−
log 2
6

þ 1

3
log ðf0 − 4ρþ sinhð4ρÞÞ þ 1

2
log I ;

IðρÞ ¼
Z

∞

ρ
d~ρ

4
ffiffiffi
3

p
2ð2~ρ cothð2~ρÞ − 1Þðcothð2~ρÞ − 2~ρcsch2ð2~ρÞÞ

ðf0 − 4~ρþ sinhð4~ρÞÞ2=3 : ð38Þ

From the UV expansion (see also Appendix A)

xUV ¼
~ϕ0

2
þ 1

2
log

�
3ρ −

3

8

�
þ 2ð5f0ð40ρþ 1Þ − 4ð5ρð80ρ − 31Þ þ 8ÞÞ

125ð8ρ − 1Þ e−4ρ þOðe−8ρÞ; ð39Þ
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we see that there is a characteristic scale ρ� ≡ 1
4
log f0

above which the UV expansion is valid, and below which
the solution changes radically.
All these solutions have their end of space in the IR at

ρ ¼ 0. The background of Klebanov-Strassler corresponds
to putting f0 ¼ 0, in which case the IR geometry is that of
the deformed conifold. Nonzero values of f0 correspond to
turning on a dim-6 VEV,2 in which case there is a curvature
singularity in the IR (R2

μνρσ diverges, while R2
μν and R stay

finite).
There exists in the literature various proposals for

determining whether a gravity background can be expected
to capture the relevant physics despite having an IR
singularity. By considering whether a given background
admits finite temperature generalizations, Gubser [38]
arrived at a criterion in terms of the five-dimensional
potential V evaluated on the background, namely that it
should be bounded from above in order for a singularity to
be “good.” In [39], Maldacena and Nunez formulated a
criterion in terms of the ten-dimensional metric, the strong
version of which states that gtt should not increase as one
approaches the singularity (this was motivated by the

interpretation of the radial coordinate as corresponding
to energy scale). The backgrounds considered in this paper
satisfy this latter criterion.

B. Approximate solutions

For ρ ≪ ρ�, we can approximate I appearing in Eq. (38)
as

I ð1Þ
approx ¼ 4

ffiffiffi
3

p
2e−

8ρ�
3 ½I0 − ρ2 coth2ð2ρÞ

þ ρ cothð2ρÞ þOðe−4ðρ�−ρÞÞ�; ð40Þ

where I0 is an integration constant to be determined in a
moment. On the other hand, for ρ ≫ 1 we can make the
approximation

∂ρI ¼ 8ð1 − 2ρÞe−8ρ�
3

ð2þ e4ðρ−ρ�ÞÞ2=3 þOðe−4ρ−8
3
maxðρ;ρ�ÞÞ; ð41Þ

which gives

I ð2Þ
approx ¼ e−8ρ=3

�
9

4 3F2

�
2

3
;
2

3
;
2

3
;
5

3
;
5

3
;−2e4ðρ�−ρÞ

�
þ 3ð2ρ − 1Þ2F1

�
2

3
;
2

3
;
5

3
;−2e4ðρ�−ρÞ

��
: ð42Þ

For ρ� ≫ 1, these two approximations overlap in the region 1 ≪ ρ ≪ ρ�. Matching gives

I0 ¼ ρ2� þ
1

2
ρ�

�
−2 − γ þ logð2Þ − ψ ð0Þ

�
2

3

��
þ 1

64

�
π2 þ 9log2ð3Þ − 8γðlogð2Þ − 2Þ

−
ffiffiffi
3

p
π logð9Þ þ 16ψ ð0Þ

�
2

3

�
þ 4ψ ð1Þ

�
2

3

�
þ 4 logð2Þ

�
−4þ logð2Þ − 2ψ ð0Þ

�
2

3

���
: ð43Þ

Using this, let us examine how good the approximation I ð2Þ
approx is in the region 0 ≤ ρ ∼ 1. Expanding for large ρ�, we obtain

I ð2Þ
approx ¼ I ð1Þ

approx þ 4
ffiffiffi
3

p
2e−

8ρ�
3 ρðcothð2ρÞ − 1Þðρþ ρ cothð2ρÞ − 1Þ þOðe−20ρ�

3 Þ: ð44Þ

Since I ð1Þ
approx is of order Oðρ2�e−

8ρ�
3 Þ, I ð2Þ

approx as given by
Eq. (42) is actually a good approximation all the way to
ρ ¼ 0 (as long as ρ� is moderately large), and hence for
all values of ρ. We illustrate the accuracy of the two

approximations I ð1Þ
approx and I ð2Þ

approx in Fig. 1.

C. Hyperscaling violating region

A background whose metric transforms as

ds2dþ1 → λ
2θ
d−1ds2dþ1 ð45Þ

under scale transformations is said to be hyperscaling
violating with hyperscaling violation exponent θ.
Consider the region ρ ≪ ρ�. The metric can be approxi-

mated as

ds25 ¼ 4e−8pdρ2 þ e2Adx21;3

≈ e
4 ~ϕ0
3

�
1622=3ρ8=3�
3

ffiffiffi
3

p
3

e
16
3
ðρ−ρ�Þdρ2 þ ρ2=3� e2A0þ4ρ

3 dx21;3

�
;

ð46Þ

which under the scale transformation

x → λx; ρ → ρþ 1

2
log λ ð47Þ

2The field theory operators corresponding to the various fields
in the bulk can be found in [37], and in particular the dim-6 VEV
under consideration is for the operator TrW2W̄2.
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transforms as ds25 → λ
8
3ds25. Hence, in this region the metric

is hyperscaling violating with θ ¼ 4, which is the same
as found for the backgrounds of [16–18]. Notice the fact
that the rescaling of the metric can be compensated by
simultaneously transforming ~ϕ0 as

~ϕ0 → ~ϕ0 − 2 log λ: ð48Þ

V. SPECTRA

In this section, we numerically compute the spectrum of
scalar glueballs first for Klebanov-Strassler as a warm-up
exercise, and then for the deformations thereof. This is done
by studying fluctuations of the scalar fields and themetric in
the bulk, using the gauge invariant formalism explained in
Sec. II. In particular, after imposing the boundary conditions
Eq. (14) in the IR and UV, there are only certain values of
m2 ¼ □ for which the equations of motion Eq. (8) for the
fluctuations can be satisfied. Thesemgive us the spectrum. It
is practical to use the so-called midpoint determinant
method outlined in [40] to study this problem numerically.
In principle, the spectrum depends on the three integra-

tion constants ~ϕ0, f0, and A0. However, A0 simply sets an
overall scale, and since we are only interested ratios of
masses, it drops out. Furthermore, the spectrum does not
depend on ~ϕ0. The way to see this is that in the 5D sigma
model, combinations of A, x, p, ~ϕ, ~h1, and ~h2 always
appear in such a way that ~ϕ0 can be eliminated from Eq. (8)
and Eq. (14) after rescaling the fluctuations corresponding
to ~h1 and ~h2 by a factor e

~ϕ0.3 Therefore, the only interesting
variable on which the spectrum depends is f0 ¼ e4ρ� .

A. Warm-up: Klebanov-Strassler

The glueball spectrum of Klebanov-Strassler was com-
puted in [40] (see also [41,42]). There, the boundary

conditions on the fluctuations were obtained by studying
the IR and UV behavior of the fluctuations, picking
normalizable solutions in the UV and imposing regularity
in the IR. Because of mixing between the fluctuations,
this is a complicated problem. On the other hand, the
boundary conditions Eq. (14) can easily be imposed
without any detailed knowledge of the asymptotic behav-
ior of the fluctuations. For a particularly simple example
consisting of a single scalar with quadratic superpotential
W, it was argued in [18] that these boundary conditions
automatically pick the normalizable modes in the UV,
and (together with the IR boundary condition) lead to
physically sensible results. It is not obvious that this is
true in general. Therefore, before we proceed to the more
complicated study of the spectrum as a function of f0,
we would like to first see whether the boundary con-
ditions Eq. (14) lead to the same spectrum as computed
in [40] for the case f0 ¼ 0, i.e. the Klebanov-Strassler
background.
We specify the boundary conditions Eq. (14) at ρ ¼ ρIR

in the IR and at ρ ¼ ρUV in the UV. We can think of this as
introducing IR and UV regulators, which are eventually to
be dispensed with by taking the appropriate limits, thus
giving us the physical spectrum. In other words, we want to
make sure that the calculation of the spectrum converges as
ρIR approaches the end of space at ρ ¼ 0 while ρUV
approaches infinity. Figures 2 and 3 show the dependence
of the spectrum as functions of ρIR and ρUV. For sufficiently
small ρIR and large ρUV, the spectrum becomes the same as
that reported in [40]. Notice that, as already pointed out in
[40], certain states are degenerate (the 13th and 14th states,
as well as the 16th and 17th states), and that this is easy to
discern in the plots as different states approaching each
other asymptotically.

FIG. 1 (color online). The black lines are x obtained numerically
for a few values of ρ�, whereas the dotted blue and red lines are x

evaluated using the approximationsI ð1Þ
approx and I

ð2Þ
approx, respectively.

FIG. 2 (color online). Numerical study of the spectrum of scalar
glueballs for the Klebanov-Strassler background. The black
points show the masses m (normalized to the mass of the first
state) as a function of the IR cutoff ρIR, and with constant UV
cutoff ρUV ¼ 11. The blue lines are the values reported in [40]
appropriately normalized.

3This was demonstrated for the case f0 ¼ 0 in [40], but can
also be shown to be true for general values of f0.
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B. Deformations of Klebanov-Strassler

We now turn to the study of the deformations of
Klebanov-Strassler by the dim-6 VEV, in other words
nonzero values of f0 ¼ e4ρ� . Again, we need to make sure
that the spectrum converges in the limit ρIR → 0 and
ρUV → ∞. The difference is that there is now a curvature
singularity in the IR, which could potentially ruin the
convergence of the spectrum in this limit. Fortunately, this
is not the case, as shown in Appendix B, where we carry out
a study of the dependence of the spectrum as a function of
the IR and UV cutoffs.
More interestingly, Fig. 4 shows the dependence of the

spectrum on ρ�. As can be seen, for large negative ρ� the
spectrum approaches that of Klebanov-Strassler, while for
large positive ρ�, in addition to various towers, there is a

light state whose mass is suppressed by ρ�. In particular, as
Fig. 5 shows, for large ρ� the mass of this light state falls off
with ρ� according to a power law.
Finally, we would like to make a comment about fine-

tuning. For special choices of the boundary conditions for
the fluctuations, it is in fact possible to make a light scalar
appear in any theory described by the sigma-model action
given in Eq. (1), as pointed out in [32]. More recently in
[43], a strongly coupled confining field theory was studied
and the parameter λ of Eq. (11) was varied in order to
determine the amount of fine-tuning necessary obtain a
light state, something that turned out to be possible only for
a very narrow range of λ. The choice λ → �∞ adopted in
this paper is in a sense the most conservative one [32]: if a
light state is present, it is due to the dynamics of the
strongly coupled field theory rather than due to fine-tuning
of the boundary conditions, and as such it is a robust result.

VI. CONCLUSIONS

We first studied the scalar glueball spectrum of
Klebanov-Strassler, and found agreement with the previous
study carried out in [40]. While the boundary conditions
used in [40] were obtained by studying the IR and UV
asymptotics of the fluctuations in the bulk, and imposing
regularity and normalizability, respectively, we simply
imposed Dirichlet boundary conditions for the scalar
fluctuations φajIR ¼ φajUV ¼ 0. This choice leads to boun-
dary conditions for the gauge invariant fluctuations aa

given in Eq. (14), and has the advantage that it can easily
be implemented without analyzing the IR and UV asymp-
totics of the fluctuations. The near perfect agreement with
the previous study [40] suggests that our prescription
automatically enforces regularity and normalizability.
Themain result of this paper concerns backgroundswhich

are deformations ofKlebanov-Strassler by a dim-6VEV.The

FIG. 3 (color online). Numerical study of the spectrum of scalar
glueballs for the Klebanov-Strassler background. The black
points show the masses m (normalized to the mass of the first
state) as a function of the UV cutoff ρUV, and with constant IR
cutoff ρIR ¼ 0.001. The blue lines are the values reported in [40]
appropriately normalized.

FIG. 4 (color online). Numerical study of the spectrum of scalar
glueballs for the deformed Klebanov-Strassler backgrounds. The
black points show the masses m (normalized to the mass of the
second state) as a function of ρ�, and with constant IR cutoff
ρIR ¼ 0.001 and UV cutoff ρUV ¼ 13. The blue lines show the
spectrum for Klebanov-Strassler.

FIG. 5 (color online). Numerical study of the spectrum of scalar
glueballs for the deformed Klebanov-Strassler backgrounds. The
black points show the ratio of masses of the first and the second
lightest states m1=m2 as a function of ρ�, and with constant IR
cutoff ρIR ¼ 0.001 and UV cutoff ρUV ¼ 13. The red line is
proportional to ρα� with α ≈ −1.6.
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size of thisVEVdetermines the length of a region overwhich
the metric exhibits hyperscaling violation with exponent
θ ¼ 4. We found that the spectrum of scalar glueballs
contains a light state, whose mass is suppressed by the size
of the dim-6 VEV. This is analogous to what was found for
the walking backgrounds of [17,18] which are deformations
of the Maldacena-Nunez background by the same dim-6
VEV. Although it is tempting to interpret the light scalar as
being a dilaton, it is presently unclear whether this is actually
the case. In order to clarify this issue, one would have to
determine precisely which fluctuation in the bulk corre-
sponds to the light state, somethingwhich is not immediately
clear from the numerical methods used in this paper.
The baryonic branch of Klebanov-Strassler is obtained

by turning on a dim-2 VEV. One can view the solutions of
Klebanov-Strassler and Maldacena-Nunez as the opposite
ends of this baryonic branch. Hence, together with the
previous studies of [17,18], the present study shows that at
both these extreme ends, turning on the aforementioned
dim-6 VEV gives rise to a light scalar being present in the
spectrum. This suggests that such a state should also exist
all along the baryonic branch of Klebanov-Strassler if the
dim-6 VEV is turned on as in the solutions of [19]. It would
be interesting to see whether this is the case.
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APPENDIX A: UV EXPANSIONS

The UVexpansions of the various scalar fields appearing
in the background of KS deformed by the dim-6 VEV
corresponding to f0 are as follows (the radial coordinate z
is defined so that r ¼ − 3

2
log z):

~ϕ ¼ ~ϕ0; ðA1Þ

x¼
~ϕ0

2
þ1

2
log

�
−
3

8
ð12 logðzÞþ1Þ

�

þ2ð30 logðzÞð10f0þ120 logðzÞþ31Þ−5f0þ32Þ
125ð12 logðzÞþ1Þ z6

þOðz12Þ; ðA2Þ

p¼ −
~ϕ0

6
−
1

6
log

�
−3 logðzÞ− 1

4

�

þ ð30 logðzÞð30f0 þ 60 logðzÞ þ 13Þ þ 135f0 þ 61Þ
375ð12 logðzÞ þ 1Þ z6

þOðz12Þ; ðA3Þ

g ¼ −2z6 þOðz18Þ; ðA4Þ

a ¼ 2z3 þOðz9Þ; ðA5Þ

b ¼ −6z3 logðzÞ þOðz9Þ; ðA6Þ

~h1 ¼ −e ~ϕ0ð3 logðzÞ þ 1Þ − 2e ~ϕ0ð6 logðzÞ þ 1Þz6
þOðz12Þ; ðA7Þ

~h2 ¼ 2e ~ϕ0ð3 logðzÞ þ 1Þz3 þOðz9Þ: ðA8Þ

APPENDIX B: DEPENDENCE OF THE
SPECTRUM ON THE IR AND UV REGULATORS

Figures 6 and 7 show the IR and UV cutoff dependence
of the spectrum for the background with ρ� ¼ 2. Note that
despite the curvature singularity in the IR, the spectrum
converges as the IR cutoff is taken towards the end of space.

FIG. 6 (color online). Numerical study of the spectrum of scalar
glueballs for the deformed Klebanov-Strassler background with
ρ� ¼ 2. The black points show the masses m (normalized to the
mass of the second state) as a function of the IR cutoff ρIR, and
with constant UV cutoff ρUV ¼ 11. The blue lines show the
asymptotic values for small IR cutoff.

FIG. 7 (color online). Numerical study of the spectrum of scalar
glueballs for the deformed Klebanov-Strassler background with
ρ� ¼ 2. The black points show the masses m (normalized to the
mass of the second state) as a function of the UV cutoff ρUV, and
with constant IR cutoff ρIR ¼ 0.001. The blue lines show the
asymptotic values for large UV cutoff.
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