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Recent investigations have revealed powerful selection rules for resonant energy transfer between modes
of nonlinear perturbations in global anti–de Sitter (AdS) space-time. It is likely that these selection rules are
due to the highly symmetric nature of the underlying AdS background, though the precise relation has
remained unclear. In this article, we demonstrate that the equation satisfied by the scalar field mode
functions in AdSdþ1 has a hidden SUðdÞ symmetry, and explicitly specify the multiplets of this SUðdÞ
symmetry furnished by the mode functions. We also comment on the role this structure might play in
explaining the selection rules.
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I. INTRODUCTION AND OVERVIEW

The career of a young theoretical physicist consists of
treating the harmonic oscillator in ever-increasing
levels of abstraction. (attributed to Sydney Coleman)

The stability of AdS space-times [1] against small
amplitude (but nonlinear) perturbations is an interesting
question in its own right, as well as in light of the AdS/CFT
correspondence. On the gravity side, a turbulent instability
would be significant in the formation of black holes
(possibly after repeated reflections of the perturbations
from the boundary), and on the gauge theory side it would
indicate thermalization in a strongly coupled quantum field
theory at low energies.
Investigations of this question have resulted in various

surprises. In the pioneering article [2] it was found that
weak amplitude Gaussian initial data in global AdS lead to
black hole formation after multiple reflections from the
boundary. The expectation there was that resonant energy
transfer between the modes might be the reason behind the
instability. Apparently noncollapsing initial data have been
subsequently found in [3,4]. It was further claimed in [5]
that when only low-lying modes are turned on and the
amplitude is small enough (parametrized by a dimension-
less number ϵ), the system does not collapse, at least for a
very long time. The numerical results for the specific initial
data considered in [5] have been challenged in [6], but it
might still be possible that for sufficiently low-amplitude
initial data, collapse can be delayed by much longer than
∼1=ϵ2. Various other papers also suggest that the instability

(if it exists) of low-lying low-amplitude modes might not be
as virulent as it was originally thought [7–13].
Some understanding of the situation was gained in [7],

where using renormalization group resummation tech-
niques, effective equations were derived, describing slow
energy transfer between the modes. It was shown that the
resonant energy transfer between modes in AdS is highly
restricted, due to the fact that a majority of the possible
growing (secular) terms in perturbation theory (signaling
resonant energy transfer) do not in fact arise. In [8] it was
argued that a probe quartic scalar field theory in AdS
could be used as an instructive model for the full
gravitational instability question—among other things,
it was noticed there as well that there are restrictions on
secular terms and resonant energy transfer. The descrip-
tion in [8] was couched in the language of the two-time
formalism (TTF) of [5], which is equivalent to the
renormalization group (RG) resummation of [7] at rel-
evant order. These results were further extended in [12]
where the spherical symmetry assumption that was inher-
ent in all previous discussions was dropped, and it was
shown by direct manipulations with the mode functions
that the scalar field still exhibits highly restrictive selec-
tion rules in its resonances. Another related observation is
that the RG/TTF-resummed version of the theory pos-
sesses a number of conserved charges—this structure was
discovered for the scalar theory in [8] and for the full
gravity theory in [10].
Our main motivation in this paper will be to gain a more

concrete understanding of this vanishing of the various RG/
TTF coefficients. We believe that the existence of reso-
nance selection rules as well as the conservation laws is
strongly indicative of some underlying symmetry principle.
Note that explicit symmetries (and related conservation
laws) can be identified in the RG/TTF effective
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equations [8,10], but this is not what concerns us here.
Rather, we are looking for a symmetry of the underlying
AdS background that leads to these conservation laws in
the resummed effective theory.
The fact that symmetries of the background can restrict

the energy flow due to nonlinearities among the perturba-
tion modes is not unfamiliar in the context of nonlinear
system studies. For example, some symmetry-based selec-
tion rules have been discussed for vibrations of nonlinear
atomic lattices, in particular, in relation to the so-called
“bushes” of modes—these are subsets of modes only
transferring energy to each other, but not to other modes,
due to symmetry restrictions [14].
Our starting point in identifying the relevant symmetry

will be that the frequencies of the scalar field mode
functions in AdS background display a characteristic 2nþ
l degeneracy. Here, n is a “radial quantum number”
governing the radial dependence of the mode functions,
and l is the angular momentum governing their angular
dependence. Typically, one expects degeneracies to arise
when there are symmetries in the problem. Note however
that this present degeneracy cannot be understood in terms
of spherical symmetry explicitly present in the equations.
The spherical symmetry leads merely to the familiar fact
that there is degeneracy in “azimuthal quantum numbers”
for a given l. The fact that the frequencies only depend on
2nþ l, such that different choices of n and l produce the
same frequency, clearly implies a bigger symmetry group.
In the rest of the paper, wewill argue that this degeneracy

can be explicitly understood in terms of a hidden symmetry
in the mode function equation. We study the degenerate
multiplets of AdSdþ1 mode functions, reveal that they form
representations of (a rather nonobvious) SUðdÞ group and
explicitly specify the representation in which each mode
function resides. The way we identify the hidden symmetry
is by first relating the scalar wave equation in AdS to that in
an Einstein static universe via a conformal transformation.
Then we employ arguments similar in spirit to those
associated to the SOð4Þ enhancement of the symmetry
group of the hydrogen atom to claim that we have a hidden
SUðdÞ symmetry in the problem. The mode function
equation turns out to be essentially the Schrödinger
equation for a quantum particle on a sphere with a spherical
analog of the harmonic oscillator potential. This problem
has been previously treated in [15,16] (see also [17]), and is
known to possess a hidden SUðdÞ symmetry. We will
conclude by making some comments about how this
symmetry might be responsible for the selection rules
noticed in [7,8,10,12].

II. PERTURBATION THEORY, RESONANCES AND
SELECTION RULES

We will start with a self-interacting scalar field in
AdSdþ1,

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕþ VðϕÞ

�
; ð2:1Þ

with

VðϕÞ ¼ m2

2
ϕ2 þ λ

ðN þ 1Þ!ϕ
Nþ1: ð2:2Þ

The selection rule problem that drives our interest is only
meaningful for some discrete values of the mass, most
prominently including m ¼ 0, the specific value on which
the previous investigations focused [8,12,13]. However, the
hidden symmetries we want to display are present for any
values of the mass, hence we shall for now treat it as
arbitrary. The application of these hidden symmetries to
selection rules should of course be discussed in the context
of appropriate mass values.
The global AdS metric (after setting the AdS radius to

unity) is

ds2AdSdþ1
¼ sec2xð−dt2 þ dx2 þ sin2xdΩ2

d−1Þ
≡ sec2xðds2ESÞ; ð2:3Þ

where we have identified the metric on the Einstein static
universe ds2ES for future convenience. (More specifically,
only half of each spherical spatial slice of the Einstein static
universe is included, since x varies between 0 and π=2,
rather than 0 and π. The resulting boundary is just a
conformal image of the boundary of the AdS.) We will use
Ω to collectively denote the ðd − 1Þ-sphere coordinates
appearing in dΩd−1. The equations of motion for the scalar
field are given by

□AdSdþ1
ϕ −m2ϕ≡ cos2xð−∂2

tϕþ ΔðdÞ
s ϕÞ −m2ϕ ¼ λ

N!
ϕN

ð2:4Þ
where

ΔðdÞ
s ≡ 1

tand−1x
∂xðtand−1x∂xÞ þ

1

sin2x
ΔΩd−1

: ð2:5Þ

Here ΔΩd−1
is the Laplacian on the ðd − 1Þ-sphere. The

solution to the free theory [i.e., λ ¼ 0 in (2.4)], which we
shall denote ϕð0Þ, can be found by separating variables, as
presented (for example) in [18]:

ϕð0Þðt; x;ΩÞ ¼
X∞
n¼0

X
l;k

ðAnlke−iωnlkt þ ĀnlkeiωnlktÞenlkðx;ΩÞ;

ð2:6Þ
where Anlk are arbitrary complex amplitudes and

ωnlk ¼ 2nþ lþ Δ; ð2:7Þ

with Δ ¼ d
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
þm2

q
. The mode functions are
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enlkðx;ΩÞ ¼ cosΔxsinlxP
ðΔ−d

2
;lþd

2
−1Þ

n ð− cos 2xÞYlkðΩÞ:
ð2:8Þ

Ylk are the ðd − 1Þ-dimensional spherical harmonics, and
the set of “azimuthal numbers” on a general ðd − 1Þ-sphere
is collectively indicated by the label k. Its details will not
affect the discussion below. Pða;bÞ

n ðyÞ are the Jacobi poly-
nomials. The mode functions satisfy the equation

�
ΔðdÞ

s −
m2

cos2x

�
enlkðx;ΩÞ ¼ −ω2

nlkenlkðx;ΩÞ; ð2:9Þ

and they are orthogonal with respect to a scalar product
defined by

ðf; gÞ ¼
Z

dxdΩ tand−1xfðx;ΩÞgðx;ΩÞ: ð2:10Þ

One can then take the nonlinearities into account
perturbatively by expanding solutions to (2.4) as

ϕ ¼ ϕð0Þ þ λϕð1Þ þ � � � : ð2:11Þ

For ϕð1Þ, one gets

−∂2
tϕ

ð1Þ þ
�
ΔðdÞ

s −
m2

cos2x

�
ϕð1Þ ¼ λ

N!

ðϕð0ÞÞN
cos2x

: ð2:12Þ

It is convenient to expand ϕð1Þ in the basis of enlk:

ϕð1Þðt; x;ΩÞ ¼
X
nlk

cð1ÞnlkðtÞenlkðx;ΩÞ: ð2:13Þ

Substituting (2.6), (2.9) and (2.13) in (2.12), and projecting
on the eigenmodes enlk using (2.10) one gets

c̈ð1Þnlk þ ω2
nlkc

ð1Þ
nlk ∼

λ

N!

X
n1l1k1

…
X

nNlNkN

Cnlkjn1l1k1j���jnNlNkN

× ðAð0Þ
n1l1k1

e−iωn1l1k1
t þ Āð0Þ

n1l1k1
eiωn1l1k1

tÞ…ðAð0Þ
nNlNkN

e−iωnN lNkN
t þ Āð0Þ

nNlNkN
eiωnN lNkN

tÞ; ð2:14Þ

where we have used a proportionality (rather than equality)
sign since we have not kept track of the normalization of the
mode functions, which is inessential for our purposes. The
coefficients C are given by

Cnlkjn1l1k1j…jnNlNkN

¼
Z

dxdΩ tand−1xsec2xenlken1l1k1…enNlNkN : ð2:15Þ

The right-hand side of (2.14) consists of a sum of simple
oscillating terms of the form eiωt with

ω ¼ �ωn1l1k1 � � � � � ωnNlNkN ; ð2:16Þ

where all the plus-minus sign choices are independent. If ω
is different from �ωnlk, the corresponding term produces
an innocuous oscillating contribution to cð1Þ, and the
corresponding contribution to ϕ remains bounded, with
an amplitude proportional to λ for all times. However, if
ω ¼ �ωnlk, the corresponding term is in resonance with
the left-hand side of (2.14), producing a secular term in cð1Þ
and ϕ, a term that will grow indefinitely with time and
invalidate the perturbation theory at times of order 1=λ.
In order to make the perturbation theory usable for large

times (which is the regime of physical interest), different
resummation schemes can be employed, such as the two-
time formalism [5,8,13], renormalization group resumma-
tion [7,10] and averaging [8,10]. Some systematic

discussion of resummation techniques in the context of
AdS dynamics can be found in [7,10]. All the resummation
schemes mentioned are equivalent at the lowest nontrivial
order, which is our present setting. The result of resum-
mation procedures is an improved perturbation theory valid
at times of order 1=λ in which secular terms become
replaced with (resummed) slow changes of the mode
amplitudes. The picture of nonlinearities inducing energy
transfer between linear modes (this transfer being slow in
the weakly nonlinear regime) is physically very intuitive.
Each resonant term in the sum on the right-hand side of

(2.14) produces the corresponding term in c1 and, after
resummation, a corresponding term in the flow equations
describing the slow variations of the complex amplitudes,
cf. (2.6), due to the energy transfer between the modes. The
general resonance condition reads

ωnlk ¼ �ωn1l1k1 � � � � � ωnNlNkN : ð2:17Þ

It has been noted, however, that in AdS settings, many of
the plus-minus choices in the above expression do not in
fact result in secular terms, because the corresponding C
coefficients in (2.14) vanish. In [7], this phenomenon was
proved for spherically symmetric perturbations of dynami-
cal gravity coupled to a scalar field. In [8], it was noted that
similar vanishing occurs for spherically symmetric con-
figurations of a self-interacting scalar field in a fixed AdS
geometry, which is our present setting. In [12], the
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assumption of spherical symmetry was relaxed and a
powerful set of selection rules was given for the C
coefficients as defined by (2.15).
More specifically, the considerations of [12] established

that, if dðN þ 1Þ is even and m ¼ 0, the resonances
corresponding to choosing all plus signs in (2.17) always
drop out from the dynamics due to the vanishing of the
corresponding C coefficients. Using (2.7), this particular
resonance condition can be rewritten as

2nþ l ¼ ðN − 1ÞΔþ 2n1 þ l1 þ � � � þ 2nN þ lN:

ð2:18Þ
Note that the resonance condition itself cannot be satisfied
for general values of the mass m, since Δ is in general a
noninteger. However, m ¼ 0 implies Δ ¼ d, in which case
there are always some modes satisfying the above con-
dition. Despite the fact that the resonance condition is
satisfied, however, the vanishing of the corresponding C
coefficients results in the absence of the corresponding
secular terms and energy transfer channels. This, in turn,
finds expression in extra conservation laws restricting the
slow energy transfer analyzed in [8,10–12].

III. HIDDEN SUðdÞ SYMMETRY AND MODE
FUNCTION MULTIPLETS

In the previous section, we have reviewed nonlinear
perturbation theory for scalar fields in AdS space-time and
the emergence of resonances generating significant (slow)
energy transfer between the modes for arbitrarily small
nonlinearities. We have displayed a set of selection rules
forcing some of these resonances to vanish despite they
could be present on general grounds. In all the previous
analytic considerations [7,12], the selection rules were
proved using brute force manipulations involving the
properties of orthogonal polynomials contained in (2.8).
It is natural to believe that there exists a more qualitative
explanation for the selection rules, most likely based on the
high degree of symmetry and other special properties of the
underlying AdS background. The concept of the ground
state symmetries restricting the energy flow between the
perturbation modes due to nonlinearities is familiar in more
conventional settings, such as vibrations of crystalline
lattices [14]. Similar suspicions of the symmetry origins
of the AdS selection rules have been voiced in [12].
One is thus confronted with the question of the sym-

metry properties of the mode functions (2.8) appearing in
the integrals (2.15). Here, one immediately observes an
intriguing structure. The mode functions are eigenfunctions
defined by (2.9), and each set of eigenfunctions with the
same eigenvalue ω2

nlk must form an irreducible representa-
tion of the symmetry group of the operator on the left-hand
side of (2.9), whose eigenvalue problem is studied. The
only obvious symmetry this operator (ΔðdÞ

s −m2= cos2 x)
has is the SOðdÞ rotations of the ðd − 1Þ-sphere

parametrized by Ω. This symmetry explains why the
eigenvalues (2.7) do not depend on the azimuthal numbers
k. The degeneracy is much higher however, since the
eigenvalues are not only independent of k, but also only
depend on l and n through the combination 2nþ l.
Different representations of the rotational SOðdÞ labeled
by l are bundled together to form much bigger representa-
tions of what must be a bigger symmetry group. What can
this group be?
One might have been tempted to look for isometries of

AdS as the source of degeneracies. Since the mode
functions are defined on a single spatial slice, rather than
in the whole space-time, one might have tried to talk of the
isometry group of a single spatial slice of AdSdþ1, which is
SOðd; 1Þ. This is a wrong perspective, however, since the
Laplacian on a single spatial slice of AdSdþ1 is cos2 xΔ

ðdÞ
s ,

which is different from the operator on the left-hand side of
Eq. (2.9) defining the mode functions, even for m ¼ 0. Not
surprisingly, representations of SOðd; 1Þ do not decompose
into representations of its rotational subgroup SOðdÞ in a
way compatible with the AdS frequency degeneracies. The
eigenvalues in (2.9) depend only on 2nþ l, which implies
that the values of the angular momentum l entering each
“level” are either all even or all odd. This property is not
shared by the SOðdÞ decomposition of SOðd; 1Þ
representations.
To reveal the actual enhanced symmetry group of (2.9) it

is convenient to first recall the conformal relation (2.3)
between the AdS metric and the Einstein static metric.
Using the standard conformal transformation formulas
displayed, for instance, in (3.5) of [19], one can obtain
the following identity for arbitrary ϕðt; x;ΩÞ:

cosðdþ3Þ=2x
�
□ES −

ðd − 1Þ2
4

�
ϕðt; x;ΩÞ
cosðd−1Þ=2x

¼
�
□AdSdþ1

þ d2 − 1

4

�
ϕðt; x;ΩÞ: ð3:1Þ

Let us emphasize for clarity that on the left-hand side the
operator is acting on ϕðt; x;ΩÞ= cosðd−1Þ=2 x. Now,

□ES ¼ −∂2
t þ ΔΩd

; ð3:2Þ

where the d-sphere Laplacian is explicitly

ΔΩd
≡ 1

sind−1x
∂xðsind−1x∂xÞ þ

1

sin2x
ΔΩd−1

: ð3:3Þ

Correspondingly, by relating the AdS wave-function equa-
tion to the ES wave equation using (3.1), one can rewrite
the mode function equation (2.9) in the form of a
Schrödinger equation

ð−ΔΩd
þ VðxÞÞ~enlk ¼ Enlk ~enlk; ð3:4Þ
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with

VðxÞ ¼ 1

cos2x

�
m2 þ d2 − 1

4

�
and

Enlk ¼ ω2
nlk −

ðd − 1Þ2
4

: ð3:5Þ

We have defined ~enlk ≡ enlk= cosðd−1Þ=2 x for convenience.
Note that the range of x is only a hemisphere, x ∈ ½0; π=2Þ,
since the potential VðxÞ is unbounded and confines the
“particle” to this hemisphere.
Enhanced symmetries of the Schrödinger equation for a

particle on a d-sphere, with a potential VðxÞ ∼ 1= cos2 x
have been studied in [15,16] from a purely quantum-
mechanical perspective. (It may also be useful to consult
[20], which uses notation more similar to ours.)
Historically, the equations were solved in [17] and the
observed abnormal energy degeneracies of the sort we
described above (with energies depending only on 2nþ l)
prompted an investigation into enhanced symmetries.
The easiest way to notice the presence of enhanced

symmetries in (3.4) is by looking at the corresponding
classical problem. Solving the equations of motion in
centrally symmetric potentials is standard and we shall
not review the details here. It is easy to show that if the
orbital shape of a trajectory in a central potential VðrÞ in
the ordinary d-dimensional flat space is r ¼ rðφÞ, then the
orbital shape of the motion on a d-sphere in the potential
Vðtan xÞ is x ¼ arctanðrðφÞÞ, with x being the polar angle
on the sphere, as in (3.4). It is a simple corollary that if the
orbits close for a central potential VðrÞ in the ordinary d-
dimensional flat space, then they will close as well for the
central potential Vðtan xÞ on a d-sphere.
It is known that the orbits close in flat space only for two

potentials: the Coulomb potential VðrÞ ∼ 1=r and the
isotropic harmonic oscillator potential VðrÞ ∼ r2. This is
the so-called Bertrand’s theorem [21]. The corresponding
potentials on a d-sphere, for which the closure of orbits is
guaranteed by the above consideration, are the sphere
Coulomb potential VðxÞ ∼ cot x and the sphere “harmonic
oscillator” potential VðxÞ ∼ 1= cos2 x. It is the latter poten-
tial that appears in the “Schrödinger” equation (3.4).
In flat space, the closure of orbits is explained by

enhanced symmetries and the corresponding conserved
quantities. For the Coulomb potential VðrÞ ∼ 1=r, the
conserved quantity is the Laplace-Runge-Lenz vector,
which, together with the angular momentum, forms an
soðdþ 1Þ Lie algebra with respect to taking the Poisson
brackets. For the isotropic harmonic oscillator potential
VðrÞ ∼ r2 the corresponding conserved quantity is a trace-
less symmetric second-rank tensor known as Elliott’s
quadrupole after [22], or the Fradkin tensor after [23].
Together with the angular momentum (antisymmetric
second-rank tensor), it forms an suðdÞ Lie algebra.
The situation on a d-sphere forms a close parallel to the

one described above for flat space. The d-sphere Coulomb

problem first appeared in [24] and reveals an SOðdþ 1Þ
symmetry and the corresponding degeneracy pattern,
exactly identical to the flat space case. The sphere harmonic
oscillator, which is our main interest here, has been
analyzed in [15,16]. The classical version of the corre-
sponding SUðdÞ symmetry has been displayed and the
corresponding conserved quantities have been constructed.
A quantum version of this symmetry, leaving equation (3.4)
invariant, has only been constructed [15] for d ¼ 2, which
corresponds to AdS3 in our setting, because of the problems
with resolving the ordering ambiguities. Its explicit con-
struction remains an outstanding technical problem, to the
best of our knowledge. Nevertheless, the fact that the
degeneracies of the energy levels of (3.4) and their proper-
ties under SOðdÞ spatial rotations fit representations of
SUðdÞ demonstrates that the classical SUðdÞ symmetry is
in no way upset by quantization.
We would like to emphasize that the symmetry, the

degeneracies and the multiplets furnished by the eigen-
functions are exactly the same for our sphere harmonic
oscillator as for the usual straightforward isotropic har-
monic oscillator in flat space. Of course, the symmetries are
realized in a much more nontrivial way in the nonlinear
case of motion on a sphere. For flat space, the SUðdÞ
symmetry can be seen immediately by simply writing the
Hamiltonian H ∼

Pðp2
i þ x2i Þ in terms of the creation-

annihilation operators H ∼
P

a†i ai. Transforming ai to
~ai ¼ Sikak, with any SUðdÞ matrix Sik, obviously leaves
the Hamiltonian invariant. It is furthermore straightforward,
due to the linear nature of the flat space harmonic oscillator,
to implement any such transformation as a unitary operator
on the Hilbert space, ~ai ¼ UaiU†.
We finally identify the SUðdÞ transformation properties

of the multiplets corresponding to each “energy” level in
(3.4). These can be easily reconstructed from the trans-
formation properties of the mode functions under the
obvious SOðdÞ subgroup of SUðdÞ representing the spatial
rotations in (3.4). For each given n and l, the rotational
properties of the mode functions are determined by the
spherical harmonics YlkðΩÞ, which transform according to
the traceless symmetric rank l tensor representation of
SOðdÞ. A given representation of SUðdÞ is formed by all
such functions with the same value of energy, i.e., with the
same value of 2nþ l. Since both n and l are positive, there
will be a maximal possible value of l in each multiplet,
which we shall call L. Each level will then be composed of
the following SOðdÞ multiplets: ðn ¼ 0; l ¼ LÞ,
ðn ¼ 1; l ¼ L − 2Þ, etc. This is precisely the SOðdÞ content
of the fully symmetrized Lth power of the fundamental
representation of SUðdÞ. Indeed, to separate irreducible
representations of SUðdÞ into irreducible representations of
its SOðdÞ subgroup, one must separate each tensor into its
trace and traceless parts [25]. Applied to a fully symmetric
tensor of rank L, this will generate traceless fully sym-
metric tensors of ranks L, L − 2, etc. (since two indices get
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contracted to produce each trace). These are precisely the
rotational representations appearing for mode functions at
each given level, with the angular momentum varying in
steps of 2.

IV. COMMENTS ON THE SYMMETRY ORIGIN OF
THE SELECTION RULES

Having established that the mode functions (2.8) of
frequency Δþ L form multiplets transforming as the fully
symmetrized Lth power of the fundamental representation
of SUðdÞ, the hidden symmetry group of the mode function
equation (2.9), one might wonder what repercussions this
observation has on the selection rules for the energy flow
coefficients (2.15).
One may first recall how selection rules arise in more

conventional settings, for example, for cases with ordinary
spherical symmetry SOðdÞ. Consider an integral of spheri-
cal harmonics

Z
dΩYl1k1ðΩÞ…YlNkN ðΩÞ: ð4:1Þ

One can use the standard angular momentum addition
theory to decompose the product of spherical harmonics
into a sum of irreducible representations of SOðdÞ.
Integrated over all angles, any nontrivial (nonscalar)
irreducible representation will produce a zero result. The
only way the integral can be nonzero is if the trivial (scalar)
representation is contained in the direct product of the
representations corresponding to Yl1k1 ;…; YlNkN . By the
usual addition of angular momenta, this can only happen if
each li is less than or equal to the sum of all the other li.
Hence the angular momentum selection rules.
The application of SUðdÞ symmetry to the integral (2.15)

is considerably less straightforward for the following
reasons. First, the SUðdÞ is not made of purely spatial
transformations. In the Schrödinger equation language of
(3.4) it is a quantum symmetry originating from classical
canonical transformations mixing coordinates and
momenta.1 It therefore does not act on the integral
(2.15) as straightforwardly as spatial rotations act on
(4.1). Even more frustrating, explicit construction of the
symmetry generators for (3.4) has evaded dedicated effort
in [15,16], except for the relatively simple case d ¼ 2. This
is despite the fact that the symmetry is certainly there, as
evidenced by the symmetries of the corresponding classical
problem, and the level degeneracies and wave-function
rotational multiplets of the quantum problem matching the

decomposition of multiplets of the SUðdÞ in terms of its
rotational subgroup SOðdÞ. It is these technical complica-
tions that encouraged us to present our understanding in its
current form, postponing more detailed investigations to
future work.
Despite the above technical complications, one might

envisage the possible algebraic patterns responsible for the
selection rules in (2.15) in the presence of the SUðdÞ
symmetry. The symmetry transformations connect the
mode functions enlk in the same multiplet, i.e., with the
same values of 2nþ l. There must exist the corresponding
conjugate raising and lowering operators Â�, increasing
(decreasing) l by 2 and decreasing (increasing) n by 1.
Analogous operators have been constructed for the simple
flat space isotropic harmonic oscillator in [27]. Imagine
then that 2nþ l ¼ L in (2.15) is large. One can write enlk as
a certain number of lowering operators Â− acting on a mode
function in the same multiplet with the highest value of l,
i.e., e0L~k. It should be possible to use the conjugation
properties of Â� to turn the Â− acting on e0L~k into Âþ
acting on the remaining mode functions under the integral,
which will raise their angular momentum values somewhat.
The result will be an integral of a product of e0L~k, carrying a
very high angular momentum L, with transformed eniliki .
Note that acting with SUðdÞ symmetry transformations on
eniliki can never increase their angular momentum beyond
2ni þ li, because there are no such states in the multiplets.
In the end, after applying the SUðdÞ transformation to the
integral (2.15) one will end up with an integral of a product
of a mode function with a very large angular momentum
2nþ l and other mode functions with angular momenta of
at most 2ni þ li. This product is strongly constrained by the
ordinary angular momentum selection rules of the sort
described under (4.1). Note that, after the SUðdÞ trans-
formation has been applied, restrictive angular momentum
constraints will arise even if all the values of l and li in the
original integral (2.15) were zero, in which case a direct
application of angular momentum selection rules would
have been completely vacuous.
At a practical level, there is a number of technical

obstructions to implementing the above program in a
detailed fashion. As we have already mentioned, we are
not aware of an explicit construction of the SUðdÞ
symmetry generators for (3.4), and the attempts of
[15,16] have been plagued by algebraic difficulties. This
precludes a straightforward specification of the raising and
lowering operators, unlike the much more obvious flat
space case of [27]. One has to worry, furthermore, about the
trigonometric insertions in (2.15). Part of those insertions
will be absorbed by the integration measure necessary to
make the raising and lowering operators conjugate. What
remains will be acted upon by the raising operators, if one
attempts the construction in the previous paragraph, and its
SUðdÞ transformation properties will have to be discussed
explicitly before the detailed form of the resulting selection

1The SUðdÞ hidden symmetry group we find is closely related
to the isometry group of the complex projective space CPd−1.
Indeed, the corresponding geometric structure can be revealed in
the phase space of the ordinary d-dimensional flat space isotropic
harmonic oscillator, as in Sec. 5.4.5.3 of [26]. If an analogous
representation is found for the d-sphere case, it may turn out
useful for our pursuits.
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rules can be exposed. All of this would require a more
direct understanding of how the SUðdÞ symmetry acts on
the Hilbert space of (3.4).
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