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We investigate dielectric branes in false vacua in type IIB string theory. The dielectric branes are
supported against collapsing by lower energy vacua inside spherical or tubelike branes. We claim that such
branes can be seeds for semiclassical (or quantum mechanical) decay of the false vacua, which makes the
lifetime of the false vacua shorter. Also, we discuss a topology change of a bubble corresponding to the
fuzzy monopole triggered by dissolving fundamental strings.
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I. INTRODUCTION

Existence of consistent flux compactifications in string
theories may suggest to us that there is a huge string
landscape [1,2], and that there exists a large number of
metastable vacua. If this is true, it would be important to
study how transitions between them occur, and how long
such metastable vacua survive.1 A key ingredient to answer
this question may be a D-brane. In various scenarios of
string model building, the standard model is realized as a
low-energy effective theory of D-branes. So, it would be
plausible to assume that lower dimensional D-branes also
exist because the tachyon condensation of the original
branes and antibranes simply generates such lower dimen-
sional D-branes. The lower dimensional D-branes can be
interpreted as solitons in the effective theory. In this paper,
we study some aspects of the solitonic branes in metastable
states. Especially, we claim that such solitons induce the
domain wall connecting the false vacuum and the true
vacuum, and create a dielectric brane [7,8]which can be
interpreted as a bound state of the domain wall and the
soliton. The dielectric branes are blown up even when there
is no background flux or angular momentum. The stability
of the branes is offered by the true vacuum inside spherical
or tubelike branes. Our first aim of this paper is to point out
a new way to form a dielectric brane.
The other interesting observation of dielectric branes in

metastable vacua can be seen in the decay process of the
vacua. In a wide range of parameter space, such dielectric
branes become unstable even when the false vacuum itself
is stable. In this case, the radius of the dielectric brane
expands rapidly without bound, and finally the whole four-
dimensional space-time is filled by a lower energy vacuum.
This is a semiclassical decay process of the metastable
vacua since this does not require the tunneling process.

Decay of a metastable vacuum via dielectric branes was
initially studied in [9] where anti–D3-branes were blown up
to a NS5-brane and decayed into a supersymmetric (SUSY)
vacuum.2 A crucial difference between discussions in [9]
and our studies is inhomogeneous vacuum decay. In [9],
vacuum decayed by creating a Oð4Þ symmetric bubble in
the homogeneous space-time R1;3. In our case, there are
impurities (such as a monopole or a cosmic string) in R1;3,
and they enforce to create less-symmetric bubbles inho-
mogeneously. Existence of solitons reduces the energy cost
to blow up a domain wall connecting the metastable
vacuum and true vacuum, and reduce the total energy by
constructing a bound state of solitons and the domain wall.
This idea was originally claimed in the context of field
theory [11–13], then applied to phenomenological studies
[14–16]. The second aim of this paper is to go a step further
toward applications of the idea to string theories.
In this paper, to get insight into transitions between

vacua in the string landscape, we focus on a simplified
version of the landscape by taking the brane limit where
gs is very small but ls is finite. As an example, we consider
generalized conifold and study metastable vacuum
engineered by wrapping D5- and anti–D5-branes [17].
Interestingly, in the metastable states, there is a monopole-
like D-brane configuration which offers a good example
to illustrate our idea.3

The plan of this paper is the following. In Sec. 2, we
briefly review metastable states in type IIB string theory
compactified on the generalized conifold in the brane limit.
In Sec. 3, we discuss a new type of dielectric brane which is
a bound state of a monopole and a domain wall connecting
two states. In Sec. 4, we calculate the decay rate of the
metastable bound state by means of the bounce solution of
the Euclidean Dirac-Born-Infeld (DBI) action. In Sec. 5, we
discuss the topology change of the bound state triggered by

1Remarkable studies on this subject have been done in various
contexts (for example, see [3–6] and references therein). We
would like to shed new light on this subject from a slightly
different point of view.

2See [10] for recent interesting studies on the instability of
metastable states in this geometry.

3A similar kind of stringy monopole in the geometry [18] is
pointed out first by [19].
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colliding fundamental strings. In Sec. 6, we point out that
the warping effect drastically enhances the instability of the
bound state. Section 7 is devoted to the conclusions and
discussions.

II. SETUP OF GEOMETRY

Let us begin with the geometric setup. In [17], non-
supersymmetric vacua in type IIB string theory were
engineered by wrapping D5-branes and anti–D5-branes
on two-cycles of local Calabi-Yau manifolds. One of the
geometries that we will use in this section is

uv ¼ y2 þW0ðxÞ2: ð2:1Þ

For the sake of simplicity, we study the geometry with two
critical points [20],

W0ðxÞ ¼ gðx − a1Þðx − a2Þ: ð2:2Þ

Here, the coordinates, normalized by the string length ls,
are dimensionless. The two-cycles at the critical points, we
denote ½C1� and ½C2�, are not independent but in the same
homology class, ½C1� þ ½C2� ¼ 0. So, N þ n D5-branes
wrapped on ½C1� and n anti–D5-branes wrapped on ½C2� can
annihilate with each other, and a SUSY vacuum is realized.
The SUSY vacua are degenerated and, in fact, there are
N þ 1 types of distribution of the remaining D5-branes: N1

D5-branes wrapping on ½C1� and N − N1 on ½C2� where N1

runs from 0 to N. The manifold is engineered so that the
potential barrier between the critical points is high enough
to avoid the annihilation of D5/anti–D5-branes. The area of
two-cycle AðxÞ between them is described by a function of
W0ðxÞ and r [17].

AðxÞ ¼ l2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jW0ðxÞj2 þ jrj2

q
; ð2:3Þ

where r is the physical minimal size of the two-cycles at the
critical points originating from the B field flux on the two-
cycles, r ¼ RCi

B. Here, we assume r is dimensionless by
appropriately normalizing with ls, and we recovered overall
l2s in (2.3) for the later reference. Hence, to annihilate with
anti–D5-branes, the D5-branes have to first enlarge the size
of the wrapped area, which increases the total energy and
guarantees the stability of the vacuum. The metastability of
the system was discussed from two viewpoints [17]. One is
an open string description which is reliable when the
numbers of wrapped branes are small, and the other is a
holographic dual description which is reliable when the
numbers of branes are large. In [17], it was conjectured that
holographic dual description of the nonsupersymmetric
configuration can be described by the geometric transition
[20]. Essentially, the analysis of the decay processes of two
cases are similar, so we would like to focus on the open
string description below. Since we discuss the noncompact

manifold, we have a freedom to shift the constant of the
potential like the usual SUSY field theory in four dimen-
sion. By choosing V ¼ 0 for the SUSY vacuum, the
vacuum energy of a metastable state is given by

ΔV ¼ 2
jrj
gsl4s

n; ð2:4Þ

where n is the number of antibrane wrapped on ½C2�.
In paper [17], the decay process of the metastable

vacuum was also discussed. In the present assumption,
the potential barrier created by the geometric setup is high
enough. Hence, one can estimate the process by the thin-
wall approximation [21]. From the WKB approximation,
the decay rate of a false vacuum is estimated by the bounce
action BOð4Þ,

Γ ∼ expð−BOð4ÞÞ: ð2:5Þ

The bounce action for a bubble with the radius R is

BOð4Þ ¼ −
π2

2
R4ΔV þ 2π2R3TDW; ð2:6Þ

where TDW is the tension of the domain wall interpolating
between a false vacuum and a true vacuum. The first term
comes from the contribution of true vacuum inside the
bubble. The second one is an energy increase by the
domain wall tension. In the current setup, the domain wall
is a D5-brane wrapping on the three-chain ½B� which is the
set of two-cycles between x ¼ a1 and a2 [17]. The size of
the three-chain is

V3 ¼ ls

Z
a2

a1

dxAðxÞ: ð2:7Þ

Below, we assume Δ≡ ða2 − a1Þ ≫ jrj. So, the tension of
the domain wall is given by

TDW ¼ TD5V3: ð2:8Þ

By minimizing the action, we obtain the critical size of the
bubble,

Rcrit ¼ 3
TDW

ΔV
: ð2:9Þ

Bubbles formed with larger radius than this size expand
without bound and induce the quantum tunneling. Plugging
into (2.6), the bounce action to estimate the decay rate is
given by

BOð4Þ ¼
27π2

2

T4
DW

ðΔVÞ3 : ð2:10Þ
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As long as the TDW is large or ΔV is small, the vacuum is
long lived.

III. FUZZY MONOPOLE

Now we are ready to study monopolelike brane
configuration. Consider a D3-brane wrapping on the
three-chain ½B� and ending on D5-branes at x1 and anti–
D5-branes at x2. This D3-brane can be seen as a monopole
from the four-dimensional viewpoint.4 Without specifying
the mechanism, we simply assume the existence of the
monopole and study dynamics induced by the monopole.
As mentioned in the previous section, the domain walls
connecting SUSY vacua and SUSY breaking vacua are
D5-branes wrapping also on the three-chain ½B3�. So the
monopole brane is on the top of the domain wall D5-brane.
Hence, the D3-branes should dissolve into the domain wall
D5-brane and form an energetically favorable bound state
[22], see Fig. 1. The energy of the bound state is given by

ED5=D3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTD54πR2V3Þ2 þ ðnD3TD3V3Þ2

q
: ð3:1Þ

Here, we assumed that the D5-brane forms the spherical
shape in R1;3. Since the inside of the wall is filled by the
true vacuum, by subtracting the energy gain from the true
vacuum, the total energy becomes

Etotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTD54πR2V3Þ2 þ ðnD3TD3V3Þ2

q
−
4π

3
ΔVR3 þ const; ð3:2Þ

where the constant term comes from the total vacuum
energy of space-time filled by metastable vacuum.
Hereafter, we neglect the constant term because it does
not play any role for the decay process. As an illustration,
we show the radius dependence of the total energy in
Fig. 2. It is useful to introduce the following dimensionless
parameters:

Etotal ¼
36πT3

DW

ΔV2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ b4

p
− r3�≡ 36πT3

DW

ΔV2
Enum;

ð3:3Þ

where

r ¼ ΔV
3TDW

R; b4 ¼
�

ΔV
3TDW

�
4
�
TD3nD3

4πTD5

�
2

: ð3:4Þ

It is interesting that this energy function is closely similar to
the one discussed in [23] on the fuzzy brane puffed up by
the background flux. Although the physical meaning in the

present situation is different, from the similarity, we can
proceed with the calculations of the decay rate in the next
section along the lines of [23] or [24]. Clearly, for large b,
the dielectric brane tends to be unstable. The critical value
of the instability is

b >

ffiffiffi
2

p

3
ðunstableÞ: ð3:5Þ

It is remarkable that even if the metastable vacuum (without
monopole) is long lived, the existence of the monopole
makes the lifetime much shorter: For the parameter choice
(3.5), the vacuum is unstable against inhomogeneous
semiclassical decay triggered by the expansion of a
monopole/bubble bound state. Eventually the original false
vacuum is filled by true vacuum in the bubble.
When b is smaller than the critical value, there is

minimum at

rmin ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 81b4

pq
: ð3:6Þ

We find that the bound state is energetically favorable. This
means that the domain wall bubbles is naturally induced by
the effect of the monopole. This may be regarded as the
Schwinger effect induced by the monopole. It is interesting
that the stability of the bound state against collapsing is
guaranteed by the true vacuum inside the wall, rather than
the background flux discussed in [23–26]. In this sense, our
dielectric brane offers a new way to construct a stable
fuzzy brane.
Finally, let us comment on the topological charge carried

by the bound state. The original monopole is a D3-brane
so there is a coupling to the RR-flux

R
D3 C4. On the

D5-brane there is a nontrivial magnetic field F correspond-
ing to the dissolving D3-branes. So, there is the Chern-
Simon interaction

Z
D5

C4∧F; ð3:7Þ

FIG. 1 (color online). Spontaneous nucleation of the bubble
triggered by the monopole. The bound state of the bubble with the
monopole is energetically favorable. When b >

ffiffiffi
2

p
=3, the radius

of the bubble expands without bound, and the space-time R1;3 is
eventually filled by the true vacuum.

4The closely related metastable stringy monopole in the
conifold was initially studied in [19].
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representing that the bound state carries the original charge
of C4. In this sense, the D5/D3 bound state is a bubble with
the monopole winding number.5

IV. DECAY RATE OF METASTABLE MONOPOLE

Now, let us tune the parameter b such that dielectric
branes are metastable. In this case, the semiclassical rolling
over does not take place; instead, a Oð3Þ symmetric bubble
is created and quantum tunneling occurs. To estimate the
decay rate, we follow Coleman’s method [21]. The effec-
tive action of the D-brane is given by the DBI action, so we
will study the bounce solutions of the Euclidean DBI action
for an estimation of the decay rate. Basically, we can
proceed along the lines of [23–26] where the decay process
of the unstable dielectric brane created by background flux
was studied. We consider the D5-brane corresponding to
the domain wall connecting metastable vacuum and true
vacuum. D3 monopoles are dissolved, so, magnetic flux is
generated on the D5 brane. Suppose that the embedding
function of the D5 brane is spherically symmetric,

X0 ¼ t; X1 ¼ RðtÞ sin θ cosφ;
X2 ¼ RðtÞ sin θ sinφ; X3 ¼ RðtÞ cos θ; ð4:1Þ

in the R1;3. Also, X4;5;6 are filling the three-chain ½B�. The
others are constant. The magnetic flux on the brane exists
along ðθ;φÞ directions,B sin θ≡ 2πα0Fθφ; hence, we obtain

− detð∂αXμ∂βXμ þ 2πα0FαβÞ
¼ − detð∂aXμ∂bXμ þ 2πα0FαβÞ · detð∂AXI∂BXIÞ
¼ sin2θð1 − _R2ÞðR4 þ B2Þ · detð∂AXI∂BXIÞ; ð4:2Þ

where I ¼ 4; 5; 6 and a; b ¼ ðt; θ;φÞ. A; B run for the
coordinates of ½B�. Since X4;5;6 depend only on the coor-
dinates of ½B� andX0;1;2;3 depend only on those ofR1;3, there
is no cross term in the matrix of the left-hand side in (4.2).
Hence, the matrix is a block diagonal form and the
determinant of the matrix becomes the product of two
pieces. With this relation, the DBI action is given by

S ¼ TD5

Z
d6ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð∂AXμ∂BXμÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detð∂αXμ∂βXμ þ 2πα0FαβÞ

q
−
Z

dt
4π

3
R3ΔV

¼
Z

dt

�
4πTD5V3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − _R2ÞðR4 þ B2Þ

q
−
4π

3
R3ΔV

�
; ð4:3Þ

where we defined

V3 ¼
Z

d3ξA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð∂AXI∂BXIÞ

q
: ð4:4Þ

This is the volume of the three-chain ½B� in the approxi-
mation r ≪ 1. Comparing (4.3) with (3.2), we can easily
find the following relation: B ¼ nD3TD3=4πTD5. It is
convenient to introduce dimensionless parameters for the
later numerical computation of the decay rate.

r ¼ ΔV
3TDW

R; b4 ¼
�

ΔV
3TDW

�
4

B2; s ¼ ΔV
3TDW

τ:

ð4:5Þ

By the Wick rotation, we introduce the Euclidean time
t → iτ. The Euclidean action is written as follows:

SE ¼
�
27π2

2

T4
DW

ΔV3

�
8

π

�Z
dsð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr4 þ b4Þð1þ _r2Þ

q
þ r3Þ

�

≡ BOð4Þ
8

π
SOð3Þ
num : ð4:6Þ

Here, we used the bounce action (2.10) for the Oð4Þ
symmetric bubble. Below, we study bounce solutions of
this action and estimate the decay rate numerically. The
exponent of the decay rate is the difference between the
Euclidean action of the bounce solution and the action of
the background

BOð3Þ ¼ BOð4Þ
8

π
½SOð3Þ

num ðrbounceÞ − SOð3Þ
num ðrminÞ�

¼ BOð4Þ
8

π
ΔSOð3Þ

num ; ð4:7Þ

where rbounce represents the bounce solution. We find that

an exact analysis of ΔSOð3Þ
num is involved. So, we will show

the numerical estimation, which is enough for our purpose.
We are looking for the solution starting from rmin and going
until rmax and coming back to the original position. The
equation of motion can be represented by the first order
differential equation,

∂s

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ b4

1þ _r2

s
− r3

3
5 ¼ 0: ð4:8Þ

By the integration constant C, one can write the solution of
the equation easily, and find that the velocity of the bounce
is given by

5In a broad sense, this may be regarded as an example of
soliton bubbles discussed in [27].
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dr
ds

¼ � 1

Cþ r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ b4 − ðCþ r3Þ2

q
: ð4:9Þ

Until rmax, the velocity is positive, so the solution must be
satisfied by the following condition:

KðbÞ≡r4þb4− ðCþ r3Þ2
¼ðr− rminÞðrmax−rÞðr4þa3r3þa2r2þa1rþa0Þ:

ð4:10Þ

The minimum value is already obtained in (3.6); hence,
six equations arising from (4.10) give us six variable as
functions of b, aiðbÞ, CðbÞ, rmaxðbÞ. Here, we solve this
condition numerically and carry out the following integra-
tion. By using (4.9), the integration for s can be expressed
as that of r,

ΔSOð3Þ
num ¼

Z
rmax

rmin

dr

"
Cþ r3ffiffiffiffiffiffiffiffiffiffi
KðbÞp �

r4 þ b4

Cþ r3
− r3

�

−
Cþ r3ffiffiffiffiffiffiffiffiffiffi
KðbÞp ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4min þ b4

q
− r3minÞ

#

¼
Z

rmax

rmin

dr
ffiffiffiffiffiffiffiffiffiffi
KðbÞ

p
; ð4:11Þ

where we used the integration constant evaluated at sinitial,

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4min þ b4

q
− r3min: ð4:12Þ

The numerical result of this integral with the 8=π factor is
presented in Fig. 3. As expected, in the limit b → 0 (no
monopole limit), the decay rate goes back to Oð4Þ
symmetric result. Under the zero magnetic flux, Oð3Þ
symmetric bounce is not the most effective bounce action,
the Oð4Þ symmetric one is the most effective. This gives a
test for the argument [28] for the case of the DBI action. In
the DBI action, the kinetic term and potential term are not
separated, so our result is a nontrivial check of the argu-
ment. Also, the results are consistent with the fact that for

b ≥
ffiffiffi
2

p
=3, the monopole becomes unstable and semi-

classical decay occurs rather than quantum tunneling.

V. TOPOLOGY CHANGE OF THE BUBBLE

So far, we have studied the bound state of the spherical
bubble and themonopole.Herewewill present that colliding
fundamental strings to the bound state induce a topology
change of the spherical bubble. As pointed out in [29] in the
context of the giant graviton, colliding fundamental strings
can dissolve into a brane and generate the electric flux on it.
Then, the nonzero pointing vector by electric/magnetic flux
induces angular momentum near the dissolving string, and
eventually a spherical giant graviton turns to a tubelike one.
We apply their idea to our soliton bubble. As we will see
below, the spherical Ansätze of teh monopole-like bubble
with electric flux is not appropriate. So we expect that the
topology of the bubble changes to the torus. First of all, let us
naively consider the spherical Ansätze of the monopole/
bubble bound statewith electric flux. Turning on the electric
field on the sphere Eθ ¼ 2πα0Ft;θ, we obtain an extra
contribution in the DBI action

S ¼ 4πTD5V3

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR4 þ B2Þð1 − _R2Þ þ E2R2

q

−
Z

dt
4π

3
R3ΔV: ð5:1Þ

By the Legendre transformation, we can rewrite the action
by using the electric density flux D≡ ∂L=∂E,

D¼ 4πTD5V3ER2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR4þB2Þð1− _R2ÞþE2R2

q ≡4πTD5V3
~D; ð5:2Þ

S ¼
Z

dt

�
4πTDW

1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR4 þ B2Þð1 − _R2ÞðR2 − ~D2Þ

q

−
4π

3
R3ΔV

�
: ð5:3Þ

0.1 0.2 0.3 0.4
b

0.2

0.4

0.6

0.8

1.0

8
Snum

O 3

FIG. 3 (color online). Numerical estimation of the dimension-
less bounce action defined in (4.6).
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FIG. 2 (color online). Plots of the dimensionless energy
function defined in (3.3). The black, green, red, and blue lines
correspond to b ¼ 0.32, 0.37, 0.4, and 0.43, respectively.
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Clearly, one finds that this action is notwell defined for small
radiusR. So, we assume that a topology change ofthe bubble
has to happen, and the toruslike tube, which is consistent
with the existence of electric flux (equivalently angular
momentum), is expected to be formed after the transition. As
is schematically shown in Fig. 4, the fundamental string
ending on themonopole creates the handle to the bubble and
by the angular momentum generated at the attached points
blows up the size of the handle, and eventually a stable torus
would be formed. To investigate this transition precisely, we
have to study the time dependent solution which is quite
difficult to solve. Thus, below, we simply assume the torus
with length L is formed after the transition and estimate the
tunneling rate of the configuration numerically.
As the embedding function of the tubelike D5-brane, we

assume

X0¼ t; X1¼ z; X2 ¼RðtÞcosθ; X3¼RðtÞsinθ;

the others are constant. The electric flux is along the z
direction, and the magnetic flux is along ðθ; zÞ directions,
so the total action for the D5-brane becomes

S ¼
Z

dt

�
2πLTD5V3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð1 − _R2 − E2

zÞ þ B2ð1 − _R2Þ
q

− πR2LΔV

#
: ð5:4Þ

For the sake of simplicity, we assume that the radius of the
tube is the same along the z direction. Also, the length L is
much larger than the radius of the tube to neglect the effects
of the curvature of the tube. Again, take the Wick rotation
of the DBI action. By introducing the electric density flux,
δLE=δEeuc

z ≡ 2πLTDW
~Deuc
E , the action is given by

SE ¼
Z

dτ

�
2πLTD5V3

−1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ B2ÞðR2 þ ð ~Deuc

E Þ2Þð1þ _R2Þ
q

þ πR2LΔV
�

¼ 8πL
T3
DW

ΔV2

Z
ds

�
−1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ b2Þðr2 þ d2Þð1þ _r2Þ

q
þ r2

�

≡ 8πL
T3
DW

ΔV2
SOð2Þ
num ; ð5:5Þ

where

r ¼ ΔV
2TDW

R; s ¼ ΔV
2TDW

τ; b ¼ B
ΔV
2TDW

;

d ¼ ~Deuc
E

ΔV
2TDW

: ð5:6Þ

For the static case _R ¼ 0, as shown in Fig. 5, there is
minimum away from the origin. This is because the
nonzero angular momentum blows up the tube rather than
the true vacuum inside the bubble [30]. In fact, there still
exists a nonzero minimum in the limit ΔV → 0.
Let us estimate the decay rate in this case. From the

Euclidean action, one obtains the first differential equation,

∂s

 
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ b2Þðr2 þ d2Þ

ð1þ _r2Þ

s
− r2

!
¼ 0: ð5:7Þ

This equation can be easily solved

_r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ b2Þðr2 þ d2Þ − r2ðcþ r2Þ2

p
rðcþ r2Þ : ð5:8Þ

The bounce solution has a positive velocity between
r ¼ rmin and rmax; the following factorization condition
should be satisfied:

ðr2 þ b2Þðr2 þ d2Þ − r2ðcþ r2Þ2
¼ ðr2 − r2minÞðr2max − r2Þðr2 þ a0Þ: ð5:9Þ

FIG. 4 (color online). Topology change of the bubble.
0.2 0.4 0.6 0.8 1.0

r

0.2

0.4

0.6

0.8
E num

FIG. 5 (color online). b ¼ 1=20, d ¼ 1=10, 2=10, 3=10, 4=10
for blue, green, red, and black.
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The exponent of the tunneling rate is given by the
subtracted bounce action with the original action

BOð2Þ ¼ 16πL
T3
DW

ΔV2

Z
rmax

rmin

rðcþ r2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2minÞðr2max − r2Þðrþ a0Þ

p
×

�ðr2 þ b2Þðr2 þ d2Þ
r2ðcþ r2Þ − r2

−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2min þ b2Þðr2min þ d2Þp

rmin
− r2min

��
: ð5:10Þ

The factor 2 comes from the round trip of the solution.
The integration constant c can be written by using rmin

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2min þ b2Þðr2min þ d2Þ

p
rmin

− r2min: ð5:11Þ

With this relation, and introducing new variable, x ¼ r2,
the bounce action is represented as

BOð2Þ ¼ 16πL
T3
DW

ΔV2

Z
xmax

xmin

dx
2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−xminÞðxmax−xÞðxþa0Þ

p

¼ 8πL
T3
DW

ΔV2
ΔSOð2Þ

num : ð5:12Þ

Numerical estimations of this integral for various param-
eters are shown in Fig. 6. As for the case with d ¼ 0, we
find that the solution is exactly obtained

BOð2Þðd ¼ 0Þ ¼ 16πL
T3
DW

ΔV2

Z
r0max

0

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0maxÞ2 − r2

q
dr

¼ 8πL
T3
DW

ΔV2
·
2

3
ð1 − 2bÞ3=2; ð5:13Þ

where r0max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2b

p
.

After the topology change, the length of the torus should
be at least larger than the size of the original monopole. The
minimum of the monopole is given by

Rmono ¼
3TDW

ΔV
rmin: ð5:14Þ

By normalizing with this scale, the length of the torus is
given by

l≡ L
Rmono

: ð5:15Þ

With the dimensionless parameter, the bounce action for
the Oð2Þ symmetric bubble is given by

BOð2Þ ¼ BOð3Þ
2rminΔS

Oð2Þ
num

9ΔSOð3Þ
num

l: ð5:16Þ

When the condition,

l >
9ΔSOð3Þ

num

2rminΔS
Oð2Þ
num

; ð5:17Þ

is satisfied, the decay rate becomes smaller than that of
the Oð3Þ bubble. Thus, the topology change of the bubble
makes the lifetime of the bubble longer. Also, it is
interesting that shorter loops than this critical length have
naively larger bounce action which means Oð2Þ symmetric
decay is faster than that of the Oð3Þ case. However, in this
region, our analysis loses control and there should exist
significant corrections originating from the curvature effect
of the torus. So, more careful treatment is required.

VI. WARPED COMPACTIFICATION

Finally, in this section, we comment on the effects of the
warp factor. Let us consider the geometry in the previous
sections with the warp factor e2A ≪ 1,

ds2 ¼ e2AðyÞgμνdxμdxν þ e−2AðyÞgmndymdyn: ð6:1Þ

gmn represents the metric of the geometry used in earlier
discussions. To the best of our knowledge, the explicit
metric corresponding to the generalized geometry (2.1)
has not been known yet. So here we show naive arguments
by focusing on the case where AðyÞ is almost constant.
Accounting for the factor, the volume of the three-chain
(we denote Vwarp) on which the monopole and the domain
walls are wrapping is given by

Vwarp ¼ Vðe−2AÞ3=2; ð6:2Þ
where V is the volume of the three-chain for the nonwarped
geometry. Hence, the tension of the domain wall is also
modified as

Twarp
DW ¼ TD5Vwarpe3A: ð6:3Þ

Following the same argument shown in Sec. 2, we find that
the tension of the wall does not changewith warping but the

0.1 0.2 0.3 0.4
b

0.1

0.2

0.3

0.4

0.5

0.6

Snum
O 2

FIG. 6 (color online). Numerical estimation of the dimension-
less bounce action defined in (5.12). The blue solid line
corresponds to d ¼ 0. The red, green, and blue dots correspond
to d ¼ 1=100, 1=10, and 2=10, respectively.
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energy drop becomes smaller. So totally, the bounce action
becomes much larger than that of nonwarped geometry

Bwarp
Oð4Þ ¼ BOð4Þe−6A: ð6:4Þ

Therefore, the warping effect makes the lifetime of the
vacuum longer.
However, remarkably as for the decay process via the

Oð3Þ symmetric bubble induced by monopoles, the con-
clusion is opposite. The relevant term in the DBI action is

Twarp
DW

Z
d3ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detð∂αXμ∂βXμ þ e−4AB2Þ

q
: ð6:5Þ

To estimate the ratio of Bwarp
Oð3Þ and Bwarp

Oð4Þ, one can use the

formulas presented in Sec. 4 by the following replacement:

TDW →Twarp
DW ; V→Vwarp; B2→B2e−4A: ð6:6Þ

From this, we immediately conclude that when the nonzero
magnetic field is turned on, by the warp factor the effective
strength of teh magnetic field is largely enhanced and the
monopole/bubble bound state becomes unstable,

e−2Ab >

ffiffiffi
2

p

3
ðunstableÞ: ð6:7Þ

In a wide range of parameter choices, this instability
condition is easily satisfied. Thus, in the warped compac-
tification, the vacuum decay via theOð3Þ symmetric bubble
induced by the monopole is significantly important.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied dynamics of dielectric
branes in false vacua in type IIB string theory. We have seen
that the dielectric branes were either unstable or metastable
depending on the strength of magnetic flux induced by the
dissolving D3-brane (corresponding to a monopole). As for
the metastable monopole configuration, the lower energy
vacuum filling in the spherical bubble generates a force
enlarging the size of the bubble and creates the finite size of
a bubble=monopole bound state. This is a new mechanism
for stabilizing the dielectric branes without using back-
ground flux or angular momentum. We showed that the
existence of the solitonic branes makes creation probability
of Oð3Þ or Oð2Þ symmetric bubbles large, and makes the
lifetime of the false vacuum much shorter. As for the
unstable monopole, the decay process was semiclassical
rather than quantum mechanical since it does not require
the quantum tunneling. Also, we showed the topology
change of the soliton bubble triggered by colliding funda-
mental strings, which makes the tunneling rate small in a
wide range of parameter space. We claim that these
remarkable phenomena significantly affect the lifetime of
false vacua and the evolution of created bubbles and hence

affect scenarios in the early universe based on the string
landscape.
It would be fascinating if we could extract information of

other vacua from the outside of the bubble. In our concrete
setup, there are degenerated supersymmetry preserving
vacua. Hence, there is a possibility that a part of a dielectric
brane is filled by one SUSY vacuum and the other part
by another SUSY vacuum. In this case, between the two
regions, there should be a domain wall connecting two
different vacua. For example, for the monopolelike dielec-
tric brane, the configuration would be no longer spherical
but slightly modified due to the domain wall; see Fig. 7.
However, since this configuration is not stable, one of the
regions may shrink and eventually disappear (in the right of
Fig. 7). So, it may be hard, though it is not impossible in
principle, to get information from outside of the bubble.
Finally, we would like to comment on gravitational

effects. In this paper, for the sake of simplicity, we focused
on a compactification on a noncompact manifold and took
the small gs limit. Hence, both four-dimensional and ten-
dimensional gravitational effects were neglected at the
leading order. However, in realistic model building, we
have to deal with a compact manifold and include the
effects of gravity. In studying such situations, we first have
to take care of moduli fixing corresponding to the param-
eters in the present noncompact geometry. Also, for bubble
formation and expansion, we have to reconsider the bounce
solution for the DBI action along the lines of arguments by
Coleman and De Luccia [31]. These issues are interesting
but beyond the scope of this paper, so we would like to
leave them for future work. Also, to show the generosity of
our idea, it would be important to extend our current study
further to similar but different contexts such as a cosmic
string [32] in metastable configurations in type IIA string
theory [33] or solitons in a metastable state in type IIB
theory compactified on An geometries [34] (see [35] for a
recent review). Furthermore, studying inhomogeneous
decay of metastable vacua in perturbed Seiberg-Witten
theory [36] would be interesting since there is a massive
‘t Hooft-Polyakov monopole in this theory which can be a
trigger for the vacuum decay. We would like to discuss
these topics in separate publications.

FIG. 7 (color online). Two SUSY preserving vacua filling in the
dielectric brane. The energy can be reduced by making one of the
regions small.
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