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Light-cone string diagrams have been used to reproduce the orbifold Euler characteristic of moduli
spaces of punctured Riemann surfaces at low genus and with few punctures. Nakamura studied the
meromorphic differential introduced by Giddings and Wolpert to characterize light-cone diagrams and
introduced a class of graphs related to this differential. These Nakamura graphs were used to parametrize
the cells in a light-cone cell decomposition of moduli space. We develop links between Nakamura graphs
and realizations of the worldsheet as branched covers. This leads to a development of the combinatorics of
Nakamura graphs in terms of permutation tuples. For certain classes of cells, including those of the top
dimension, there is a simple relation to Belyi maps, which allows us to use results from Hermitian and
complex matrix models to give analytic formulas for the counting of cells at an arbitrarily high genus. For
the most general cells, we develop a new equivalence relation on Hurwitz classes which organizes the cells
and allows efficient enumeration of Nakamura graphs using the group theory software GAP.

DOI: 10.1103/PhysRevD.91.126001 PACS numbers: 11.25.Sq, 02.10.Ox, 02.10.Yn, 02.40.Sf

I. INTRODUCTION

The light-cone gauge in string theory involves only
physical degrees of freedom and leads to a manifestly
unitary S-matrix, while Lorentz invariance appears non-
trivially [1,2]. The computation of string amplitudes uses
light-cone diagrams, parametrized by string length and
twist parameters along with interaction times, where the
lengths of the strings are proportional to the light-cone
momenta. The covariant gauge has manifest Lorentz
invariance, but unitarity is nontrivial. String amplitudes
are calculated by integration over the moduli space of
Riemann surfaces Mg;n, for surfaces of genus g and n
punctures.
In the paper [3], Giddings and Wolpert (GW) showed

that each closed string light-cone diagram determines a
worldsheet equipped with a meromorphic one-form with
purely imaginary periods and residues that sum up to zero.
The meromorphic one-form (or Giddings-Wolpert differ-
ential) was constructed by disassembling the light-cone
diagram into a number of strips on each of which the
meromorphic one-form is trivial, and then making identi-
fications on the boundaries of the strips. It was explained
there that light-cone string diagrams lead to a single cover
of moduli space, which is important for an equivalence of
the light-cone formulation to the covariant formulation.
In the paper [4], Nakamura developed the work of [3]

and showed how to compute the orbifold Euler

characteristic ofMg;n using the cell decomposition coming
from light-cone diagrams. The key step was the introduc-
tion of graphs, embedded on the worldsheet, whose vertices
are the zeros and poles of the GW differential, and whose
real trajectories form the edges of the graph. The embedded
graph (or ribbon graph) inherits a cyclic order at the
vertices—a familiar property which also arises in large
N expansions of gauge theories. Each such graph—which
we call a Nakamura graph—corresponds to a cell in the
space of GW differentials on a surface of genus g with n
punctures. These cells are quotiented by the symmetry
group of the graph to obtain cells in Mg;n. The dimension
of each cell in this light-cone cell decomposition can easily
be read off from the structure of the Nakamura graph. The
graphs were counted for low values of g and n, and the
dimensions and symmetries of the graphs were used to
calculate the orbifold Euler characteristic of the moduli
spaceMg;n. These results agreed with the result for general
g and n computed by Harer and Zagier [5].
There is, as yet, no proof that the light-cone approach

reproduces the orbifold Euler characteristic in general.
However, the evidence that this is true is highly nontrivial:
a large number of graphs were counted to verify this in [4].
This is a very important result, since it implies that the
Nakamura graphs contain all the information needed to
describe precisely how light-cone diagrams can be used
to give a single cover of moduli space. This approach
implicitly resolves the technical issue [3,6] of giving a
precise specification of the region in the space of light-cone
(LC) string parameters which covers every point in Mg;n
precisely once. A naive integration without restrictions
would lead to an overcounting problem discussed in [3]
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and, as anticipated there, its solution should involve
systematics similar to those encountered in Feynman
graphs. The work of [4] associates a cell of moduli space
with each Nakamura graph. The use of graphs in the LC
cell decomposition is analogous to the graphs in the
Kontsevich-Penner (KP) cell decomposition of decorated
moduli space [7,8]. Indeed, the KP cell decomposition has
been used to compute homology groups and intersection
numbers of Mumford-Morita classes on moduli space. The
LC and KP cell decompositions both involve graphs with
cyclic orientation at the vertices (ribbon graphs). However,
the Nakamura graphs are much more restricted because of
certain causality relations controlling the connectivity of
the vertices. As a result the LC cell decomposition requires
fewer cells, and so is much more economical [4].
Moreover the Giddings-Wolpert differential and the

Nakamura decomposition of Riemann surfaces into strips
is an essential ingredient of the newly formulated meta-
string [9]. Since the metastring is chiral, it is necessary for
its formulation to provide a parametrization of the moduli
space of Riemann surfaces that includes a notion of
worldsheet time while preserving modular invariance.
The Nakamura graphs and their implied strip decomposi-
tion do exactly this.
A detailed understanding of the topology of Mg;n is

fundamental to both mathematics and string theory. The KP
cell decomposition is well studied in mathematics and has
also been used recently in describing the link between
string theory integrals and Feynman integrals [10]. In
another line of development, the systematics of a variety
of Feynman graph counting problems of quantum field
theory and ribbon graphs of large N matrix theories have
found a unifying description in terms of permutations in
[11,12], with group theoretic structures such as double
cosets playing a central role. The present paper initiates a
systematic study of Nakamura’s cell decomposition. We
develop a general description of the combinatorics of
Nakamura graphs in terms of tuples (finite sequences) of
permutations. We present three descriptions of the graphs in
terms of permutations in this paper. Two of them involve
triples of permutations and are closely related to the known
fact that ribbon graphs can be described in terms of triples
[13,14]. Since a Nakamura graph is not a generic ribbon
graph, but rather a ribbon graph subject to nontrivial
causality conditions, the associated permutation triples
satisfy some nontrivial constraints. The third description
of a Nakamura graph involves a tuple of up to ðlþ 2Þ
permutations, where l is the number of interaction vertices
in the light-cone diagram. This description requires more
permutations in general to describe the graph than in the
other two descriptions, but has the advantages that the
permutations live in a permutation group of smaller degree,
and also that the causality conditions are much simpler. The
permutations in this description are elements of Sd, where d
is the number of faces of a Nakamura graph, or equivalently

the number of edges of the graph connecting to poles of
the GW differential with positive residues. We call this
description the Sd description.
For Nakamura graphs corresponding to the top-

dimensional cells of moduli space, the Sd description
can be simplified further. In this case, d has to be even
and the tuple has exactly three permutations. The counting
of Nakamura graphs for these cells is a counting of
permutation triples, where one of the permutations consists
of d=2 cycles of length 2. This permutation counting is
exactly the one that arises in correlators of the Hermitian
matrix model, which have been related to branched covers
of the sphere [15–17]. This allows us to draw upon exact
results on generating functions for matrix model correlators
[5] to give analytic expressions for the contribution to the
Euler characteristic from the top-dimensional cells, for any
g and n. The combinatorics of nonzero codimension cells
is more nontrivial. A precise permutation description is
nevertheless possible. We expect it to lead to analytic
results in the future. For the current paper, we have
developed a computer algorithm based on this description,
which reproduces all the tables from Nakamura and extends
them to higher g and n.
We now describe the content of the paper in more detail.

In Sec. II, we start by recalling the properties of the
Giddings-Wolpert differential [3] and explaining how
Nakamura associated a graph with each differential [4].
The parameters describing the cells in light-cone cell
decompositions are introduced. For fixed g and n, the
integer d gives the total number of edges incident on the
poles of the GW differential with positive residue (which
we call incoming poles). It is also the number of strips
which can be glued together to produce the worldsheet;
each strip is incident on one incoming pole and one
outgoing pole. The branching constant Δ is an integer
describing the combined orders of all the zeros and their
departure from simplicity; when all the zeros are simple,
then Δ ¼ 0. The number of internal edges is denoted by I;
these are the edges of the Nakamura graph which connect
zeros of the GW differential directly to zeros. The top
dimensional cells of the LC cell decomposition only
involve simple zeros of the GW differential and their
associated Nakamura graphs have no internal lines, so
Δ ¼ I ¼ 0 for cells at top dimension. Lower dimensional
cells can involve higher order zeros as well as real
trajectories connecting the zeros.
In Sec. III we relate Nakamura graphs to dessins

d’enfants and Belyi maps. A dessin d’enfant is a bipartite
graph embedded on a surface with a cyclic ordering of the
edges at each vertex. Bipartite graphs have two types of
vertices, which can be colored in black or white, in which
each edge connects to two vertices of different colors. We
can convert a Nakamura graph to a dessin by introducing
auxiliary vertices along the edges of the graph in such a
way that the graph becomes bipartite. The structure of these
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graphs can then be described by a triple of permutations,
which also allow the graphs to be related to branched
covers of the Riemann sphere known as Belyi maps
[13,14,18]. The simplest way to convert a Nakamura graph
to a bipartite graph is to subdivide every edge; this graph
has 4dþ 2I edges, so it can be described by a triple of
permutations in the symmetric group S4dþ2I. There is also
another general way to convert a Nakamura graph into a
bipartite graph which requires fewer subdivisions of edges,
which allows a description in terms of a triple of S2dþ2I
permutations. While every Nakamura graph has a descrip-
tion in terms of these triples of permutations, not all
permutation triples give Nakamura graphs; in Sec. III D,
we state the required properties that a permutation triple
must satisfy to give a Nakamura graph.
In Sec. IV, we develop a new permutation description

of Nakamura graphs by considering branched covering
maps from the worldsheet onto the infinite cylinder—
equivalently, by composing with a conformal map,
branched covering maps to the Riemann sphere. The
section starts with a review of branched covers, and their
description in terms of equivalence classes of tuples of
permutations which we call Hurwitz classes. The branched
covers can be constructed by a gluing construction on the d
faces (strips) of the Nakamura graph. The degree of the
branched cover of the sphere associated with a graph is d.
The branch points of the cover are related to the vertices
of the Nakamura graph. Each Hurwitz class determines a
unique Nakamura graph, but there can be multiple Hurwitz
classes corresponding to a given Nakamura graph. To
solve this redundancy, we introduce an equivalence relation
on the space of Hurwitz classes which we call slide
equivalence. This equivalence relation is related to the
fact that the connectivity of a Nakamura graph does
not determine the relative time ordering of the zeros
(interaction vertices) of the GW differential. There is a
one-to-one correspondence between slide-equivalence
classes and Nakamura graphs.
In Sec. V we explore some links between the counting

of cells in the moduli space and the correlators of matrix
models. Cells of top dimension in the LC decomposition
are specified by Nakamura graphs with simple zeros and
no internal edges. Within the slide-equivalence class of a
top-dimensional graph, there is a unique Hurwitz class
consisting of a tuple of three permutations. This permuta-
tion triple naturally corresponds to a Belyi map (a covering
of the sphere branched at three points), without the need to
introduce new vertices or subdivide edges of the Nakamura
graph. The counting of Belyi maps is known to be related to
correlators of the Hermitian matrix model [15–17]. This
allows us to use known exact results from Hermitian matrix
models [5] to obtain all orders analytic formulas for the
contribution to the Euler characteristic from the top-
dimensional cells of the LC cell decomposition. These
results agree with the tables given by Nakamura for small g

and n. We can also consider cells with a lower dimension
with branching constant Δ > 0 and no internal edges
(I ¼ 0). In this case, we can use complex matrix models
to derive analytic formulas for the contributions to the Euler
characteristic from lower-dimension cells. (At the present
stage, we have no map to matrix models for the counting of
the most general cells involving I > 0.)
Finally, in Sec. VI, we test computationally the validity of

the LC cell decomposition and its description in terms of
slide equivalences of Hurwitz classes. Using the group
theory software GAP [19], we use the Sd description to
enumerate the cells and their dimensions in terms of
Nakamura graphs, reproducing and extending the tables
found in [4]. The computation is significantly facilitated by
the introduction of the concept of an I-structure, which
contains some coarse information about the internal edges of
a Nakamura graph. It is an invariant of the slide-equivalence
classes of Hurwitz classes. Double cosets of Sd also play a
role in the computation. We conclude with some discussion
of our results and possible future directions.

II. REVIEW: GIDDINGS, WOLPERT,
AND NAKAMURA

A. The Giddings-Wolpert differential

Let Σ be a Riemann surface with n marked points
P1; P2;…; Pn and genus g, where n ≥ 2. Associate a set
of real numbers r1; r2;…; rn, respectively, with the n
marked points, which satisfy

P
i ri ¼ 0. Giddings and

Wolpert proved in [3] that there exists a unique Abelian
differential ω on the Riemann surface Σ such that ω has
n simple poles at the points Pi with respective residues ri,
and pure imaginary periods on any closed integral on the
surface.
The Giddings-Wolpert differential ω yields a global time

coordinate on the surface, up to an overall constant
representing the time translation symmetry. If we fix a
point z0 on the surface which is not a pole of ω, then we can
define the global time coordinate of a generic point z on the
surface to be T ≔ ReðR zz0 ωÞ. This expression does not
depend on the choice of integration contour from z0 to z,
since any two paths from z0 to z differ only by a closed
contour, and the integral of the differential along any closed
contour is imaginary. The global time coordinate tends to
positive infinity as we approach the poles with negative
residues, and to negative infinity as we approach the poles
with positive residue. We call the poles with positive
residue the incoming poles, and the poles with negative
residue the outgoing poles.
For the cases of the sphere and the torus, it is straightfor-

ward to construct the GW differential of a given marked
surface and its time coordinate explicitly. Take a sphere
with n marked points Pi and associated reals ri, whereP

i ri ¼ 0. We can choose coordinates z on the sphere such
that the marked points Pi are located at z ¼ pi for some
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pi ∈ C. In this chart, the GW differential can be explicitly
written as

ωðz;piÞ ≔
Xn
i¼1

ridz
z − pi

: ð1Þ

It is clear that this differential has residues ri at the points
Pi, and that the integral of the differential along any closed
contour C is

H
C ω ¼ 2πi

P
Pi∈C ri, which is purely imagi-

nary. The global time coordinate is

TðzÞ ¼ ln
�Y

i

jz − pijri
�
þ T0; ð2Þ

where T0 is an arbitrary constant.
Now consider a torus with n marked points Pi, asso-

ciated real values ri with
P

iri ¼ 0, and modular parameter
τ with ImðτÞ > 0. This torus can be realized as the quotient
of the complex plane C by the equivalence relation
z ∼ zþ nþmτ, where n and m are integers. In these
coordinates, the marked points Pi are located respectively
at z ¼ pi for some pi ¼ ai þ biτ, where 0 ≤ ai; bi < 1. To
define the GW differential on this surface, we introduce the
Jacobi theta function θ11ðz; τÞ, which is a holomorphic
quasiperiodic function on the complex z plane satisfying

θ11ðzþ 1; τÞ ¼ θ11ðz; τÞ;
θ11ðzþ τ; τÞ ¼ e−2πiðzþ1=2Þθ11ðz; τÞ; ð3Þ

θ11ðz; τ þ 1Þ ¼
ffiffi
i

p
θðz; τÞ;

θ11ðz=τ;−1=τÞ ¼ ð−iÞ
ffiffiffiffi
iτ

p
eiπz

2=τθ11ðz; τÞ; ð4Þ

and behaves like θ11ðz; τÞ ≈ z for small values of z. The
GW differential on this surface is

ωðz;pi;τÞ≔ dz
Xn
i¼1

ri

�
−2πi

ImðpiÞ
ImðτÞ þθ011ðz−pi;τÞ

θ11ðz−pi;τÞ
�
; ð5Þ

and the associated global time coordinate on the surface is

TðzÞ¼
X
i

ri

�
2π

ImðpiÞ
ImðτÞ ImðzÞþ log jθ11ðz−pi;τÞj

�
þT0;

ð6Þ

where T0 is an arbitrary constant. It can be shown from the
above properties and relations of the Jacobi theta function
that ωðz;piÞ and TðzÞ are well defined on the torus; i.e.
these definitions are invariant under the coordinate shifts
z → zþmþ nτ and under the modular transformations
ðτ; piÞ → ðτ þ 1; piÞ, ðτ; piÞ → ð−1=τ; pi=τÞ. It can also
be seen that the integrals of the differential along the cycles
a∶ z → zþ 1 and b∶ z → zþ τ are imaginary, and that
each pole pi has residue ri, so that all the periods are pure
imaginary. Formulas for Giddings-Wolpert differentials in

terms of theta functions at genus one and higher can be
found in recent work [20].

B. Nakamura graphs

The Giddings-Wolpert differential associated with a
marked Riemann surface naturally gives rise to an
embedded ribbon graph on the surface. This construction
was developed by Nakamura in [4] and leads to a cell
decomposition of the moduli space of Riemann surfaces in
which each cell is specified by a graph. In this section we
review the basic properties of these graphs, which we call
Nakamura graphs.
Consider a marked Riemann surface Σ with GW differ-

ential ω. The GW differential has poles at the n marked
points Pi with residues ri. For any unmarked point on Σ, we
can choose local complex coordinates z around that point
such thatω ¼ dðzmþ1Þ for somem. A zero of orderm of the
GW differential is a point at which m > 0. For each point
on the surface, there exists a set of directions in which zmþ1

is real—these are the real trajectories that extend out from
the point. A zero of order m has 2ðmþ 1Þ real trajectories
extending out from the zero. If m ¼ 1, the zero is called
simple. Real trajectories extending out from the zeros of the
GW differential will only meet at poles and zeros of the
differential.
The set of real trajectories that extend out from all the

zeros of the GW differential define a ribbon graph
embedded onto the surface, with the vertices of the graph
corresponding to the poles and zeros of ω, and the edges of
the graph corresponding to the real trajectories. The edges
also inherit an orientation from the GW differential: they
are oriented in the direction along which the global time
coordinate increases. Some examples of Nakamura graphs
are shown in Fig. 1.
The Nakamura graph associated with a marked Riemann

surface is uniquely determined by its Giddings-Wolpert
differential. It was shown by Nakamura in [4] that such a
graph always has the following properties:

(i) The graph is connected, oriented, and cyclically
ordered at the vertices.

(ii) The edges connecting to a pole are either all oriented
toward the pole or all oriented away from the pole.

(iii) A zero connects to cyclically alternating incoming
and outgoing edges, and has a valency of at
least four.

FIG. 1. Two examples of Nakamura graphs.
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(iv) No edge connects to the same end point twice, and
no edge has only poles as its end points.

(v) Every face of the ribbon graph contains on its
boundary exactly two poles, one incoming and
one outgoing.

Each face of the graph is bounded by two extended real
trajectories of the GW differential. It is possible to choose
local coordinates z on each face such that ω ¼ dz within
the face, and where z lies in the range 0 < ImðzÞ < bi for
some bi. This means that each face of the graph is
holomorphic to a strip R × ð0; biÞ in the complex plane,
and each strip has a width bi which is determined by the
GW differential. The combination of the Nakamura graph,
the widths of the strips, the time coordinates of the zeros,
and the residues around the poles, is enough to reconstruct
the Giddings-Wolpert differential on a surface, and hence to
specify its complex structure.
An example of the gluing of strips to give a surface with

an embedded Nakamura graph is shown in Fig. 2. A
Riemann sphere with three punctures is conformally
equivalent to a “pants” diagram, with the boundaries
extended out to infinity. The GW differential on this
surface traces out a Nakamura graph, given on the right
of the figure, which partitions the pants diagram into two
infinite strips. The poles of the GW differential are
represented by black vertices of the Nakamura graph,
and correspond to the boundaries of the strips located at
positive and negative infinity. In this case, the widths of the
strips are determined by the residues of the marked points.
If we take some Nakamura graph arising from a

Giddings-Wolpert differential and consider all possible
strip widths that are consistent with the specified residues
at the poles, and all possible time coordinates of the zeros
that are consistent with the causal ordering of the zeros,
then we will in general find a family of inequivalent GW
differentials that can arise from a single Nakamura graph.
As each GW differential corresponds to a unique Riemann
surface, this means that each Nakamura graph specifies a
cell in Mg;n, the moduli space of inequivalent Riemann
surfaces of genus g with n marked points. It was shown
in [4] that counting all such possible graphs can give

information about the moduli space of Riemann
surfaces. Nakamura successfully found all the graphs
corresponding to surfaces with Euler characteristic
χ ≔ −ð2g − 2þ nÞ ≥ −6, and used this to calculate the
orbifold Euler characteristic of moduli space in many
different cases.

C. Parameters of Nakamura graphs and moduli space

We conclude this section by presenting some relevant
relations between the parameters of Nakamura graphs and
their associated cells in moduli space.
A Nakamura graph consists of V vertices, E edges, and d

faces. The V vertices are separated into l zeros and n poles.
All edges connect to zeros, and no edge connects two poles
together. There are exactly two poles on the boundary of
each of the d faces of the graph, one incoming and one
outgoing. Hence, there are d external edges of the graph
connecting incoming poles to zeros, d external edges
connecting outgoing poles to zeros, and I internal edges
that connect only to zeros. Summarizing, we have

V ¼ lþ n;

E ¼ 2dþ I;

F ¼ d:

The Euler characteristic of a surface with an embedded
graph is 2 − 2g ¼ V − Eþ F, which gives the relation

dþ I − l ¼ 2g − 2þ n: ð7Þ

Next, we consider the valencies of the vertices. As all
faces have on their boundary exactly one incoming pole,
the valencies of the incoming poles sum up to d, and
similarly for the outgoing poles. As the zeros always border
an equal number of incoming and outgoing edges, the
valencies of the zeros are always even. The zeros corre-
spond to the points where at least two real trajectories meet,
and so the valency of a zero is always greater than four. We
define the branching number Δ to be

FIG. 2. A Riemann surface can be decomposed into glued strips via a Nakamura graph.
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Δ ¼
Xl
j¼1

��
vj
2

�
− 2

�
; ð8Þ

where the vj are the valencies of each of the l zeros. The
branching number is a non-negative integer for every
Nakamura graph. This sum rearranges to

2Δþ 4l ¼
Xl
j¼1

vj: ð9Þ

Now, adding the sum of the valencies of the poles to this
equation gives us the sum over the valencies of all vertices,
which must equal twice the number of edges. We thus have

2Δþ 4lþ 2d ¼ 2E ¼ 2ð2dþ IÞ; ð10Þ

and hence we have the relation

Δ ¼ dþ I − 2l: ð11Þ
We can use (7) and (11) to find a bound on the number of

faces d for Nakamura graphs of any genus g and number of
poles n. Using the equations to eliminate l, we write

2ð2g − 2þ nÞ − d ¼ ðΔþ IÞ: ð12Þ

The constants Δ and I are always non-negative integers, so
d is bounded from above by dmax, where

dmax ≔ 2ð2g − 2þ nÞ ¼ 2jχj: ð13Þ
This is the maximum number of faces of a Nakamura graph
of genus g with n fixed points. To find Nakamura graphs
computationally, it is helpful to first fix jχj and then to find
all the graphs of genus g; n such that jχj ¼ ð2g − 2þ nÞ.
We can eliminate the number of internal edges I from (7)

and (11) to find a relation among the branching number Δ,
the number of zeros l, and the Euler characteristic jχj,

Δ ¼ jχj − l: ð14Þ
As Δ ≥ 0, this equation gives us a bound on the number
of zeros of a Nakamura graph. Since a Nakamura graph
always has at least one zero, we have the bounds on the
number of zeros of a Nakamura graph,

1 ≤ l ≤ jχj: ð15Þ
The dimension of a cell associated with a Nakamura

graph was derived in [4]. For a given graph with l zeros, d
faces, and n poles, we have dwidth parameters. The widths

bðiÞk of the faces bordering a given pole Pi satisfy a relationP
kb

ðiÞ
k ¼ ri. These residue relations specify ðn − 1Þ inde-

pendent constraints on the strip widths (since we have the
total conservation equation

P
n
i¼1 ri ¼ 0). There are ðl − 1Þ

real parameters corresponding to the independent time
coordinates labeling the positions of the zeros, modulo
the overall time translation symmetry. So we can see that
the dimension of the cell in moduli space corresponding to
a Nakamura graph is ðl − 1Þ þ d − ðn − 1Þ. The above
equations can be rearranged to show that the real dimension
of a cell is

dimRðCÞ ¼ lþ d − n ¼ 6g − 6þ 2n − ð2Δþ IÞ: ð16Þ
This means that for a given genus and number of points n,
the top dimension of the moduli space of graphs is
6g − 6þ 2n, and the codimension of a given cell is

dimRðMg;nÞ − dimRðCÞ ¼ 2Δþ I: ð17Þ

III. NAKAMURA GRAPHS AS dessins d’enfants

In Sec. II, it was discussed that for a given g, n, and set of
real numbers r1;…; rn that sum to zero, there is a cell
decomposition of Mg;n, the moduli space of inequivalent
Riemann surfaces, in which each cell is specified by a
Nakamura graph G. Different points in the same cell in
moduli space correspond to inequivalent Riemann surfaces
with the same Nakamura graph but different Giddings-
Wolpert differentials.
In this section we introduce a method to categorize the

cells in moduli space by classifying the possible Nakamura
graphs using permutation groups and dessins d’enfants. We
first review the notion of a dessin and discuss two distinct
prescriptions for converting graphs into dessins. In each
prescription, we show that there is a unique equivalence
class of permutation triples corresponding to each
Nakamura graph. We show that the necessary defining
properties of Nakamura graphs can be encapsulated in the
language of permutation groups, and hence equivalence
classes of permutation triples can be used to catalogue the
cells in moduli space.

A. Review: dessins d’enfants

A dessin d’enfant is a cyclically ordered graph (a ribbon
graph) that is also bipartite: each graph vertex is colored in
black or white in such a way that black vertices only connect
directly to white vertices, and white vertices only connect to
black vertices. Given a bipartite graph with r edges, we can
assign an arbitrary labeling of r objects to each edge, such as
the integers f1; 2;…; rg. Each vertex can be associated with
a permutation cycle in Sr, representing the cyclic ordering of
the edges connecting to the vertex. As each edge connects to
exactly one black and one white vertex, each integer in
f1; 2;…; rg appears in exactly one cycle corresponding to a
black vertex and in exactly one cycle corresponding to a
white vertex. We can collate all the cycles corresponding
to the black vertices to a single permutation σ1 ∈ Sr, and
likewise collate all the cycles corresponding to the white
vertices to a permutation σ2 ∈ Sr. The pair of permutations
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ðσ1; σ2Þ is enough to completely reconstruct the original
dessin. In addition, we can introduce a third permutation σ3,
defined by the relation

σ1σ2σ3 ¼ 1: ð18Þ

This third permutation describes the structure of the faces of
the dessin.
A triple of Sr permutations determines a unique dessin,

but there will be other triples in Sr that specify the same
graph, due to the arbitrariness of our original choice of
labeling of the edges. This relabeling symmetry is
described by an equivalence relation of conjugation on
the permutation triples: two triples ðσ1; σ2; σ3Þ and
ðσ01; σ02; σ03Þ are equivalent if there exists some permutation
γ ∈ Sr acting on the edge labels of the graph such that

ðσ01; σ02; σ03Þ ¼ ðγσ1γ−1; γσ2γ−1; γσ3γ−1Þ: ð19Þ

This means that each dessin d’enfant with r edges corre-
sponds to an equivalence class of Sr permutations under
conjugation by Sr.
An automorphism of a dessin d’enfant is a mapping of

the edges and vertices of the graph into itself such that the
connections of the edges to the vertices, the colors of the
vertices, and the cyclic ordering of the edges at the vertices
are all preserved. For a dessin described by a triple, these
mappings are precisely the subgroup of Sr consisting of
elements γ that satisfy

ðγ−1σ1γ; γ−1σ2γ; γ−1σ3γÞ ¼ ðσ1; σ2; σ3Þ: ð20Þ

A dessin d’enfant is said to be clean if each white vertex
is bivalent (has valency two). Any ribbon graph can be
converted into a clean bipartite graph by coloring all the
vertices in black and introducing a new white vertex on
each edge. The new graph has twice as many edges as the
original graph. This means that it is always possible to
associate a dessin, and hence an equivalence class of
permutation triples, with a ribbon graph. An example of
a clean dessin d’enfant is included below on the right
of Fig. 3.

B. Nakamura graphs as S4dþ2I-triples

Nakamura graphs are oriented ribbon graphs satisfying a
list of properties given in Sec. II B. Every graph has d edges
connecting to positive poles, d edges connecting to
negative poles, and I edges connecting only to zeros,
and so each graph has 2dþ I edges in general. As
Nakamura graphs are not bipartite in general, they can
only be described by permutation triples after cleaning
(introducing new vertices). Cleaning a graph doubles the
number of edges of a graph, so a Nakamura graph dessin
has 4dþ 2I edges in general. This means that every
Nakamura graph can be described as a triple of S4dþ2I
permutations with overall conjugation equivalence by
S4dþ2I . The poles and zeros of the Nakamura graph all
correspond to the black vertices.
We can fix some of the conjugation symmetry of

Nakamura graphs by taking a canonical choice of the
labeling of the edges. The number of edges of a dessin
originating from cleaning a Nakamura graph is always
even, so we can choose to label the edges by
f1þ; 1−; 2þ; 2−;…; ð2dþ IÞþ; ð2dþ IÞ−g. Each edge of
a Nakamura graph has an orientation, and so each edge of
the cleaned Nakamura graph has an orientation. There are d
edges connected to the incoming poles, and d edges
connected to outgoing poles, so we can label the edges
connecting to incoming poles with the integers
f1þ;…; dþg, and the edges going into the outgoing poles
by fðdþ 1Þ−;…; 2d−g. These edges connect to bivalent
white vertices: we can label the other connecting edges with
the labels f1−;…; d−g and fðdþ 1Þþ;…; 2dþg such that
each white vertex connects to edges labeled with the same
integer but with different superscripts. We label the edges
connecting between the zeros by integers from ð2dþ 1Þ�
to ð2dþ IÞ�, assigning integers with a þ superscript to the
edges oriented from a black vertex to a white vertex, and a
− superscript to the edges oriented from white to black,
such that each white vertex connects to edges labeled with
the same integer but with different superscripts.
Each of the l zeros of a Nakamura graph connects to

edges with cyclically alternating orientation. This is
reflected in the structure of their corresponding cycles;
each cycle associated with a zero consists of a string of
alternating þ- and −-superscripted labels. These cycles
appear in the permutation σ1. Also, all cycles in the
permutation σ2 are 2-cycles of the form ðiþi−Þ for some
i ∈ f1;…; 2dþ Ig. The permutation σ3 consists of d
cycles, corresponding to the d faces of the ribbon graph.
Each cycle in σ3 consists of a string of consecutive
þ-superscripted integers, followed by a string of
−-superscripted integers, which reflects the fact that each
face is holomorphic to a strip. An example of a dessin with
this kind of labeling arising from a Nakamura graph is
given above in Fig. 3.
With this choice of labeling, we can always uniquely

decompose the permutation σ1 into
FIG. 3. Converting a Nakamura graph with d ¼ 3 and I ¼ 1 to
a dessin d’enfant described by an S4dþ2I triple.
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σ1 ¼ σþσ−σZ; ð21Þ

where σþ describes the incoming poles and acts on the set
f1þ; 2þ;…; dþg, σ− describes the outgoing poles and acts
on the set fðdþ 1Þ−; ðdþ 2Þ−;…; 2d−g, and σZ describes
the zeros of the graph and acts on the remaining 2dþ 2I
edges. The permutation σ2 can be written

σ2 ¼
Y2dþI

i¼1

ðiþi−Þ; ð22Þ

and, schematically, σ3 is of the form

σ3 ¼
Yd
k¼1

αk; αk ¼ðiþ1 ; iþ2 ;…; iþp ;j−1 ;j
−
2 ;…;j−q Þ: ð23Þ

Our choice of labeling “breaks” the S4dþ2I conjugation
symmetry down to a smaller subgroup. Two permutation
descriptions of a graph ðσþ; σ−; σZ; σ2Þ and ðσ0þ; σ0−;
σ0Z; σ

0
2Þ with the above conventions for labelings are

equivalent if there is some γ ∈ S4dþ2I satisfying

ðγ−1σþγ;γ−1σ−γ;γ−1σZγ;γ−1σ2γ;Þ¼ ðσ0þ;σ0−;σ0Z;σ02Þ: ð24Þ

If we wish to find which conventionally labeled permuta-
tion triples are equivalent, we need only consider equiv-
alence of the triples under those permutations in an S4dþ2I
subgroup that preserve the required forms of σþ, σ−, σZ,
and σ2 separately. We can thus just consider conjugation of
conventionally labeled permutation tuples under

γ ∈ ðSd × Sd × S2dþ2IÞ∩ S2dþI½S2�; ð25Þ

where S2dþI½S2� is the wreath product.

The automorphisms of a Nakamura graph are the ribbon
graph automorphisms which also preserve the orientation
of the edges. In particular, this means that Nakamura graph
automorphisms map positive poles to positive poles,
negative poles to negative poles, and zeros to zeros.
Automorphisms are allowed to permute poles of the same
sign. In the S4dþ2I picture, we can decompose the permu-
tation σ1 ¼ σþσ−σZ. For the orientations of the graph to be
preserved, the automorphisms must preserve these three
constituent permutations separately. Hence the automor-
phism group of a Nakamura graph in the S4dþ2I picture is a
subgroup AutðfσigÞ ⊂ S4dþ2I such that γ ∈ AutðfσigÞ if

ðγ−1σþγ;γ−1σ−γ;γ−1σZγ;γ−1σ2γ;Þ¼ ðσþ;σ−;σZ;σ2Þ: ð26Þ

(The condition γ−1σ3γ ¼ 1 is automatically satisfied by the
fact that σ1σ2σ3 ¼ 1.)
An example of a conventionally labeled dessin d’enfant

in the S4dþ2I description is given in Fig. 4. This graph is
described by a triple of permutations acting on the set of 16
elements f1þ; 1−;…; 8þ; 8−g:

σ1 ¼ ð1þ2þ3þ4þÞð5−6−7−8−Þð1−6þ3−8þÞð2−7þ4−5þÞ;
σ2 ¼ ð1þ1−Þð2þ2−Þð3þ3−Þð4þ4−Þð5þ5−Þð6þ6−Þð7þ7−Þð8þ8−Þ;
σ3 ¼ ð1þ8þ7−2−Þð2þ5þ8−3−Þð3þ6þ6−4−Þð4þ7þ6−1−Þ: ð27Þ

The black vertices correspond to σ1, the white vertices
correspond to σ2, and the faces of the graph correspond
to σ3. The automorphism group of this graph is isomorphic
to Z4 and is generated by

γ ¼ ð1þ2þ3þ4þÞð5þ6þ7þ8þÞð1−2−3−4−Þð5−6−7−8−Þ:
ð28Þ

C. Nakamura graphs as S2dþ2I-triples

The description of a general Nakamura graph in terms of
a triple of permutations is possible because the graph can be

made into a clean bipartite graph by adding extra vertices.
Without the addition of extra vertices, Nakamura graphs are
not bipartite in general. However, the property that no pole
connects to another pole allows us to find a permutation
tuple description requiring fewer labeled edges, and hence
requiring permutation groups of a smaller degree.
Starting from a Nakamura graph, color the poles in black

and the zeros in white. Subdivide only the internal edges
connecting zeros to zeros by adding in extra vertices. As
there are no edges connecting poles to poles, this graph
must be bipartite. Label the edges going out of the
incoming poles by f1þ;…; dþg, and the edges going into

FIG. 4. The S4dþ2I dessin associated with a Nakamura graph
with an automorphism group of order 4.
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the outgoing poles by f1−;…; d−g. Label the edges
bordering each zero with integers from ðdþ 1Þ� to
ðdþ IÞ�, such that the edges oriented toward a zero are
assigned a −-superscripted integer, and the edges oriented
away from a zero are assigned the corresponding
þ-superscripted integer.
As in the S4dþ2I description, this bipartite graph can be

described by a triple of permutations σ1, σ2, and σ3 satisfying
σ1σ2σ3 ¼ 1. The permutation σ1 describes the structure of the
graph at the poles and at the new vertices added in the internal
edges, σ2 describes the graph at the zeros, and σ3 describes the
faces of the graph. We can decompose σ1 into three
permutations with σ1 ¼ σþσ−σI, where σþ acts on
f1þ;…; dþg and describes the incoming poles, σ− acts on
f1−;…; d−g and describes the outgoing poles, and σI ¼QdþI

i¼dþ1ðiþi−Þ describes the I internal edges. Thepermutation
σ2 now describes the l zeros, and so each of the l cycles
consists of a string of alternating þ, −-superscripted labels.
As in the S4dþ2I description, σ3 is of the form

σ3 ¼
Yd
k¼1

αk; αk ¼ðiþ1 ; iþ2 ;…; iþp ;j−1 ;j
−
2 ;…;j−q Þ: ð29Þ

This new description requires only 2dþ 2I labeled edges for
each graph. The choice of labeling of the edges allows us to
state that two tuples of permutations ðσþ; σ−; σI; σ2Þ and
ðσþ0; σ−0; σI 0; σ20Þ are equivalent if they are conjugate by a
permutation γ, where

γ ∈ Sd × Sd × SI½S2�: ð30Þ
An example of a dessin described by an S2dþ2I triple is given
in Fig. 5.
The automorphisms of a Nakamura graph in the S2dþ2I

picture are the automorphisms of the S2dþ2I dessin that
preserve the orientation of the edges in the dessin. The
permutation σ1 decomposes as σþσ−σI , and so the auto-
morphisms of the graph in this picture are the subgroup
AutðfσigÞ ⊂ S2dþ2I such that γ ∈ AutðfσigÞ if
ðγ−1σþγ; γ−1σ−γ; γ−1σIγ; γ−1σ2γ; Þ ¼ ðσþ; σ−; σI; σ2Þ:

ð31Þ

The example of a Nakamura graph with automorphism
group of order four given in the previous section can be
described in the S2dþ2I picture. The graph drawn in Fig. 6 is
described by a triple of permutations acting on the set of
eight elements f1þ; 1−;…; 4þ; 4−g:

σ1 ¼ ð1þ2þ3þ4þÞð1−2−3−4−Þ;
σ2 ¼ ð1þ2−3þ4−Þð2þ3−4þ1−Þ;
σ3 ¼ ð1þ3−Þð2þ4−Þð3þ1−Þð4þ2−Þ: ð32Þ

The automorphism group of the S2dþ2I dessin is necessarily
isomorphic to the automorphism group of the S4dþ2I
dessin, as they are both descriptions of the same
Nakamura graph. In this case, the automorphism group
Z4 is generated by

γ ¼ ð1þ2þ3þ4þÞð1−2−3−4−Þ: ð33Þ

D. From permutation triples to cells
in moduli space

Given a Nakamura graph with d faces and I internal
edges, it is always possible to construct a triple of
permutations from the group S4dþ2I or S2dþ2I that describes
the graph. Not every triple of permutations in these groups
corresponds to a Nakamura graph, though. For a given
triple of permutations to describe a Nakamura graph, it
must satisfy a particular set of conditions.
A triple of S4dþ2I permutations ðσ1; σ2; σ3Þ specifies a

conventionally labeled Nakamura graph if it satisfies the
following properties:
(1) The subgroup generated from σ1 and σ2 acts

transitively on X ¼ Xþ ∪ X−, where

Xþ ¼ f1þ; 2þ;…; ð2dþ IÞþg; ð34Þ

X− ¼ f1−; 2−;…; ð2dþ IÞ−g: ð35Þ

(This is the condition that a Nakamura graph is
connected.)

FIG. 5. Converting a Nakamura graph with d ¼ 3 and I ¼ 1 to
a dessin d’enfant described by an S2dþ2I triple.

FIG. 6. The S2dþ2I dessin associated with a Nakamura graph
with an automorphism group of order 4.
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(2) The permutation σ1 can be written as

σ1 ¼ σþσ−σZ; ð36Þ

where σþ, σ−, and σZ are disjoint, and
(a) σþ acts on f1þ; 2þ;…; dþg and fixes all other

elements,
(b) σ− acts on fðdþ 1Þ−; ðdþ 2Þ−;…; 2d−g and

fixes all other elements,
(c) σZ has no cycle of length less than 4,

σZðXþÞ ¼ X−, and σZðX−Þ ¼ Xþ.
(This is the condition that a Nakamura graph
decomposes into positive poles, negative poles,
and zeros, and that the orientations of the connecting
edges are outgoing, incoming, and alternating,
respectively.)

(3) σ2 ¼ ð1þ1−Þð2þ2−Þ � � � ðð2dþ IÞþð2dþ IÞ−Þ. (This
is the condition that the S4dþ2I dessin is clean.)

(4) The permutation σ3 decomposes into d disjoint

cycles as σ3 ¼ σð1Þ3 σð2Þ3 � � � σðdÞ3 , where for each σðiÞ3

jσðiÞ3 ðXþÞ∩ X−j ¼ 1 ¼ jσðiÞ3 ðX−Þ∩ Xþj: ð37Þ

(This is the condition that each disjoint cycle in σ3
corresponding to a face of the graph is of the form
ðþ þ � � � þ − − � � �−Þ, and so corresponds to
a strip.)

(5) For any sequence of non-negative integers
ðk1; k2;…; krÞ and some iþ ∈ Xþ, if all the elements
of the sequence

iþ; σ2σ
2k1þ1
Z ðiþÞ; σ2σ

2k1þ1
Z σ2σ

2k2þ1
Z ðiþÞ;…; ð38Þ

are contained in Xþ, then this sequence has no
repeated element. (This condition forbids closed
oriented loops on the graph and permits time
orderings to be assigned to the zeros of the
graph.)

Similarly, a triple of S2dþ2I permutations ðσ1; σ2; σ3Þ
specifies a conventionally labeled Nakamura graph if it
satisfies the following properties:
(1) The edges can be assigned labels from the set

X ¼ Xþ ∪ X−, where

Xþ ¼ f1þ; 2þ;…; ðdþ IÞþg; ð39Þ

X− ¼ f1−; 2−;…; ðdþ IÞ−g: ð40Þ

(2) The subgroup generated from σ1 and σ2 acts
transitively on X.

(3) The permutation σ1 can be written as

σ1 ¼ σþσ−σI; ð41Þ

where σþ, σ−, and σI are disjoint, and

(a) σþ acts on f1þ; 2þ;…; dþg and fixes all other
elements,

(b) σ− acts on f1−; 2−;…; d−g and fixes all other
elements,

(c) σI ¼ ððdþ 1Þþðdþ 1Þ−Þ � � � ððdþ IÞþðdþ IÞ−Þ.
(4) The permutation σ2 has no cycle of length less

than 4, σ2ðXþÞ ¼ X−, and σ2ðX−Þ ¼ Xþ.
(5) The permutation σ3 decomposes into d disjoint

cycles as σ3 ¼ σð1Þ3 σð2Þ3 � � � σðdÞ3 , where for each σðiÞ3

jσðiÞ3 ðXþÞ∩ X−j ¼ 1 ¼ jσðiÞ3 ðX−Þ∩ Xþj: ð42Þ

(6) For any sequence of non-negative integers
ðk1; k2;…; krÞ and some iþ ∈ Iþ, where Iþ ¼
fðdþ 1Þþ;…; ðdþ IÞþg, if all the elements of the
sequence

iþ; σIσ
2k1þ1
Z ðiþÞ; σIσ

2k1þ1
Z σIσ

2k2þ1
Z ðiþÞ;…; ð43Þ

are contained in Iþ, then this sequence must not
have a repeated element.

IV. NAKAMURA GRAPHS AS
HURWITZ CLASSES

In the previous section we introduced two methods of
describing Nakamura graphs with triples of permutations
which multiply to the identity by converting the Nakamura
graphs to bipartite graphs with extra vertices. These triples
of permutations are elements of either S2dþ2I or S4dþ2I,
where d is the number of strips (faces) of a graph and I is
the number of internal edges in the graph connecting zeros
to zeros. However, in this description, the conditions that a
general permutation triple must satisfy to be a Nakamura
graph are rather cumbersome and can be tricky to check
computationally.
In this section we present a new description of a

Nakamura graph in terms of a tuple of mþ 2 permutations
in Sd which multiply to the identity, where m ≤ l, and l is
the number of zeros of the graph. This approach has two
main advantages over the triples description: the necessary
permutation group Sd is smaller than S2dþ2I or S4dþ2I, and
the set of conditions that a generic tuple must satisfy to give
a Nakamura graph is much simpler. Both conditions mean
that it is easier to implement Nakamura graphs computa-
tionally with the group Sd than with the groups S2dþ2I
or S4dþ2I.
We begin this section with a review of Hurwitz theory,

which describes how equivalence classes of branched
covers of Riemann surfaces correspond to equivalence
classes of permutation tuples multiplying to the identity.
We will call such an equivalence class of permutations a
Hurwitz class. More on this standard subject of algebraic
topology can be found, for example, in [21–23] or in a
physics context in [24,25]. The equivalence classes of
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permutation triples discussed in Sec. III are examples of
Hurwitz classes. We then discuss how to construct
branched covers from a Riemann surface with a
Giddings-Wolpert differential to an infinite cylinder, with
the ramification points of the surface being exactly the
poles and zeros of the GW differential. The Hurwitz class
corresponding to this cover is an equivalence class of a
tuple of mþ 2 permutations in Sd and contains enough
information to reconstruct the Nakamura graph associated
with the domain Riemann surface.
Each Hurwitz class corresponds to a single Nakamura

graph, but a Nakamura graph may correspond to many
distinct Hurwitz classes. This makes it difficult to find the
automorphism group of a Nakamura graph from a generic
Hurwitz class associated with the graph. To solve this issue,
we introduce a new equivalence relation on the set of
Hurwitz classes—which we call slide equivalence—such
that the equivalence classes of this relation are in one-to-
one correspondence with the Nakamura graphs. Within the
slide-equivalence class of any Nakamura graph, there is a
unique canonical choice of a Hurwitz class—whose ele-
ments we call reduced tuples—that yields in a simple way
the automorphism group of the associated graph. This
description gives a computationally powerful method of
finding the Nakamura graphs and their automorphism
groups.

A. Review: Branched covers, Hurwitz classes,
and Belyi maps

A continuous surjective map f∶Σ → S2 is a branched
cover of the Riemann sphere if every point Q on S2 has
some open neighborhood UQ such that f−1ðUQÞ is a
collection of disjoint open sets, and on each set f is
topologically equivalent to the complex map z↦ zr for
some positive integer r. For most points on the sphere, there
are d preimages on the surface Σ, where d is the degree of
the map. There is a finite set of points on the target space S2

which each have fewer than d preimages. These are the
branch points of the map f. Consider a point Q on the
surface S2. If Q is not a branch point, then for each of its
preimages P on Σ, there exist complex coordinate patches z
about P and w about Q such that f maps z↦ w ¼ z.
However, if Q is a branch point, then for at least one of its
preimages P there exist coordinate patches z about P and w
about Q where f maps z↦w ¼ zr for r ≥ 2. Such a point
P is called a ramification point of the map f. For a given
branch point Q, each preimage Pi of the branch point has
an associated unique positive integer ri such that f maps
z↦w ¼ zri about that point. The tuple of integers
ðr1; r2;…Þ is the ramification profile of the branch pointQ.
The neighborhoods of ramification points can be

described in terms of a gluing construction. Take a disk
around a branch point Q with coordinates jwj < 1, and cut
the disk along the real interval w ∈ ½0; 1Þ. The preimages
of the cut disk on the surface Σ are d identical copies of the

cut disk. The cuts along the intervals can be identified to
recover the neighborhoods on Σ around the ramification
points. If we choose a labeling of the cut disks with the
integers f1; 2;…; dg, then the gluing of the cut disks
corresponds to a mapping from the set f1; 2;…; dg to
itself: the lower edge of the cut on disk i is glued to the
upper edge of the cut on disk σðiÞ. This gluing is shown on
the left of Fig. 7. Each cut disk is biholomorphic to a
“wedge” of a disk subtending an angle 2π=r for some r, as
can be seen on the right of Fig. 7.
There is another way of arriving at the permutation

description of branch points by considering the preimages
of loops on the target space S2. Choose a marked
unbranched point on the sphere, and label its preimages
with integers from 1 to d. For each of the l branch points on
the sphere, draw a directed closed path starting and ending
on the marked point, which can be contracted to a
neighborhood of the branch point without passing through
a branch point. The preimages of each of the l directed
loops on the sphere are directed closed paths on the
Riemann surface Σ which connect the d distinct labeled
preimages of the marked point. Each branch point gives a
bijective mapping from the set f1;…; dg to itself which we
obtain by following the paths of the preimages of the loops.
We associate a permutation σi ∈ Sd, i ¼ 1;…m with each
branch point of the map f. On the sphere, the path
constructed by following allm loops around is contractible.
Hence, the permutations σ1;…; σm multiply together to
give the identity,

σ1σ2…σm ¼ 1: ð44Þ

The permutation tuple ðσ1; σ2;…; σmÞ describes the
branching profile of a branched cover f from a Riemann
surface Σ on to the sphere S2. This is demonstrated
in Fig. 8.
There is an arbitrariness in the way we label the

preimages of the marked point from 1 to d: any relabeling
of these points yields the same branching profile. Hence,
we consider two permutation tuples to be equivalent if there
is a permutation γ ∈ Sd which conjugates one sequence to
the other. That is, the tuples ðσ1;…; σmÞ and ðσ01;…; σ0mÞ
are equivalent if

FIG. 7. The preimages of a cut disk on S2 are a set of cut disks,
whose gluing is specified by a permutation σi.
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ðσ01;…; σ0mÞ ¼ ðγσ1γ−1;…; γσmγ−1Þ: ð45Þ

We call an equivalence class of tuples under conjugation a
Hurwitz class.
There is also a notion of equivalence of branched

coverings in terms of bijective maps. Two branched covers
of the sphere f and f0 are equivalent if there exists some
homeomorphism ϕ∶Σ → Σ such that f0 ¼ f∘ϕ. In other
words, f and f0 are equivalent if the following diagram
commutes:

ð46Þ

This definition of equivalence coincides with the Sd
conjugation equivalence: two branched covers of a Rie-
mann surface are equivalent if they have the same Hurwitz
class. The genus of the covering surface can be expressed,
according to the Riemann-Hurwitz relation, in terms of the
branching numbers Bi ¼ d − Cσi of the branch points as

2g − 2 ¼ −2dþ
Xm
i¼1

Bi: ð47Þ

Dessins d’enfants can be realized as branched coverings
of the sphere. If we take a branched cover of the sphere with
branch points located at f0; 1;∞g, and consider the real
interval [0, 1] on the target sphere, then the preimage of this
interval on the Riemann surface is an embedded ribbon
graph. Coloring the preimages of the point w ¼ 0 on the
sphere in black and the preimages of w ¼ 1 in white, it can
be seen that the embedded ribbon is bipartite and is
therefore a dessin. An example of a branched covering
of the sphere generating a dessin d’enfant is shown in
Fig. 9. If we choose a labeling of the d preimages of the real
interval, then we can find a Hurwitz class associated with

the branched covering. This Hurwitz class coincides
exactly with the defining equivalence class of a dessin
d’enfant. A branched covering of the sphere with three
branch points is called a Belyi map, and we call a
representative element of its associated Hurwitz class a
Belyi triple. The Nakamura graph descriptions from Sec. III
are examples of Belyi triples which correspond to Belyi
maps of degree 2dþ 2I or 4dþ 2I.

B. Nakamura graphs and branched coverings

Consider a Riemann surface with a Giddings-Wolpert
differential and embedded Nakamura graph. The Nakamura
graph partitions the surface into d faces, each of which is
holomorphic to an infinite complex strip, such as in Fig. 2.
The zeros of the differential lie on the boundaries of the
strips, and the poles are located at the negative and positive
infinities of the strips. The surface can be reconstructed
from the strips by a gluing of the edges determined by the
Nakamura graph.
First, let us consider a Riemann surface with a GW

differential in which the d strips are of equal width 2π. The
strips can then be viewed as copies of a single template strip
of width 2π. There is a trivial map from each of the d
worldsheet strips on to the target strip, in which all the
preimages of a point on the target strip have the same time
coordinate. On identifying the upper and lower edges of the
target space strip, the map extends to a branched covering
from the surface onto the cylinder. All the real trajectories
of the Nakamura graph are mapped on to a single infinite
line on the cylinder, and all the zeros are mapped on to this
line. The positive (incoming) poles of the graph are mapped
on to negative infinity, and the negative (outgoing) poles of
the graph are mapped on to positive infinity. The map has
mþ 2 branch points, where m ≤ l is the number of distinct
time coordinates of the zeros. If the time coordinates of all
the zeros are distinct, then m ¼ l.
An infinite cylinder of circumference 2π can be mapped

bijectively to the Riemann sphere with the exponential map
z↦ exp z. This means that the composition of the cylinder
covering and the exponential map is a holomorphic
branched covering f of the Riemann sphere with mþ 2
branch points. The positive poles of the Nakamura graph
map on to 0, the negative poles of the graph map on to ∞,
and the remaining l zeros map on to m branch points
along the real axis on the sphere. The Giddings-Wolpert
differential on the worldsheet is df

f .
Now consider a more general GW differential where the

strips are no longer of equal width. We can construct a
bijective mapping from each strip onto a single template
strip of width 2π in such a way that the preimages of a point
on the template strip have the same time coordinate.
However, this mapping will not be holomorphic in general.
Applying the exponential map to this template strip, we
have a map f from a general Riemann surface onto the
sphere. The GW differential cannot be written in the form

FIG. 8. The target space S2 is drawn on the right and the d
preimages on the surface Σ of a disk about a marked unbranched
point on the sphere are drawn on the left. The preimages of a loop
drawn around one of the branch points on the sphere are a set of
trajectories connecting the d labeled preimages of the marked
point on Σ, and this specifies a permutation in Sd.
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df
f in this more general case, but the map f is still a branched
cover of the sphere, with ramification points at the poles
and zeros of the differential.
This branched cover of the sphere has an associated

permutation tuple describing the branching. We mark an
unbranched point on the sphere and label the preimages of
this point with the integers from 1 to d. The preimage of a
small loop starting and ending on this marked point that
encloses a branch point on the Riemann sphere is a
collection of closed paths connecting the labeled preimages
of the unbranched point. Each branch point determines a
permutation σ ∈ Sd, and so the branched covering deter-
mines a tuple consisting of mþ 2 permutations

ðσþ; σ1; σ2;…; σm; σ−Þ ð48Þ

that describes the gluing of the different strips. Here, the
permutation σþ describes the branching about 0, σ−
describes the branching around ∞, and σi describes the
branching around the ith branch point on the real line. As
this is a branched covering of the sphere, this set of
permutations multiplies to one,

σþσ1σ2 � � � σmσ− ¼ 1: ð49Þ

There is also an overall conjugacy equivalence of the tuple
due to the arbitrary choice of labeling of the d inverse
images of the marked point,

ðγσþγ−1; γσ1γ
−1; γσ2γ

−1;…; γσmγ−1; γσ−γ
−1Þ

∼ ðσþ; σ1; σ2;…; σm; σ−Þ; ð50Þ

where γ ∈ Sd. This construction is shown in Fig. 10, where
the marked point is chosen to lie on the real axis of the
Riemann sphere, and the preimages of this point lie on the
boundaries of the strips. For the case m ¼ l, the Riemann-
Hurwitz relation (47) can be written as

ð2g − 2Þ ¼ −nþ lþ Δ: ð51Þ

This also follows from the previous discussion of Naka-
mura graph parameters in Sec. II C, in particular by
eliminating I from Eqs. (7) and (11).
The boundaries of the strips are the real trajectories of the

GW differential, which form the Nakamura graph of the
surface. We can choose to label the real trajectories
bounding the upper edge of each strip with the same
integer that was assigned to the marked point lying on the
upper edge of this strip. This gives us a labeling of the
Nakamura graph associated with the surface, in which all
the edges corresponding to the upper boundary of the same
strip have the same label. We call this labeling of a
Nakamura graph the Sd description, or the Hurwitz class
description, as the Nakamura graph associated with this
surface can be reconstructed from the Hurwitz class of the
branched covering and vice versa.
The labeling of the edges glued to the lower boundary of

a strip are determined by the Hurwitz tuple. On a strip in
which the upper boundary is labeled by some integer
i ∈ f1; 2;…; dg, the edge preceding the preimage of the
first branch point is labeled by Σ0ðiÞ, where Σ0 ≔ σþ. The
edge preceding the next branch point is labeled Σ1ðiÞ,
where Σ1 ¼ σþσ1; the next edge is labeled Σ2ðiÞ, with
Σ2 ¼ σþσ1σ2, and so on. This is shown in Fig. 11.

FIG. 9. Any dessin d’enfant on a Riemann surface can be realized as the preimage of [0, 1] on some branched covering of the sphere.

FIG. 10. Nakamura graph strips naturally form a branched cover of the cylinder and the sphere.
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Given a Nakamura graph associated with a surface, we
can read off the Hurwitz tuple associated with a branched
covering of the sphere as constructed above. The cyclic
ordering of the edges at the incoming and outgoing poles
correspond to σþ and σ−, respectively, and the cyclic
ordering of the incoming (or the outgoing) edges at the
ith zero corresponds to σi. Each outgoing edge at a zero has
the same label as the incoming edge located in the next
clockwise position at the zero. An example of a Nakamura
graph with Hurwitz class labelings is given in Fig. 12 with
the associated Hurwitz tuple description.
Conversely, a Hurwitz tuple ðσþ; σ1;…; σ−Þ is enough to

completely specify a Nakamura graph. As each Nakamura
graph defines a cell in the light-cone cell decomposition of
moduli space, we see that each Hurwitz class determines a
cell in the LC cell decomposition. In general, extra data are
required to specify a particular point within this cell, as the
permutation tuple alone does not encode the continuous
data of the strip widths and the time coordinates of
the zeros.
One major advantage of the Hurwitz class description for

Nakamura graphs is that there are only two conditions
required for a permutation tuple to give a valid Nakamura
graph. For a general Sd tuple of mþ 2 permutations to
describe a Nakamura graph:

(i) Each integer in f1; 2;…; dg is permuted by at least
one of the permutations associated with the zeros
fσ1; σ2;…; σmg. (This ensures that no trajectories
connect poles directly to poles.)

(ii) The tuple ðσþ; σ1;…; σm; σ−Þ acts transitively on
f1; 2;…; dg. (This ensures that all associated Rie-
mann surfaces are connected.)

All the other conditions given in Sec. II B that a Nakamura
graph must satisfy are guaranteed by the structure of the
permutation tuple.

As an example of the strip decomposition of a surface via
a Nakamura graph, and its description with an Sd tuple, we
consider again the example of a Nakamura graph with no
internal lines and degree four, shown on the left of Fig. 13.
This graph corresponds to a genus one surface with two
marked points, drawn with the embedded Nakamura graph
on the right of Fig. 13. This graph was described with
S4dþ2I and S2dþ2I Belyi triples in (27) and (32). With the Sd
labelings, this graph has the associated Hurwitz class
description

ðσþ; σ1; σ2; σ−Þ ¼ ðð1234Þ; ð13Þ; ð24Þ; ð1234ÞÞ: ð52Þ

The strip decomposition of the surface is shown in Fig. 14,
with the S4dþ2I and the Sd labelings, respectively. The cell
associated with this graph in moduli space has real
dimension lþ d − n ¼ 4, which can be understood in
terms of the continuous parameters of the strips. The
residues of the poles are fixed to be �r. There is an
overall time translation symmetry of the strips, so we can
set the first zero to have the time coordinate t ¼ 0: the
remaining zero has some time coordinate t1 > 0. We denote
the widths of the strips with upper edges labeled 1, 2, 3, 4
by b1, b2, b3, and b4, respectively. The sum of the widths of
the strips is constrained to be r due to the fact that the GW
differential is simply dz on each strip. This gives four
independent real parameters for the cell in moduli space, as
required.
In Fig. 15 we have given another example of a Nakamura

graph with Sd labelings and its embedding on the torus.
This graph has a nonzero branching constant Δ ¼ 1, as the
zero has a valency greater than four. Its associated Sd
permutation tuple is

ðσþ; τ1; σ−Þ ¼ ðð123Þ; ð123Þ; ð123ÞÞ: ð53Þ

C. Redundancies in the Hurwitz class description

Given a Riemann surface with a Giddings-Wolpert
differential, then there exists a unique branched covering
of the sphere as constructed above up to equivalence, and
so there exists a unique Hurwitz class associated with the
surface. The cycles of the permutations in the Hurwitz
class correspond to the vertices of the Nakamura graph.
However, there may be more than one Hurwitz class that
can describe the same Nakamura graph. This is because a
Hurwitz class has a well-defined total ordering of the
branch points, derived from the time coordinates of the
zeros, but a Nakamura graph generally only has a partial
ordering on its zeros derived from the orientation of
the edges.
Consider the previous example of a Nakamura graph

shown in Fig. 13 and described by the Sd tuple

ðσþ; σ1; σ2; σ−Þ ¼ ðð1234Þ; ð13Þ; ð24Þ; ð1234ÞÞ: ð54Þ

FIG. 11. The gluing of the strips can be read off from the
Hurwitz tuple.

FIG. 12. A labeling of a Nakamura graph with an Sd tuple.

LAURENT FREIDEL, DAVID GARNER, AND SANJAYE RAMGOOLAM PHYSICAL REVIEW D 91, 126001 (2015)

126001-14



The time coordinates of the zeros associated with the
permutations (13) and (24) satisfy tð13Þ < tð24Þ. If we were
to consider a surface with a different GW differential in
which the time coordinates of the zeros were interchanged
and tð24Þ < tð13Þ, then theSd description of the graphwould be

ðσþ; σ1; σ2; σ−Þ ¼ ðð1234Þ; ð24Þ; ð13Þ; ð1234ÞÞ: ð55Þ
In addition, if we considered instead a surface where the
time coordinates of the zeros were identical, then the
ramification of the branched cover of the sphere would
no longer be simple, and the Sd description of the graph
would be

ðσþ; σ1; σ−Þ ¼ ðð1234Þ; ð13Þð24Þ; ð1234ÞÞ: ð56Þ

In all three of these cases, the Nakamura graph correspond-
ing to the surface is identical. A Nakamura graph only
encodes an ordering on the time coordinates of the zeros if
there is an oriented sequence of internal edges connecting
the zeros.
This redundancy makes the automorphisms of a

Nakamura graph harder to determine in the Hurwitz class
description than in the Belyi triples descriptions. The set of
permutations γ ∈ Sd such that

ðγ−1σþγ; γ−1σ1γ;…; γ−1σmγ; γ−1σ−γÞ
¼ ðσþ; σ1;…; σm; σ−Þ ð57Þ

are indeed automorphisms of the Nakamura graph, but they
are not the only automorphisms. In some cases, there are

FIG. 13. A Nakamura graph in the Sd picture, drawn embedded on the torus with the closed imaginary trajectories drawn in grey.

FIG. 14. The strip decomposition of the above graph in both the S4dþ2I and the Sd descriptions.

FIG. 15. A Δ ¼ 1 Nakamura graph in the Sd picture, and its embedding on the torus.
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permutations which map the σi to each other upon con-
jugation, which can preserve the structure of the associated
Nakamura graph. The example given above in Fig. 13 has
an automorphism group generated by the cycle γ ¼ ð1234Þ,
which interchanges the permutations σ1 and σ2 in the
Hurwitz class given in (54).
To solve this redundancy in the Hurwitz class descrip-

tion, we introduce a new equivalence relation on the
Hurwitz classes. For a general tuple of ðmþ 2Þ permuta-
tions ðσþ; σ1;…; σm; σ−Þ describing a Nakamura graph
arising from a branched covering of the sphere, each
permutation σi represents a set of zeros with the same
time coordinate. If there are two subsequent permutations
σi and σiþ1 which are disjoint (the intersection of their
moved-point sets is empty), then there are no internal edges
directly connecting any of the zeros which correspond to
the cycles in the permutations. Any other branched cover-
ing with the ðmþ 1Þ-permutation tuple

ðσþ; σ1;…; σiσiþ1;…; σm; σ−Þ ð58Þ

would have an identical Nakamura graph.
We define a binary relation on the set of permutation

tuples by relating

ðσþ; σ1;…; σi; σiþ1;…; σm; σ−Þ
∼ ðσþ; σ1;…; σiσiþ1;…; σm; σ−Þ ð59Þ

whenever σi and σiþ1, 1 ≤ i < m are disjoint. This relation
extends to an equivalence relation on the set of tuples. The
overall product of a tuple of permutations is unchanged by
this relation, and the overall action of conjugacy on tuples
commutes with this relation, which means that this relation
is a well-defined equivalence relation on the set of Hurwitz
classes describing Nakamura graphs. We call this relation
slide equivalence, as it represents the ability to “slide”
around the orderings of the zeros of a Nakamura graph
when there are no internal edges connecting the zeros. With
this equivalence relation, each slide-equivalence class
corresponds to a unique Nakamura graph.

D. The “reduced tuple” Sd picture

There is a one-to-one correspondence between the
Nakamura graphs and the slide-equivalent Hurwitz classes.
Up to conjugacy equivalence, we can canonically choose a
representative element for each slide-equivalence class,
which we call the reduced tuple description of a
Nakamura graph, and denote by ðσþ; τ1;…; τm; σ−Þ.
Each slide-equivalence class has exactly one Hurwitz class
specified by a representative tuple ðσþ; τ1;…; τm; σ−Þ with
the property that every cycle in τiþ1 shares a moved point
with τi, for each i ¼ 1; 2;…; ðm − 1Þ. Intuitively, this is the
Sd tuple gained from taking a Nakamura graph and placing
as many cycles as possible in the earliest permutation.
Graphically, this tuple is gained by sliding the zeros around

so that as many zeros as possible are vertically adjacent in
the earliest position, and then subsequently as many zeros
as possible are arranged in the second earliest position, and
so on.
The reduced tuple has the property that the graph

automorphisms do not exchange cycles between different
τi. This means that the automorphisms of a Nakamura
graph described by a reduced tuple are precisely those
γ ∈ Sd such that

ðγ−1σþγ; γ−1τ1γ;…; γ−1τmγ; σ−Þ ¼ ðσþ; τ1;…; τm; σ−Þ:
ð60Þ

As an example, consider the slide-equivalence class
describing the Nakamura graph given in Fig. 16. With
the labeling shown in the figure, this graph can be described
by the tuples

ðσþ; σ1; σ2; σ3; σ−Þ ¼ ðð1234Þ; ð34Þ; ð12Þ; ð12Þ; ð142ÞÞ;
ð61Þ

ðσþ; σ1; σ2; σ−Þ ¼ ðð1234Þ; ð12Þð34Þ; ð12Þ; ð142ÞÞ;
ð62Þ

ðσþ; σ1; σ2; σ3; σ−Þ ¼ ðð1234Þ; ð12Þ; ð34Þ; ð12Þ; ð142ÞÞ;
ð63Þ

ðσþ; σ1; σ2; σ−Þ ¼ ðð1234Þ; ð12Þ; ð12Þð34Þ; ð142ÞÞ;
ð64Þ

ðσþ; σ1; σ2; σ3; σ−Þ ¼ ðð1234Þ; ð12Þ; ð12Þ; ð34Þ; ð142ÞÞ:
ð65Þ

All these tuples lie in different Hurwitz classes, but their
associated classes lie in the same slide-equivalence class.
This slide equivalence is associated with the sliding of the
time coordinate of the zero associated with the trans-
position (34). Of the five elements of the slide-equivalence
class, the reduced tuple is

ðσþ; τ1; τ2; σ−Þ ¼ ðð1234Þ; ð12Þð34Þ; ð12Þ; ð142ÞÞ; ð66Þ

FIG. 16. A Nakamura graph in the Sd picture.
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as it is the only element which has the property that every
cycle in τiþ1 shares a moved point with τi for all i.

V. COUNTING OF GRAPHS WITH
MATRIX MODELS

In this section we consider graphs with no internal
edges and a single incoming pole, described by triples
of permutations in the reduced Sd description. Any such
graph is described by a triple ðσþ; τ; σ−Þ, with σþτσ− ¼ 1,
where σþ consists of a single d-cycle, τ consists of l disjoint
cycles corresponding to the internal vertices, and σ−
consists of ðn − 1Þ disjoint cycles corresponding to the
outgoing poles. There are correlators in the Gaussian and
the complex matrix models that directly correspond to
counting triples of permutations multiplying to one. This
allows us to apply known explicit expressions for matrix
model correlators to the counting of Nakamura graphs.
In Sec. III, we stated that a Nakamura graph is associated

with a cell C in the LC cell decomposition ofMg;n with real
dimension

dimRðCÞ ¼ 6g − 6þ 2n − ð2Δþ IÞ: ð67Þ

The genus of the graph is g, the number of poles is n, the
number of internal edges connecting zeros to zeros is I, and
the branching number Δ is defined in terms of the valencies
of the l zeros by the formula

Δ ¼
Xl
i¼1

1

2
ðvi − 4Þ: ð68Þ

The degree d is given in terms of g, n, Δ, and I by the
formula

d ¼ 2ð2g − 2þ nÞ − ðΔþ IÞ: ð69Þ

The total dimension of moduli space is 6g − 6þ 2n, and so
the codimension of a cell in moduli space associated with a
graph G is ð2Δþ IÞ.
The top-dimensional cells of moduli space are associated

with graphs with Δ ¼ 0 and I ¼ 0. The zeros of these
graphs have valency four, and each zero can be described in
the Sd description by a cycle permuting two labels (a
transposition). The permutation triples corresponding to
graphs in the codimension zero cell are of the form
ðσþ; τ; σ−Þ, where τ is in T ¼ ½2l�, the Sd conjugacy class
consisting of elements that are composed of l ¼ d=2
disjoint 2-cycles. For graphs with I ¼ 0 and Δ > 0, some
of the zeros will have valency greater than four, which
correspond to cycles with size greater than two. For
example, a graph with Δ ¼ 1 is described by some τ in
the conjugacy class of elements with ðl − 1Þ 2-cycles and
one 3-cycle, T ¼ ½2l−1; 3�. A graph withΔ ¼ 2 is described

by some τ either in the conjugacy class T 1 ¼ ½2l−2; 32� or
in T 2 ¼ ½2l−1; 4�.
The counting of permutation triples where two permu-

tations are in the classes ½d� and ½2d=2�, respectively, is
known to correspond to a correlator in the Gaussian matrix
model. In Sec. VA, we use this link to find the contribution
to the orbifold Euler characteristic that comes from graphs
in the top-dimensional cell. This can be checked explicitly
against the tables derived in [4]. Also, the counting of
permutation triples in more general classes is known to
correspond to correlators in the complex matrix model. In
Sec. V B, we can find the contributions to the orbifold Euler
characteristic coming from graphs of higher codimension.
This is checked against graphs counted directly by the
software GAP.

A. The Gaussian Hermitian matrix model

Triples of permutations of the form ðσþ; τ; σ−Þ, where
σþτσ− ¼ 1, σþ ∈ ½2l�, and τ ∈ ½2l�, arise in the combina-
torics of the Gaussian Hermitian matrix model. We can
develop a link between the counting of top-dimensional
graphs in moduli space with a single incoming pole and
Gaussian matrix model correlators as follows.
First, note that a single-trace correlator in the Gaussian

Hermitian matrix model can be written as

trXd ¼ Xi1
iσð1Þ � � �X

id
iσðdÞ ð70Þ

with σ ¼ ð1; 2;…; dÞ. In other words, when we have a
single trace, the lower indices are a cyclic permutation of
the upper indices. Now when we perform the Wick
contraction on the correlator, we are summing over pairings
of d objects, e.g. ð1; 2Þð3; 4Þ � � � ðd − 1; dÞ. Each pairing
corresponds to a permutation τ in the class ½2l� where
l ¼ d=2. The matrix model correlator of a single trace trXd

can be written in terms of these two permutations rather
simply,

htrXdi ¼
X
τ∈½2l�

X
α∈Sd

δðσταÞNCα ; ð71Þ

where the delta function imposes the condition that the
three permutations multiply to 1, and Cα is the number of
cycles in the product α ¼ ðστÞ−1. We can also introduce a
sum over the conjugacy class of single cycles of length d
accompanied by a factor of j½d�j ¼ ðd − 1Þ! without chang-
ing the value of the correlator,

htrXdi ¼ 1

ðd − 1Þ!
X
σ∈½d�

X
τ∈½2l�

X
α∈Sd

δðσταÞNCα : ð72Þ

Now, consider the equivalence classes of triples ðσ; τ; αÞ,
where
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ðσ0; τ0;α0Þ ∼ ðγσγ−1; γτγ−1; γαγ−1Þ: ð73Þ

These equivalence classes correspond precisely to the
Nakamura graphs with a single incoming pole, no internal
edges, and Δ ¼ 0 in the Sd description. The permutation σ
corresponds to the single incoming pole, τ corresponds to
the zeros, and α corresponds to the outgoing poles. The
number of poles in a Nakamura graph given by such a tuple
is Cσ þ Cα, which is equal to n. As Cσ ¼ 1, and we are
interested in graphs corresponding to surfaces with n
marked points, we can consider just the permutation tuples
with Cα ¼ n − 1, and so consider the coefficient of Nn−1 in
the correlator,

CoefficientðhtrXdi;Nn−1Þ¼ 1

ðd−1Þ!
X
σ∈½d�

X
τ∈½2l�

X
α∈Sd

Cα¼ðn−1Þ

δðσταÞ:

ð74Þ

We can split the sum over α into a sum over distinct
conjugacy classes ½α̂�, each consisting of ðn − 1Þ cycles,
and a sum over each individual class with ðn − 1Þ cycles ½α̂�,

CoefficientðhtrXdi;Nn−1Þ¼ 1

ðd−1Þ!
X
classes
½α̂�

X
σ∈½d�

X
τ∈½2l�

X
α∈½α̂�

δðσταÞ:

ð75Þ

Now the sum

1

d!

X
σ∈½d�

X
τ∈½2l�

X
α∈½α̂�

δðσταÞ ð76Þ

can be written in terms of equivalence classes of permu-
tation triples. By the orbit-stabilizer theorem, the number of
times each equivalence class appears in the sum is

d!
jAutðfσ; τ; αgÞj ; ð77Þ

where Autðfσ; τ; αgÞ is the order of the automorphism
group of the triple. Each equivalence class corresponds to a
distinct bipartite graph. This means that

1

d!

X
classes
½α̂�

X
σ∈½d�

X
τ∈½2l�

X
α∈½α̂�

δðσταÞ

¼
X
classes
½α̂�

X
equiv classes
of triples

1

jAutðσ; τ; αÞj

¼
X
graphs

1

jAutðσ; τ; αÞj : ð78Þ

This sum is taken over all the graphs specified by a
permutation triple ðσ; τ; αÞ with one incoming pole

and n − 1 outgoing poles. This is exactly the sum that
Nakamura performed to find the contribution of the top-
dimensional cells to the orbifold Euler characteristic of
Mg;n. We conclude that the contribution of the top cell of
Mg;n to the orbifold Euler characteristic is

χtopðg; nÞ ¼
1

d
× CoefficientðhtrXdi; Nn−1Þ: ð79Þ

There is a generating function for correlators of single
traces in the Gaussian Hermitian matrix model, due to
Harer and Zagier,

Cðx; NÞ ¼
X∞
l¼1

htrðX2lÞi x2l

ð2l − 1Þ!! ð80Þ

¼ 1

2x2

��
1þ x2

1 − x2

�
N
− 1

�
: ð81Þ

This means that the contribution to the top-dimensional cell
can be read off,

χtopðg; nÞ ¼
ðd − 1Þ!!

d
CoefficientðCðx; NÞ; xdNn−1Þ: ð82Þ

We can calculate exactly the coefficient of Nn−1 in this
expression. Noting that

Cðx; NÞ ¼ 1

2x2

�
exp

�
N log

�
1þ x2

1 − x2

��
− 1

�
; ð83Þ

we differentiate this ðn − 1Þ times with respect to N to see
that

CoefficientðCðx;NÞ;Nn−1Þ¼ 1

2x2ðn−1Þ!
�
log
�
1þx2

1−x2

��
n−1

:

ð84Þ

The contribution to the Euler characteristic is therefore

χtopðg; nÞ

¼ ðd − 1Þ!!
2dðn − 1Þ!Coefficient

�
1

x2

�
log

�
1þ x2

1 − x2

��
n−1

; xd
�
ð85Þ

¼ ðd−1Þ!!
2dðn−1Þ!Coefficient

��
log

�
1þw
1−w

��
n−1

;wðn−1Þþ2g

�
;

ð86Þ

where d ¼ 2ð2g − 2þ nÞ, and we have substituted w ¼ x2

in the final equation. Written purely in terms of g and n, the
expression for the Euler characteristic contribution is
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χtopðg; nÞ ¼
ð4g − 5þ 2nÞ!

22g−3þnðn − 1Þ!ð2g − 2þ nÞ!

× Coefficient

�
log

�
1þ w
1 − w

�
n−1

; wðn−1Þþ2g

�
:

ð87Þ

This expression matches the values found by counting
graphs in Nakamura’s paper.
In the case n ¼ 2, the series expansion of the generating

function can be found exactly. We have

log

�
1þ w
1 − w

�
¼ 2

X∞
g¼0

w2gþ1

ð2gþ 1Þ ; ð88Þ

so we deduce that

χtopðg; 2Þ ¼
ð4gÞ!

22gð2gÞ!
1

4g
1

2gþ 1
¼ ð4g − 1Þ!

22gð2gþ 1Þ! : ð89Þ

This sequence, starting at g ¼ 1 is

1

4
;
21

8
;
495

4
;
225225

16
� � � : ð90Þ

The first three terms in this sequence correspond to the
tables of data in Nakamura. The case ðg; nÞ ¼ ð4; 2Þ was
not provided in Nakamura, so the value 225225

16
is a

prediction, as are the infinite series of coefficients (89).
However, the top-cell contribution in the ðg; nÞ ¼ ð4; 2Þ
case was confirmed directly by counting the graphs using
the software GAP.

B. The complex matrix model

Let T be the conjugacy class of Sd elements
½2k23k3 � � �dkd �. Choose a representative element σ̂þ ∈ ½d�
and τ̂ ∈ T . The complex matrix model correlator of a
holomorphic trace and an antiholomorphic product of
traces corresponding to these classes is

htrðσ̂þZ⊗dÞtrðτ̂Z†⊗dÞi
≔ htrZdðtrZ†2Þk2ðtrZ†3Þk3 � � � ðtrZ†dÞkdi ð91Þ

¼ d
jT j

X
σþ∈½d�

X
τ∈T

X
σ−∈Sd

NCσ− δðσþτσ−Þ: ð92Þ

As in the Hermitian matrix model, this correlator is a sum
over conjugacy classes of permutation triples that multiply
to one. Splitting up the sum over σ− ∈ Sd, we can write

htrðσ̂þZ⊗dÞtrðτ̂Z†⊗dÞi

¼ d
jT j
Xd−1
n¼2

Nn−1
X
σþ∈½d�

X
τ∈T

X
σ−∈Sd

Cσ−¼n−1

δðσþτσ−Þ: ð93Þ

This expression is a sum over the Nakamura graphs with n
external points and internal vertex structure given by T ,

htrðσ̂þZ⊗dÞtrðτ̂Z†⊗dÞi ¼ d!d
jT j
Xd−1
n¼2

Nn−1
X
G

1

jAutðGÞj : ð94Þ

The sum over G is taken over all graphs with ðn − 1Þ
outgoing poles with internal structure given by T . This sum
appears in the orbifold Euler characteristic of the moduli
space of genus g with n marked points: defining the
contribution to the orbifold Euler characteristic coming
from a class T by the formula

χT ðg; nÞ ¼
X
G

1

AutðGÞ ; ð95Þ

we can state that the contribution to the Euler characteristic
coming from graphs with class T is

χT ðg; nÞ ¼
jT j
d!d

Coefficientðhtrðσ̂þZ⊗dÞtrðτ̂Z†⊗dÞi; Nn−1Þ:
ð96Þ

It is useful to recall that the parameters ki defining T relate
to the parameters in Sec. II by

l ¼
Xd
i¼2

ki;

Δ ¼
Xd
i¼2

ði − 2Þki ¼ d − 2l: ð97Þ

The complex matrix model correlator can be calculated
by using character sums. In [26], it is shown that

htrZdðtrZ†2Þk2ðtrZ†3Þk3 � � � ðtrZ†dÞkdi ¼ d!
Xd
t¼0

X
S⊂f1;2;…lg

jSj¼t

ð−Þl−t
 
N þP

i∈S
ki

dþ 1

!

¼ d!
Xk1
r1¼0

Xk2
r2¼0

� � �
Xkd
rd¼0

ð−Þk1þ���þkd−r1−���−rd
�
k1
r1

�
� � �
�
kd
rd

� 
N þPd

j¼1 jrj
dþ 1

!
: ð98Þ
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The size of the conjugacy class T is

jT j ¼ d!
k2!2k2k3!3k3 � � � kd!dkd

: ð99Þ

This gives us an explicit expression for the orbifold Euler characteristic contribution from the class T ¼ ½2k23k3 � � � dkd �,

χT ðg;nÞ¼
ðd−1Þ!

k2!2k2k3!3k3…kd!dkd

Xk1
r1¼0

���
Xkd
rd¼0

ð−Þk1þ���þkd−r1−���−rd
�
k1
r1

�
���
�
kd
rd

�
Coefficient

��
NþPd

j¼1jrj
dþ1

�
;Nn−1

�
: ð100Þ

This formula can reproduce the Euler characteristic contributions for cells of codimension zero. For fixed g, n with
Δ ¼ 0, then the degree d is 2ð2g − 2þ nÞ, the number of zeros is l ¼ d=2 ¼ 2gþ n − 2, and the contribution to the Euler
characteristic is

χ½2l�ðg; nÞ ¼
ð2l − 1Þ!

l!2l
Xl
r2¼0

ð−Þl−r2
�

l

r2

�
Coefficient

��
N þ 2r2
2lþ 1

�
; Nn−1

�

¼ ð4gþ 2n − 5Þ!
ð2gþ n − 2Þ!22gþn−2

X2gþn−2

r2¼0

ð−Þ2gþn−2−r2

�
2gþ n − 2

r2

�
Coefficient

��
N þ 2r2

4gþ 2n − 3

�
; Nn−1

�
: ð101Þ

This formula has been checked numerically for graphs of degree d ≤ 9 against the tables in Nakamura. We have quoted the
relevant top-cell graphs in Table I, using the notation ½a� × n to denote n graphs with cyclic automorphism groups of order a.
The contribution to the Euler character calculated by counting the graphs and using the formula (78) exactly matches the
results derived from (101).
For graphs with Δ ¼ 1, the conjugacy class T is of the form T ¼ ½2l−1; 3� for some l. We have

d ¼ 3þ 2ðl − 1Þ ¼ 2ð2g − 2þ nÞ − 1, so l ¼ 2gþ n − 3. The Euler characteristic sum is

χ½2l�ðg;nÞ¼
2l!

ðl−1Þ!2l−13
Xl−1
r2¼0

X1
r3¼0

ð−Þl−r2−r3
�
l−1

r2

��
1

r3

�
Coefficient

��
Nþ2r2þ3r3

2lþ2

�
;Nn−1

�

¼ ð4gþ2n−6Þ!
ð2gþn−4Þ!22gþn−43

X2gþn−4

r2¼0

X1
r3¼0

ð−Þ2gþn−3−r2−r3

�
2gþn−4

r2

��
1

r3

�
Coefficient

��
Nþ2r2þ3r3
4gþ2n−4

�
;Nn−1

�
:

ð102Þ

A program was written in GAP to count all the graphs with
I ¼ 0 and Δ ¼ 1 for a given genus g and number of
external points n; the results are tallied in Table I. The
formula (102) precisely matches the calculation of the
contribution to the Euler character produced by using
the explicit graph counting and (95).

VI. COUNTING NAKAMURA GRAPHS IN
THE Sd PICTURE USING GAP

Nakamura was able to confirm that the graphs gave a
valid cell decomposition of moduli space by finding all the
graphs in a given moduli spaceMg;n, and showing that the
orbifold Euler characteristic

χðg; nÞ ¼
X
G

ð−1Þdim 1

jAutðGÞj ð103Þ

matches the orbifold Euler characteristic predicted by Harer
and Zagier. In the above expression, the sum is taken over
all inequivalent graphs G, each with automorphism group
AutðGÞ, and “dim” is the dimension of the cell in moduli
space associated with each graph.
Each Nakamura graph corresponds to a slide-equivalence

class of Hurwitz classes, in each of which there is a unique
Hurwitz class of reduced tuples. In this section, we describe
how we can use the reduced Sd tuple description of graphs to
count Nakamura graphs algorithmically. We were able to
implement this algorithmwith the software GAP to reproduce
the tables of Nakamura’s paper, in which the graphs with a
single incoming pole were counted with their automorphism
groups. For computational efficiency, the algorithm works
by taking as input a maximum value of the degree d of the
permutation groups Sd, and fixing the incoming pole to be of
the form ð1; 2;…; dÞ. The algorithm then considers in turn
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every conjugacy class of the reduced permutations τ1;…; τm
that can yield a Nakamura graph, and calculates the auto-
morphisms of the allowed graphs. The permutation σ− is
determined by σ− ¼ ðσþτ1…τmÞ−1, and the number of
cycles in this permutation gives the number of outgoing
poles n − 1.
The algorithm proceeds as follows:
(1) First, fix a value of the (graph) Euler characteristic

χ ¼ 2 − 2g − n. From (13), this gives the maximum
number of faces of the associated Nakamura graphs.
It also gives an upper bound on the degree dmax ¼
2jχj of the permutation groups Sd that can describe
graphs of this Euler characteristic.

(2) Allow l to scroll over the range (15), 1 ≤ l ≤ ð−χÞ.
For each l, (14) gives us Δ.

(3) Given l and Δ, find all the possible valencies of the
internal vertices. These valencies can be described
by an unordered tuple of Sd conjugacy classes
½½σ1�;…; ½σl��. Each conjugacy class is of the form
½i� for some ik > 1; that is, each permutation in the
conjugacy class consists of a cycle of length i and
ðd − iÞ cycles of length one. We call these the
“unreduced class tuples.”
In the Sd picture of describing Nakamura graphs,

a zero with valency 2k is described by a k-cycle. The
branching number Δ is related to the zeros connect-
ing to more than four edges. More precisely, the
possible valencies of the vertices correspond to the
possible ways of partitioning Δþ 2l indistinguish-
able objects into l sets with at least two elements.
(For example, if we had dmax ¼ 10, L ¼ 3, and

Δ ¼ 2, then the only possible unreduced class tuples
are [[3], [3], [2]] and [[4], [2], [2]].)

(4) For each unreduced class tuple, find all the possible
“reduced class tuples.” A reduced class tuple is an
ordered list of Sd conjugacy classes ðT 1; T 2;…;
T mÞ, where m ≤ l, formed by merging together the
classes from an unreduced class tuple in some way.
Each T i is of the form ½a1; a2;…; aki �, where the ai
are lengths of cycles from the unreduced class tuple
which are greater than one. Each cycle length from
the unreduced class tuple appears in exactly one T i.
For example, the unreduced tuple ([3], [3], [2])

can be combined as T 1 ¼ ½3; 3; 2� with m ¼ 1, or
as ðT 1; T 2Þ ∈ fð½3; 3�; ½2�Þ; ð½2�; ½3; 3�Þ; ð½3; 2�; ½3�Þ;
ð½3�; ½3; 2�Þg for m ¼ 2, or as ðT 1; T 2; T 3Þ ∈
fð½3�; ½3�; ½2�Þ; ð½3�; ½2�; ½3�Þ; ð½2�; ½3�; ½3�Þg for m ¼ 3.
We are only interested in the reduced class tuples

which can give valid Nakamura graphs in the
reduced tuple picture. This means we should discard
any sequence of class tuples in which there is some
i ∈ f1;…; m − 1g such that τi ∈ T i permutes fewer
integers than the number of disjoint cycles in
τiþ1 ∈ T iþ1.
As another example, we could partition the

unreduced tuple ([2], [2], [2], [2]) into reduced
tuples with m¼1, 2, 3, 4. The only possible
m¼1 reduced tuple is T 1 ¼ ½2; 2; 2; 2�; the m ¼ 2
reduced tuples are ðT 1; T 2Þ ∈ fð½2; 2; 2�; ½2�Þð½2; 2�;
½2; 2�Þg; the m ¼ 3 reduced tuples are ðT 1;T 2;
T 3Þ∈fð½2;2�;½2�;½2�Þ;ð½2�;½2;2�;½2�Þ;ð½2�;½2�;½2;2�Þg,
and the only m ¼ 4 reduced tuple is ðT 1;T 2;
T 3; T 4Þ ¼ ð½2�; ½2�; ½2�; ½2�Þ. Note that ðT 1; T 2Þ ¼
ð½2�; ½2; 2; 2�Þ is not an allowed reduced tuple: a
permutation τ1 ∈ T 1 moves two points while all
permutations in T 2 have three nontrivial cycles, so
there are no permutations with this structure that can
give a valid Nakamura graph in the reduced tuple
description.

(5) For each reduced class tuple, scroll over all the tuples
ðτ1;…; τmÞ in the conjugacy classes ðT 1;…; T mÞ.
Keep the tuples with the following two properties:
(a) For all i ∈ f1;…; m − 1g, there is no cycle in

τiþ1 that is disjoint from all cycles in τi.
(b) The set of points moved by at least one of the τi

is exactly f1; 2;…; dg for some d.
The value d is the degree of the Nakamura graph associated
with the tuple.
(6) Act on the set of τ-tuples with the same degree

and the same reduced class tuple with the group
hð1; 2;…; dÞi. Each conjugacy class, together with
σþ ¼ ð1; 2;…; dÞ, gives a distinct Nakamura graph.
Each graph has a cyclic automorphism group gen-
erated by ð1; 2;…; dÞk, where k is the size of the
conjugacy class of the τ-tuple, and the size of the
automorphism group is d=k.

TABLE I. The number of graphs and their automorphism group
sizes against χ½2l�ðg; nÞ and χ½2l−13�ðg; nÞ for different values of g
and n. The notation ½a� × n denotes n graphs with cyclic
automorphism group of order a.

ðg; nÞ χ½2l�ðg; nÞ Δ ¼ 0 Graphs

(0,5) 5
6

½2� × 1; ½3� × 1

(0,6) 7
4

½1� × 1; ½2� × 1; ½4� × 1

(0,7) 21
5

½1� × 3; ½2� × 2; ½5� × 1

(1,3) 5
3

½1� × 1; ½2� × 1; ½6� × 1

(1,4) 35
4

½1� × 7; ½2� × 3; ½4� × 1

(1,5) 42 ½1� × 38; ½2� × 8
(2,2) 21

8
½1� × 2; ½2� × 1; ½8� × 1

ðg; nÞ χ½2l−13�ðg; nÞ Δ ¼ 1 Graphs

(0,5) 1 ½1� × 1
(0,6) 3 ½1� × 3
(0,7) 28

3
½1� × 9; ½3� × 1

(1,3) 3 ½1� × 3
(1,4) 20 ½1� × 20
(1,5) 350

3
½1� × 116; ½3� × 2

(2,2) 7 ½1� × 7
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(7) Collate the graphs by genus g, the number of poles n,
and the dimension of its cell in moduli space. The
number of disjoint cycles in σ− ¼ ðσþτ1…τmÞ−1 is
equal to n − 1, the number of outgoing poles of the
graph. The graph has genus g, where

g ¼ −
1

2
χ −

n
2
þ 1: ð104Þ

Thedimensionof the cell inmoduli space associatedwith the
graph is lþ d − n.
This procedure can quickly generate all Nakamura

graphs for dmax ≤ 10 or so, and is capable of generating
all Nakamura graphs for dmax ¼ 12, given sufficient time.
However, the step of scrolling over all tuples in
ðT 1;…; T mÞ is very resource intense, as a relatively small
percentage of the trial tuples give a valid Nakamura graph.
(For d ¼ 10, about 6% of trial tuples satisfy the two
properties given above.) In addition, the vast majority of
Nakamura graphs have a trivial automorphism group, so
there is virtually a d-fold degeneracy in the graphs counted.
For these reasons, we introduce in the next section a new
structure within the reduced Sd tuple description that
circumvents both these issues and results in a much more
powerful method of counting Nakamura graphs.

A. I-structures

A Nakamura graph has I internal edges that connect
zeros to zeros. In the reduced Sd tuple picture, these edges
are labeled by precisely those integers in f1; 2;…; dg
which are permuted by more than one of the τi in the
tuple ðτ1; τ2;…; τmÞ. The integers which are permuted by
exactly one τi correspond to the external edges, which
connect zeros only to poles. We can describe the structure
of the internal edges of the graph by creating a diagram that
shows which permuted points are shared between the
different τi, which we call an I-structure.
An I-structure is a diagram consisting of m parallel

vertical edges, which we call “columns,” and several rows
of horizontal edges, which we call “I-rows.” Each I-row is a
connected line of horizontal edges and vertices, with the
vertices connecting columns and horizontal edges. An I-
structuremay contain the same I-rowmultiple times, and the
I-rows of an I-structure are taken to be interchangeable. All
pairs of adjacent columns are connected by at least one edge
of an I-row. An example of an I-structure is given in Fig. 17.
There is a unique I-structure corresponding to each

reduced tuple of permutations τi, which represents the
internal edges of the associated Nakamura graph. The m
columns correspond to the m permutations in the tuple
ðτ1;…; τmÞ. From the definition of a Nakamura graph, each
integer in the set f1; 2;…; dg is permuted by at least one of
the τi. If an integer j is permuted by two or more of the τi,
then there is an I-row associated with this integer. The
vertices of this I-row are drawn on the columns

corresponding to the τi which permute the integer j.
There is a horizontal edge associated with every consecu-
tive pair of vertices along the I-row; these edges correspond
to the internal edges of the Nakamura graph. Each vertex of
the I-structure corresponds to a zero (internal vertex) of the
Nakamura graph, but there will in general be zeros which
do not correspond to vertices of the I-structure.
The I-structure constructed from a permutation tuple is

unique, but there will be many different permutation tuples
that have the same I-structure. For example, the I-structure
given in Fig. 17 could be generated by the tuple of S6
permutations

τ1¼ð1;2Þð3;4Þ; τ2¼ð1;3Þð4;5Þ; τ3¼ð1;2Þð5;6Þ:
ð105Þ

The integers {1, 2, 3, 4, 5} correspond to internal edges,
and the integer 6 corresponds to external edges. If we
conjugate the above tuple by some γ ∈ S6, then we have
the new tuple

ð ~τ1; ~τ2; ~τ3Þ ¼ ðγτ1γ−1; γτ2γ−1; γτ3γ−1Þ; ð106Þ
which is just a relabeling of the τi and so has the same
I-structure. In general, conjugate permutation tuples have
the same I-structure, but there can also be distinct tuples
which are not conjugate which have the same I-structure.
An example of a permutation tuple that also generates the
I-structure inFig. 17and is not conjugate to the above tuple is

τ1 ¼ ð1; 2; 3; 4Þ; τ2 ¼ ð1; 3; 4; 5Þ; τ3 ¼ ð1; 2; 5Þ:
ð107Þ

B. I-structures for small I

For small values of I, we can explicitly list all the
possible I-structures. We start by considering I ¼ 0. Any
graph with no internal edges must have m ¼ 1 in the
reduced Sd description, and so the tuples of these graphs
take the form

FIG. 17. An I-structure with five I-rows and three columns.
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σþτσ− ¼ 1: ð108Þ

TheNakamura graphs with I ¼ 0 have no I-structure. These
graphs were counted using matrix models in Sec. V.
Now consider the graphs where I ¼ 1, which have

exactly one internal edge. From the definition of the
reduced Sd tuple description, the zeros of an I ¼ 1 graph
must be described by a pair of permutations τ1 and τ2, and
for each such pair of permutations there exists a unique
j ∈ f1; 2;…; dg such that

τ1ðjÞ ≠ j;

τ2ðjÞ ≠ j: ð109Þ

In other words, j belongs to the moved-point sets of both
τ1 and τ2. The associated I-structure consists of two
columns and a single I-row with two vertices. This is
given in Fig. 18.
In the case that I ¼ 2, there are three distinct I-structures,

as drawn in Fig. 19. The first I-structure has three columns
and one I-row with three vertices. This corresponds to
tuples in which there is a single integer j ∈ f1; 2;…; dg
that is permuted by all three permutations τ1; τ2; τ3, and no
other integer in the set f1; 2;…; dg is permuted by any two
of the τi. The second I-structure has two columns and two
identical I-rows, each with two vertices. This structure
corresponds to graphs for which there are exactly two
integers j1; j2 ∈ f1; 2;…; dg that are mutually permuted
by the pair of permutations τ1 and τ2. The third I-structure
has three columns and two distinct I-rows with two
vertices. This corresponds to a triple τ1; τ2; τ3, with the
property that there is some pair j1; j2 ∈ f1; 2;…; dg such
that

τ1ðj1Þ ≠ j1; τ2ðj1Þ ≠ j1; τ3ðj1Þ ¼ j1;

τ1ðj2Þ ¼ j2; τ2ðj2Þ ≠ j2; τ3ðj2Þ ≠ j2: ð110Þ

FIG. 19. The I-structures for I ¼ 2.

FIG. 20. The I-structures for I ¼ 3.

FIG. 18. The only possible I-structure for I ¼ 1.
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For I ¼ 3, there are 11 I-structures that can be drawn that
correspond to tuples in the reduced Sd description. These
are shown in Fig. 20.

C. An algorithm utilizing I-structures

A Nakamura graph corresponds to a slide-equivalence
class of permutation tuples. Within each slide-equivalence
class, there is a Hurwitz class of reduced Sd tuples, which is
an equivalence class under Sd conjugation of permutation
tuples ðσþ; τ1;…; τm; σ−Þ. If we consider just Nakamura
graphs with a single incoming pole, then the permutation
σþ is a d-cycle, and we can use the Sd symmetry to choose
a representative element of the Hurwitz class with
σþ ¼ ð1; 2;…; dÞ. The elements of the Hurwitz class with
σþ ¼ ð1; 2;…; dÞ are permutation tuples conjugate to each
other by elements in

AutðσþÞ ¼ hð1; 2;…; dÞi ¼ Zd: ð111Þ

This means that a Nakamura graph corresponds to an
equivalence class of reduced tuples ðτ1;…; τmÞ under the
equivalence

ðτ1;…; τmÞ ∼ ðγ−1τ1γ;…; γ−1τmγÞ; ð112Þ

for γ ∈ hð1; 2;…; dÞi ¼ Zd. Each Nakamura graph has an
associated class structure T i ¼ ½τi�, i ¼ 1;…; m, and an
associated I-structure, describing which integers in the set
f1; 2;…; dg are permuted by more than one permutation τi.
There is an efficient algorithm that counts Nakamura

graphs by using I-structures. As in the original algorithm
outlined above, the I-structures algorithm starts by finding
all the unreduced and reduced class tuples. For each
reduced class tuple ðT 1;…; T mÞ, the algorithm finds all
possible I-structures that are consistent with this class
tuple. Each I-structure must have one edge connecting
columns i − 1 and i for each cycle in τi ∈ T i, where
i ¼ 2;…; m. Also, there must be no more edges connecting
each column i ¼ 1; 2;…; m in an I-structure than the total
number of labels permuted by any τi ∈ T i.
The algorithm considers each reduced class tuple and I-

structure in turn. All Nakamura graphs with this reduced
class tuple have the same values of Δ and I, all Nakamura
graphs with this chosen I-structure have the same value of
I, and so all graphs with this I-structure and class tuple have
the same degree d, where

d ¼ Δþ 2l − I: ð113Þ

Let ΩI ;T be the set of tuples ðτ1;…; τmÞ with a given I-
structure I and class structure ðT 1;…; T mÞ. The Nakamura
graphs with the specified I-structure and class structure are
the equivalence classes of this set under the Zd conjugation
action (112). However, the set ΩI ;T can be very large in
general, so it is computationally very expensive to split this

set into Zd conjugacy classes directly. One way of circum-
venting this difficulty is to break the problem into stages: we
first splitΩI ;T into conjugacy classes under the equivalence
relation

ðτ1; τ2;…; τmÞ ∼ ðα−1τ1α; α−1τ2α;…; α−1τmαÞ; ð114Þ

where α ∈ Sd. Once we have found the Sd-equivalence
classes ofΩI ;T , we can act on the elements of each Sd-class
individually with the group Zd by conjugation and hence
find the Zd-equivalence classes of ΩI ;T , which are the
distinct Nakamura graphs. Also, rather than directly con-
structing the very large set ΩI ;T and then splitting it into Sd
equivalence classes, it is more efficient to construct these
equivalence classes directly by finding a representative
element of each class.
We find the representative elements of the Sd-classes by

using the I-structure and breaking the Sd symmetry. Let k
be the number of rows in the I-structure I , where
k ∈ f0; 1;…; dg. For any tuple ðτ1;…; τmÞ ∈ ΩI ;T , there
are exactly k integers in f1; 2;…; dg that are permuted by
more than one τi. These integers correspond to the internal
edges of the Nakamura graph. By adding the length of the
cycles in the class T i for some i ∈ f1; 2;…; mg and
subtracting the number of vertices in the ith column of
the I-structure, we have the number of integers ei that are
permuted by only the permutation τi within the tuple
ðτ1;…; τmÞ. These integers correspond to the external
edges of the graph. Consider the set of “canonically
labeled” τi-tuples ~ΩI ;T ⊂ ΩI ;T which consists of those
tuples in which the permuted integers 1 to k correspond to
the rows of the I-structure, the integers kþ 1;…; kþ e1 are
permuted only by τ1, the labels kþ e1 þ 1;…; kþ e1 þ e2
are permuted only by τ2, and so on. Each Sd-equivalence
class of ΩI ;T contains at least one such canonically labeled
τi-tuple. A pair of canonically labeled tuples are in the same
Sd equivalence class if and only if they are conjugate to
each other by an element of the group Sk × Se1 × � � � Sem .
This means that the orbits of the canonically labeled tuples
under the action by conjugation of the group Sk × Se1 ×
� � � Sem are in direct correspondence with the equivalence

classes of ΩI ;T under conjugation by Sd. As the set ~ΩI ;T is
usually much smaller than ΩI ;T , it is relatively cheap
computationally to construct the set of canonically labeled
tuples, find their orbits under Sk × Se1 × � � � Sem, and
choose a representative element from each orbit. In this
way, we can construct a set of representative elements of
the Sd classes of ΩI ;T .
Consider each Sd-equivalence class of ΩI ;T in turn,

specified by a representative τ-tuple ðτ1;…; τmÞ. All the
elements of this Sd equivalence class are of the form
ðα−1τ1α;…; α−1τmαÞ, where α ∈ Sd. Let AutðτÞ be the
automorphism group of the representative τ-tuple
ðτ1;…; τmÞ; that is, the set of elements γ ∈ Sd that satisfy
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γ−1τiγ ¼ τi for all i ¼ 1; 2;…; m. If two permutations α; ~α
satisfy ~α ¼ γα for some γ ∈ AutðτÞ, then

ðα−1τ1α;…; α−1τmαÞ ¼ ð ~α−1τ1 ~α;…; ~α−1τm ~αÞ: ð115Þ

We can therefore see that each right coset AutðτÞα ∈
AutðτÞnSd specifies a unique element in the Sd equivalence
class of the τ-tuple.
We wish to split this Sd equivalence class into Zd

equivalence classes. A pair of elements of the Sd equiv-
alence class ðα−1τ1α;…; α−1τmαÞ and ð ~α−1τi ~α;…; ~α−1τm ~αÞ
are in the same Zd equivalence class if and only if

ð ~α−1τi ~α;…; ~α−1τm ~αÞ ¼ ðz−1α−1τ1αz;…; z−1α−1τmαzÞ
ð116Þ

for some z ∈ Zd ¼ hð1; 2;…; dÞi. This means that two right
cosets AutðτÞα and AutðτÞ ~α are in the sameZd-equivalence
class if AutðτÞ ~α ¼ ðAutðτÞαÞz for some z ∈ Zd. We deduce
that the double cosets

AutðτÞαZd ∈ AutðτÞnSd=Zd ð117Þ

parametrize the Zd-equivalence classes of a given Sd-
equivalence class ofΩI ;T , and so give the Nakamura graphs
associated with a given Sd-equivalence class of ΩI ;T .
We can read off the size of the automorphism group of

each graph by looking at the size of its associated double
coset. The product group AutðτÞ × Zd acts on the elements
in Sd by left and right multiplication. The orbits of this
action are the double cosets AutðτÞnSd=Zd. The stabilizer
group of an element α ∈ Sd under this action consists of the
pairs of elements ðγ; zÞ which satisfy γαz ¼ α, or equiv-
alently α−1γα ¼ z−1. As γ and z can be any elements of the
groups AutðτÞ and Zd, the stabilizer of α is precisely the
intersection of the groups α−1AutðτÞα and Zd. These are
exactly the elements which fix under conjugation every
element in the tuple ðσþ; α−1τ1α;…; α−1τmα; σ−Þ, and so
the stabilizer of α is the automorphism group of the graph.
By the orbit-stabilizer theorem, we therefore deduce that
the size of the automorphism group of a Nakamura graph
given by the double coset AutðτÞαZd is

djAj
jAutðτÞαZdj

: ð118Þ

The software GAP can efficiently count double cosets and
find their representative elements and sizes. The algorithm
we have devised is therefore able to quickly find all the
Nakamura graphs that arise from a given representative
τ-tuple in the Sd-equivalence classes of ΩI ;T , and to read
off their automorphism group sizes.
As an example of this procedure, we consider the

reduced class tuple ðT 1; T 2; T 3Þ ¼ ð½2; 2�; ½3�; ½2�Þ with

jχj ¼ 5. This class tuple contains only one cycle with cycle
size greater than 2, so its branching number is Δ ¼ 1. From
the relation

2jχj − d ¼ Δþ I; ð119Þ

weknow that the degree and the number of internal edges are
related by dþ I ¼ 9. Permutations in the class T 1 permute
four integers, so the degree is bounded from below by 4.
There are three classes in this reduced class tuple, so there are
at least two internal edges. This means that the number of
internal edges I lies in the range {2, 3, 4, 5}.
One of the I-structures found by the algorithm is given in

Fig. 21. This structure has I ¼ 3 internal edges and degree
d ¼ 6. Let ΩI ;T be the set of tuples corresponding to this
I-structure and reduced class structure. This I-structure has
two rows, so there are k ¼ 2 integers corresponding to
internal edges in each tuple. The first column has two
vertices and corresponds to the class T 1 ¼ ½2; 2� of
permutations which permute four integers. This means
that there are e1 ¼ 2 integers permuted by the first
permutation in each tuple which correspond to external
edges. Similarly, there are e2 ¼ 1 integers permuted only
by the permutation τ2 within each tuple and e3 ¼ 1 integers
permuted by the permutation τ3.
To find the Sd-equivalence classes of ΩI ;T , we first

find the canonically labeled tuples ðτ1; τ2; τ3Þ in which τ1
permutes the integers {1, 2, 3, 4}, τ2 permutes {1, 2, 5},
and τ3 permutes {1, 6}. There are six such elements, and
the set of canonically labeled tuples is

~ΩI ;T ¼ fð1; 2Þð3; 4Þ; ð1; 3Þð2; 4Þ; ð1; 4Þð2; 3Þg
× fð1; 2; 5Þ; ð1; 5; 2Þg × fð1; 6Þg: ð120Þ

Next, we consider the orbits in ΩI ;T generated by this set
under the action of the group Sk × Se1 × Se2 × Se3 ¼
hð1; 2Þ; ð3; 4Þi. Note that the set ~ΩI ;T is not closed under
this group action. The tuples ((1, 3)(2, 4), (1, 2, 5), (1, 6)) and
((1, 4)(2, 3), (1, 2, 5),(1, 6)) are conjugate, as are the tuples
((1, 3)(2, 4), (1, 5, 2), (1, 6)) and ((1, 4)(2, 3), (1, 5, 2), (1, 6)),
and so a set of representatives for the orbits of the canonically
labeled tuples ðτ1; τ2; τ3Þ is

FIG. 21. An example of an I-structure of ðT 1; T 2; T 3Þ ¼
ð½2; 2�; ½3�; ½2�Þ with dmax ¼ 10.
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ðð1; 2Þð3; 4Þ; ð1; 2; 5Þ; ð1; 6ÞÞ;
ðð1; 2Þð3; 4Þ; ð1; 5; 2Þ; ð1; 6ÞÞ;
ðð1; 3Þð2; 4Þ; ð1; 2; 5Þ; ð1; 6ÞÞ;
ðð1; 3Þð2; 4Þ; ð1; 5; 2Þ; ð1; 6ÞÞ: ð121Þ

These are representative elements of the Sd-equivalence
classes of ΩI ;T .
For each representative tuple, the Nakamura graphs are

given by the double cosets AutðτÞnSd=Zd. The representa-
tive tuple ðτ1; τ2; τ3Þ ¼ ðð1; 2Þð3; 4Þ; ð1; 2; 5Þ; ð1; 6ÞÞhas the
automorphismgroupAutðτÞ¼hð3;4Þi, and so theNakamura
graphs are the double cosets hð3; 4ÞinS6=hð1; 2;…; 6Þi.
There are 60 distinct double cosets, all consisting of 12
elements, and so there are 60 Nakamura graphs in this
Sd-class. All these graphs have a trivial automorphism
group. For the representative tuple ðτ1; τ2; τ3Þ ¼
ðð1; 3Þð2; 4Þ; ð1; 2; 5Þ; ð1; 6ÞÞ, the automorphism group
AutðτÞ is trivial, and so the double cosets are
fðÞgnS6=hð1; 2;…; 6Þi. There are 120 distinct double cosets
in this case, and so there are 120 Nakamura graphs in this
Sd-equivalence class.

D. GAP results for jχ j ¼ 7

The I-structure counting algorithm produces a complete
catalogue of the Nakamura graphs for any given genus. In
the Appendix, we have presented the output for the graphs
with graph Euler characteristic jχj ¼ 7, catalogued by
genus g, number of poles n, the dimensions of their
associated cells in moduli space, and their automorphism
groups. This extends the data found in [4].
We can perform a nontrivial check on the validity of this

approach and of the cell-decomposition of moduli space by
comparing these tables with the orbifold Euler characteristic
of moduli space. Harer and Zagier [5] give the following
formulas for the orbifold Euler characteristic of Mg;n:

χð0; nÞ ¼ ð−Þn−1
ðn − 1Þðn − 2Þ ; n ≥ 3;

χð1; nÞ ¼ ð−Þn
12

; n ≥ 2;

χðg; nÞ ¼ ð−Þ2g
2g

�
2gþ n − 3

n − 1

�
B2g g ≥ 2; n ≥ 0;

ð122Þ

where B2g is a Bernoulli number. [The formulas given in [5]
are a factor of ðn − 1Þ! larger than the formulas given here,
sincewe have allowed the outgoing poles of the graphs to be
interchanged by automorphisms.]
Using these tables, and the defining formula for an

orbifold Euler characteristic

χðg; nÞ ¼
X
G

ð−1Þdim 1

jAutðGÞj ; ð123Þ

we find

χð0; 9Þ ¼ 1

56
;

χð1; 7Þ ¼ −
1

12
;

χð2; 7Þ ¼ 1

8
;

χð3; 3Þ ¼ −
5

84
:

This is consistent with the formulas (122) from Harer and
Zagier.

VII. SUMMARY AND FUTURE DIRECTIONS

Nakamura [4] gave a description of light-cone string
diagrams in terms of embedded graphs on the worldsheet,
which are constructed from the Giddings-Wolpert differ-
ential on the worldsheet. He used it to describe a cell
decomposition of the space of GW differentials. These cells
can be quotiented by the automorphism groups of the
graphs to obtain cells inMg;n. This allowed a computation
of the orbifold Euler characteristics of Mg;n for small
values of g and n. We have developed connections between
Nakamura graph combinatorics, branched covers, and
permutation tuples. By considering the light-cone diagrams
with a single incoming string, we used known results on
Hermitian matrix model correlators to give analytic results
for the contribution of the top-dimensional cells in the LC
decomposition. This could be generalized to cases with two
or more incoming strings by using [27] and generalizations
thereof. Beyond the top-dimensional cells, we related the
contributions to the orbifold Euler characteristic from
lower-dimensional cells with Δ > 0 and I ¼ 0 to analytic
expressions in complex matrix models.
As observed in [4], the numbers of cells in the LC cell

decomposition for given g and n are smaller than the
corresponding number in the KP cell decomposition. This
is because the Nakamura graphs, which correspond to the
cells, are embedded graphs, but with restrictions related to
the fact that the edges are real trajectories of the GW
differential. The fact that there is a well-defined global time
coordinate imposes restrictions on the connectivity of
embedded graphs which can be Nakamura graphs. These
restrictions are detailed in the language of permutations in
Sec. III D. This suggests that it would be worthwhile to
revisit mathematical questions on the topology of Mg;n

using the LC cell decomposition. The computation of all
the homology groups is still an open question. For a recent
paper, see for example [28], and for associated discussion
[29]. From a physics perspective, an immediate goal would
be to use the improved understanding of the LC cell
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decomposition in the computation of string amplitudes in
the light-cone gauge, in either the first quantized or the
second quantized string field formalism.
The LC cell decomposition gives precise information

about the topology of Mg;n. The codimension of a cell is
2Δþ I, with Δ increasing when the zeros of the GW
differential have higher order. The parameter I is the number
of internal edges of the Nakamura graph, connecting the
zeros of the differential. An improved understanding of the
structure of the lower dimensional cells in the LC decom-
position can be expected to shed light on the issue of “contact
terms” in the light-cone approach to string amplitudes. It is
believed that the second quantized bosonic light-cone string
field theory requires no contact terms, but superstrings
require contact terms (see for example the review [30]).
Contact terms related to higher order ramification points
have been discussed in [31] in connection with the matrix
string theory of Dijkgraaf, Verlinde, and Verlinde [32]. As
pointed out in [33] there is no direct superstring analogue of
the bosonic worldsheet moduli space, but rather superstring
theory requires integration over an appropriate cycle in a
product ML ×MR of moduli spaces, with ML and MR
closely related toMg;n. It would be interesting to investigate
how an improved understanding of the combinatorics of cell
decompositions inMg;n can lead to cell decompositions for
the integration cycles appropriate for superstring theory
amplitudes.
A very interesting problem is to give a precise

description of the cell decomposition of Mg;n arising
from the light-cone approach. We know that there is a
cell for every Nakamura graph. The Nakamura graph has
parameters which are interaction times and strip widths.
These are related to the more traditional parametrization
in terms of times, internal string momenta (widths), and
twist angles [1,2,6,20]. The automorphism group of the
Nakamura graphs should have a natural action on
the strip widths and time parameters, which would allow
the space of these parameters associated with a given
graph to be quotiented out by the group. Clarifying this
in generality (i.e. for any graph at any genus g, for any
number of punctures n > 1, and for any choice of
external momenta) will be a very useful step in better
understanding the geometry of the light-cone cell decom-
position. It would solve the problem (discussed in [3,6])
of giving the precise restrictions on the light-cone
diagram parameters to ensure that every Riemann surface
appears precisely once and should lead to progress in the
computation of string amplitudes in the light cone. The
results of the present paper suggest that the general
permutation group descriptions of Nakamura graphs will
be the right setup to approach this question. We hope to
return to this problem in the near future.
Belyi maps, and the related equivalence classes of

permutation triples, have played an important role in this
paper. A general Nakamura graph is related to permutation

triples in S4dþ2I or S2dþ2I, albeit only those equivalence
classes of triples subject to intricate causality conditions. It
is known that Belyi maps have deep connections to number
theory and as such form an active subject of research in
mathematics [13,14,34]. Investigation of the link between
light-cone cell decompositions ofMg;n and Belyi maps can
lead to a new interplay between string theory and number
theory. One of the themes of interest in the number theory
context is that Belyi maps form complete orbits of the
absolute Galois group. It is also known that certain
restricted classes of Belyi maps, e.g. those related to
treelike dessins, form complete orbits [14]. Is the same
true of the restricted classes related to Nakamura graphs?
Belyi maps came up again in the Sd description of
Nakamura graphs, when we specialized to top-dimensional
cells of the LC cell decompositions and related the counting
of the cells to Hermitian matrix models. This link between
Belyi maps and Hermitian matrix models has been inves-
tigated as an avenue toward a topological string description
of the Hermitian matrix model [15,35–37], as the simplest
model of gauge-string duality. It is also an example of the
ubiquity of combinatoric low dimensional topological
field theories, based on Dijkgraaf-Witten models with
permutation groups, in gauge theoretic correlators
[11,12,38–40]. The present work extends these topologi-
cal field theory and topological string structures to the
fundamentals of string amplitudes and moduli space
Mg;n. It is likely that future developments will see a
deeper interplay between simple models of gauge-string
duality, combinatoric topological field theories, and
traditional string amplitude computations.
Nakamura graphs, with the construction of general

closed string worldsheets at any point in Mg;n in terms
of flat strips glued together, are central to the metastring, a
new foundational approach to the geometry of string theory
and spacetime being developed in [41]. This relationship is
developed in more detail in the recent paper [9].
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APPENDIX: TABLES OF NAKAMURA GRAPHS WITH jχ j ¼ 7

See Table II, Table III, Table IV, and Table V.

TABLE II. ðg; nÞ ¼ ð0; 9Þ.
Dimension 12 11 10 9 8 7

Graphs ð½Aut� × numberÞ [1] 28

[1] 297 [1] 3675

[1] 6795

[1] 8892
[1] 1324

[2] 5 [2] 52
[2] 25

[7] 1 [4] 1

6 5 4 3 2 1 0

[1] 5250

[1] 2226

[1] 595 [1] 6 [8] 1
[1] 8169 [1] 85

[2] 29
[2] 57 [2] 6

[4] 2

TABLE III. ðg; nÞ ¼ ð1; 7Þ.
Dimension 14 13 12 11 10 9 8

Graphs ð½Aut� × numberÞ [1] 9702 [1] 174090

[1] 404059

[1] 680960

[2] 471
[1] 838 [1] 51870 [1] 843976

[3] 1
[2] 40 [2] 210 [2] 574

[4] 2
[6] 1

7 6 5 4 3 2 1

[1] 222057

[1] 64087

[1] 10820

[1] 497046 [1] 863
[1] 766000 [2] 124 [1] 18

[2] 378 [2] 15
[3] 5 [3] 5 [3] 2

[4] 4 [4] 1
[6] 2

LAURENT FREIDEL, DAVID GARNER, AND SANJAYE RAMGOOLAM PHYSICAL REVIEW D 91, 126001 (2015)

126001-28



TABLE IV. ðg; nÞ ¼ ð2; 5Þ.
Dimension 16 15 14 13 12

Graphs ð½Aut� × numberÞ [1] 59598 [1] 1374975

[1] 3688668
[1] 4680 [1] 359771 [2] 1322

[2] 78 [2] 485 [3] 9
[4] 2

11 10 9 8 7

[1] 7291788

[1] 9708622

[1] 5611630
[1] 10799810 [1] 11954262

[2] 1671
[2] 1995 [3] 30

[4] 5

6 5 4 3 2

[1] 2204212

[1] 548779

[1] 76822

[1] 84
[2] 695 [2] 101 [1] 4814
[3] 36 [4] 3 [3] 12

[8] 1

TABLE V. ðg; nÞ ¼ ð3; 3Þ.
Dimension 18 17 16 15 14

Graphs ð½Aut� × numberÞ [1] 55143 [1] 1502760

[1] 4420204
[1] 4013

[2] 1236
[2] 63 [1] 360892

[3] 7
[7] 2 [2] 421

[4] 5
[14] 1

[6] 1

13 12 11 10 9

[1] 9649120 [1] 12042490

[1] 18191095
[1] 15910334 [1] 19771176

[2] 1891
[2] 2031 [3] 25

[4] 11

8 7 6 5 4

[1] 5502643

[1] 1632983

[1] 284718
[2] 940 [2] 203 [1] 24312 [1] 680
[3] 29 [4] 4 [3] 10 [2] 12
[6] 2 [8] 2
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