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A quark-meson-diquark plasma is considered within the Polyakov-loop extended Nambu–Jona-Lasinio
model for dynamical chiral symmetry breaking and restoration in quark matter. Based on a generalized
Beth-Uhlenbeck approach to mesons and diquarks we present the thermodynamics of this system including
the Mott dissociation of mesons and diquarks at finite temperature. A striking result is the suppression of
the diquark abundance below the chiral restoration temperature by the coupling to the Polyakov loop,
because of their color degree of freedom. This is understood in close analogy to the suppression of quark
distributions by the same mechanism. Mesons as color singlets are unaffected by the Polyakov-loop
suppression. At temperatures above the chiral restoration mesons and diquarks are both suppressed due to
the Mott effect, whereby the positive resonance contribution to the pressure is largely compensated by the
negative scattering contribution in accordance with the Levinson theorem.
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I. INTRODUCTION

For a quantum field theoretic description of hadronic
correlations in quark matter that shares the property of
approximate chiral symmetry with the QCD Lagrangian,
the Nambu–Jona-Lasinio (NJL) model has been widely
used. This model is particularly suitable to address the
appearance of pions in quark matter as a consequence of
dynamical chiral symmetry breaking in accordance with
the Goldstone theorem. The absence of confinement is one
of the shortcomings of the NJL model (see, e.g., [1–4] for
early reviews and [5,6] for more recent ones with emphasis
on the high density aspects).
For a solution to this problem it has been proposed to

take into account the suppression of colored quark states by
their coupling to the Polyakov loop. For the Polyakov-loop
extended NJL (PNJL) model [7–10] in the mean field
approximation a quark distribution function arises which in
the limit of the confining phase (where for the traced
Polyakov loop Φ → 0 holds) is strongly suppressed relative
to the ordinary Fermi function for quarks obtained in the
deconfined phase where Φ → 1. Indeed this has been
demonstrated in Refs. [8,10]. The model has been extended
to also include mesonic correlations; see [11–16]. Note that
the coupling to the Polyakov loop also suppresses thermo-
dynamic instabilities in nonlocal NJL models [17,18].
In the present work we want to investigate how the

coupling of quarks to the Polyakov loop will suppress the

distribution of diquark states which arise from strong
pairing correlations in quark matter. To this end we shall
consider here the scalar diquark channel as a color anti-
triplet state and describe it in the framework of a gener-
alized Beth-Uhlenbeck approach. Such a treatment was
developed for describing excitonic correlations in semi-
conductor plasmas [19] and two-nucleon correlations in
nuclear matter [20] before being adapted to the case of
mesons in quark matter [21] and extended recently to the
general case of two-quark correlations in quark matter [22].
This approach allows for a microscopic description of

the occurrence of bound states in the equation of state of a
nonideal plasma and their dissociation at high phase space
densities due to the Mott effect. We develop this approach
further by the coupling to the Polyakov loop analogous to
Ref. [23]; see also [24,25]. Here we will demonstrate how
the Polyakov-loop coupling leads to a strong suppression of
the colored diquark states in the confining phase in straight
analogy to the case of the color triplet quark states. As a
striking elucidation of this effect we consider the super-
strong coupling case for which the diquark becomes
degenerate in mass to the pion so that the only difference
between pion and diquark contributions to the thermody-
namics are their numbers of degrees of freedom and the fact
that pions are color neutral while the diquarks form a color
antitriplet.
The present work can be considered an important step

towards a description of baryons in quark matter. Any
microscopic model which aims at this goal has to introduce
diquarks first as elements in a Faddeev-type description of
baryons as three-quark states (see, e.g., [26–28] for early
works and [29,30] for recent studies at finite temperature
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and chemical potential). Such a description has to explain
why in the thermodynamics of quark matter with meson,
diquark, and baryon correlations only mesons and baryons
remain as observable degrees of freedom in the confined
phase. With the present work we provide for the example of
the PNJL model the still missing element, the suppression
of diquark states in the confining phase.

II. MESONS AND DIQUARKS IN PNJL
QUARK MATTER

We base the approach on the PNJL model Lagrangian
including diquark interaction channels besides the standard
chirally symmetric scalar-pseudoscalar meson interaction
for the isospin symmetric case (μu ¼ μd ¼ μ and mu ¼
md ¼ m0):

L ¼ q̄½i∂ −m0 þ γ0ðμ − iA4Þ�q
þ Lint − UðΦ; Φ̄;TÞ;

Lint ¼ GS½ðq̄qÞ2 þ ðq̄iγ5τqÞ2�
þGD

X

A¼2;5;7

ðq̄iγ5τ2λAqcÞðq̄ciγ5τ2λAqÞ: ð1Þ

Here, qc ¼ Cq̄T with C ¼ iγ2γ0 denote the charge con-
jugate quark fields; λA, A ¼ 2; 5; 7, the antisymmetric
Gell-Mann matrices in color space; and τi, i ¼ 1; 2; 3 the
Pauli matrices in flavor space. GS and GD are dimension-
ful coupling constants. The Polyakov-loop potential
UðΦ; Φ̄;TÞ is taken in the polynomial form [10], with
the parameters taken from that reference. The homo-
geneous gluon background field in the Polyakov gauge
is a diagonal matrix in color space A4 ¼ λ3ϕ3 þ

ffiffiffi
3

p
λ8ϕ8 ¼

diagðϕ3 þ ϕ8;−ϕ3 þ ϕ8;−2ϕ8Þ. The Polyakov loop field
Φ is defined via the color trace over the gauge-invariant
average of the Polyakov line Lð~xÞ [10], which for homo-
geneous fields becomes rather simple:

Φ ¼ 1

Nc
Trc½exp ðiβA4Þ�

¼ 1

Nc
½eiβðϕ3þϕ8Þ þ e−iβðϕ3−ϕ8Þ þ e−2iβϕ8 �: ð2Þ

Its complex conjugate is denoted by Φ̄. Starting from the
Lagrangian, we perform the usual bosonization by means
of Hubbard-Stratonovich transformations, thus integrating
out the quark degrees of freedom to obtain a path integral
representation of the partition function (and thus the
thermodynamical potential Ω) in terms of composite fields,
mesons (M ¼ σ; ~π) and (anti)diquarks (D; D̄ ¼ ΔA;Δ�

A,
A ¼ 2; 5; 7), which in Gaussian approximation can be
evaluated in a closed form [22]:

ZGauß ¼ ZMFΠX¼M;D;D̄ZX: ð3Þ

For the thermodynamic potential Ω ¼ −ðT=VÞ lnZ we
obtain accordingly

ΩGauß ¼ UðΦ; Φ̄;TÞ þ σ2MF

4GS
þ ΩQ þ ΩM þ ΩD þ ΩD̄; ð4Þ

with

ΩQ ¼ −
1

2

T
V
Tr ln ½βS−1Q �; ð5Þ

containing the inverse quark propagator in the mean
field approximation with the Nambu-Gorkov matrix
representation

S−1Q ¼
� ðizn þ μ̂Þγ0 − γ · p−m ΔMFiγ5τ2λ2

Δ�
MFiγ5τ2λ2 ðizn − μ̂Þγ0 − γ · p−m

�
:

ð6Þ

Here, zn ¼ ð2nþ 1ÞπT are the fermionic Matsubara
frequencies and we have introduced the combinations

m ¼ m0 þ σMF; ð7Þ

μ̂ ¼ μ − iA4

¼ diagðμ − iϕ3 − iϕ8; μþ iϕ3 − iϕ8; μþ 2iϕ8Þ
¼ diagðμr; μg; μbÞ: ð8Þ

In the present work, we consider both cases, NJL and
PNJL, but we will restrict ourselves to the normal phase
without color superconductivity (ΔMF ¼ 0).
Note that due to the presence of the diquark fields and the

background gauge field the color trace is not trivial. In [22],
we have neglected the gluon background field (NJL model:
A4 ¼ 0) and performed an expansion with respect to the
fluctuations of the composite fields (mesons and diquarks)
around their (homogeneous) mean field values up to
Gaussian order where the path integral for the partition
function can be evaluated in a closed form.
The functional trace Tr is defined as a sum over four-

momenta times the trace tr over the internal degrees of
freedom. In the infinite volume limit this becomes

Tr ¼
X

pn

tr → V
X

zn

Z
d3p
ð2πÞ3 tr; ð9Þ

where zn denote the Matsubara frequencies, which are
fermionic for quarks and baryons, and bosonic for mesons
and diquarks. The trace in Dirac and flavor spaces in (5) is
readily performed and after Matsubara summation we
arrive for the quark thermodynamical potential at [8,10]
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ΩQ ¼ −2NcNf

ZΛ
d3p
ð2πÞ3 Ep − 2NfT

Z
d3p
ð2πÞ3 ftrc¼r;g;b ln ½1þ e−ðEp−μcÞ=T � þ trc¼r;g;b ln ½1þ e−ðEpþμcÞ=T �g;

¼ −2NcNf

ZΛ
d3p
ð2πÞ3 Ep − 2NfT

Z
d3p
ð2πÞ3 fln ½ð1þ Ye−iβðϕ3þϕ8ÞÞð1þ Yeiβðϕ3−ϕ8ÞÞð1þ Ye2iβϕ8Þ�

þ ln ½ð1þ Ȳeiβðϕ3þϕ8ÞÞð1þ Ȳe−iβðϕ3−ϕ8ÞÞð1þ Ȳe−2iβϕ8Þ�g;

¼ −2NcNf

ZΛ
d3p
ð2πÞ3 Ep − 2NfT

Z
d3p
ð2πÞ3 fln ½1þ 3Φ̄Y þ 3ΦY2 þ Y3� þ ln ½1þ 3ΦȲ þ 3Φ̄Ȳ2 þ Ȳ3�g; ð10Þ

where we have introduced the abbreviations Y ¼ e−ðEp−μÞ=T

and Ȳ ¼ e−ðEpþμÞ=T . Removal of the zero-point energy term
(“no sea” approximation) and integration by parts gives the
thermodynamic potential in the form

ΩQ ¼ −
2NcNf

3

Z
dp
2π2

p4

Ep
½fþΦðEpÞ þ f−ΦðEpÞ�; ð11Þ

with the generalized Fermi distribution functions
(cf. Ref. [11])

fþΦðEpÞ ¼
ðΦ̄þ 2ΦYÞY þ Y3

1þ 3ðΦ̄þ ΦYÞY þ Y3
;

f−ΦðEpÞ ¼
ðΦþ 2Φ̄ ȲÞȲ þ Ȳ3

1þ 3ðΦþ Φ̄ ȲÞȲ þ Ȳ3
: ð12Þ

The limiting cases of the confined phase (Φ ¼ Φ̄ ¼ 0) and
the deconfined phase (Φ ¼ Φ̄ ¼ 1) of these distributions
are the Fermi functions

f�ΦðωÞjΦ¼0 ¼
1

exp½3ðω∓μÞ=T� þ 1
; ð13Þ

f�ΦðωÞjΦ¼1 ¼
1

exp½ðω∓μÞ=T� þ 1
: ð14Þ

In the confinement case, Fermi distribution functions with
rescaled temperature arise (T → T=Nc), so that for a given
temperature T exponentially fewer quarks get excited than
in the ordinary Fermi gas case for Φ → 1. The thermody-
namic potential of the meson and diquark channels in
Gaussian approximation is

ΩX ¼ 1

2

T
V
Tr ln ½β2S−1X �; X ¼ M;D; D̄; ð15Þ

where the inverse meson and diquark propagators take the
generic form

S−1X ðizn;qÞ ¼
1

GX
− ΠXðizn;qÞ; ð16Þ

with the polarization functions ΠXðizn;qÞ defined in the
RPA as one-loop integrals which involve combinations of
quark-quark and quark-antiquark propagators with the
corresponding vertex functions in the meson and diquark
channels, respectively. The required polarization loop
integrals for mesons and diquarks are given in Ref. [22]
for the NJL model. For the PNJL case, one has to replace in
the final expressions the Fermi functions by the generalized
Fermi distribution functions (12).
For the further evaluation of the thermodynamic poten-

tial (15) it is convenient to work in a polar representation of
the complex propagator function which results from ana-
lytic continuation of (16) into the complex plane

SXðωþ iη;qÞ ¼ jSXðω;qÞj exp ½iδXðω;qÞ�; ð17Þ

and which defines the phase shift functions δXðω;qÞ. The
medium dependence of these functions encodes important
physical effects such as the merging of the discrete bound
state part of the spectrum with the continuum of scattering
states in the Mott transition. The details will be explained
later in Sec. IV B when discussing the numerical results of
the present study. An expression for the second virial
coefficient in the virial expansion of the quantum statistical
partition function in terms of medium independent phase
shifts has been given first by Uhlenbeck and Beth [31],
who exploited the quantum mechanical models for hard
sphere potential scattering. In this standard Beth-Uhlenbeck
approach which is valid in the low-density limit one can
also employ experimental data on two-particle scattering in
free space, when they are available as, e.g., in the cases of
Coulomb scattering [32], nucleon-nucleon scattering [33] or
pion nucleon scattering [34].
The generalization of the Beth-Uhlenbeck equation of

state to higher densities has been developed in
Refs. [19,20]. Out of different aspects of this generalized
Beth-Uhlenbeck approach it was in particular the modifi-
cations of the phase shifts due to a lowering of the
continuum threshold for scattering states which entails
the Mott dissociation of bound states that was interesting
for the application to mesonic correlations in quark matter
within the NJL model [21]. What hindered a broad
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application of the generalized Beth-Uhlenbeck approach
unifying the microscopic approach to the phenomenology
of the hadron-to-quark-matter phase transition was mainly
the absence of quark confinement in the NJL model. With
the advent of the PNJL models (see, e.g., [8–16,35]) the
situation could be amended since colored quark excitations
get suppressed by the coupling to the Polyakov loop. In the
present work we show how this Polyakov-loop suppression
of colored states works for the diquark fields which are
considered here together with their mesonic counterparts
within the Polyakov-loop extension of the generalized
Beth-Uhlenbeck approach to two-particle states in quark
matter as derived in Ref. [22].
In the PNJL model the thermodynamic potential for a

meson is not directly affected by the Polyakov loop and
takes the same form as given in [22],

ΩM ¼ dMT
Z

d3q
ð2πÞ3

Z∞

0

dω
2π

fln ð1 − e−ðω−μMÞ=TÞ

þ ln ð1 − e−ðωþμMÞ=TÞg dδMðω;qÞ
dω

; ð18Þ

where μM ¼ μi − μj is the chemical potential of a mesonM
composed of quark i with chemical potential μi and
antiquark j with chemical potential −μj. Since in the color
singlet mesons the colors of quark and antiquark get
neutralized, the meson chemical potential does not contain

the gluon background fields ϕ3 and ϕ8. The meson
degeneracy factor is denoted by dM and the vacuum
contribution has been removed.
In such a formulation, the dissociation of the mesonic

bound state in a hot, dense medium by the Mott effect is
encoded in the behavior of the in-medium phase shift. The
analogous result for the diquark thermodynamic potential is
derived in the next section for the PNJL model.

III. COLOR TRACE FOR DIQUARK
THERMODYNAMICAL POTENTIAL

To obtain the diquark thermodynamics one starts from
the bosonic thermodynamic potential (15) for the case
X ¼ D, taking the form (18) where the meson chemical
potential μM has to be replaced by the diquark chemical
potentials μA for the three diquark channelsDA; A ¼ 2; 5; 7,
which are diagonal matrices in color space

μ2 ¼ μr þ μg ¼ 2μ − 2iϕ8

μ5 ¼ μr þ μb ¼ 2μ − iðϕ3 − ϕ8Þ
μ7 ¼ μr þ μg ¼ 2μþ iðϕ3 þ ϕ8Þ: ð19Þ

In the diquark thermodynamic potential which otherwise
has the form similar to the pion one, the remaining color
trace is evaluated in the following way:

ΩD ¼
Z

d3q
ð2πÞ3

Z
dω
2π

f3ωþ TtrA¼2;5;7 ln ½1 − e−ðω−μAÞ=T � þ TtrA¼2;5;7 ln ½1 − e−ðωþμAÞ=T �g dδDðωÞ
dω

;

¼
Z

d3q
ð2πÞ3

Z
dω
2π

f3ωþ T ln ½ð1 − Xe−2iβϕ8Þð1 − Xe−iβðϕ3−ϕ8ÞÞð1 − Xeiβðϕ3þϕ8ÞÞ�

þ T ln ½ð1 − X̄e2iβϕ8Þð1 − X̄eiβðϕ3−ϕ8ÞÞð1 − X̄e−iβðϕ3þϕ8ÞÞ�g dδDðωÞ
dω

;

¼
Z

d3q
ð2πÞ3

Z
dω
2π

f3ωþ T ln ½1 − 3ΦX þ 3Φ̄X2 − X3� þ T ln ½1 − 3Φ̄ X̄þ3ΦX̄2 − X̄3�g dδDðωÞ
dω

; ð20Þ

where we have introduced the abbreviations X¼ e−ðω−2μÞ=T ,
X̄ ¼ e−ðωþ2μÞ=T and dropped the explicit notation of the
three-momentum q as an argument of the phase shifts. This
shorthand notation we shall use from now on. Removal of
the zero-point energy term (“no sea” approximation) results
in the diquark thermodynamic potential

ΩD ¼ T
Z

d3q
ð2πÞ3

Z∞

0

dω
2π

fln ½1 − 3ðΦ − Φ̄XÞX − X3�

þ ln ½1 − 3ðΦ̄ − ΦX̄ÞX̄ − X̄3�g dδDðωÞ
dω

: ð21Þ

While the mesons are color neutral the scalar diquarks are
color antitriplet states and thus “see” the Polyakov loop.
Note that in the confining phase it holds that Φ ¼ Φ̄ ¼ 0
which removes the contributions from one- and two-diquark
states so that in this phase only the coherent sum of three
diquarks with complementary colors can propagate. This
effect is in full analogy to the case of colored quark
excitations which are also suppressed by the Polyakov-loop
factors in the confinement phase; see Eq. (10) [8,10].
After integration by parts (21) takes the form

ΩD ¼ −3
Z

d3p
ð2πÞ3

Z
dω
2π

½gþΦðωÞ þ g−ΦðωÞ�δDðωÞ; ð22Þ
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with the generalized Bose distribution functions

gþΦðωÞ ¼
ðΦ − 2Φ̄XÞX þ X3

1 − 3ðΦ − Φ̄XÞX − X3
;

g−ΦðωÞ ¼
ðΦ̄ − 2ΦX̄ÞX̄ þ X̄3

1 − 3ðΦ̄ − ΦX̄ÞX̄ − X̄3
: ð23Þ

In the limiting cases of the confined phase (Φ ¼ Φ̄ ¼ 0)
and the deconfined phase (Φ ¼ Φ̄ ¼ 1) these functions go
over to the Bose functions

g�ΦðωÞjΦ¼0 ¼
1

exp½3ðω∓2μÞ=T� − 1
; ð24Þ

g�ΦðωÞjΦ¼1 ¼
1

exp½ðω∓2μÞ=T� − 1
; ð25Þ

which show that in the confined phase the thermal
excitation of diquarks and antidiquarks is suppressed
by a similar mechanism as the excitation of quarks and
antiquarks.
This is the main new result of this work. In the following

section we will obtain numerical results for it and discuss
its consequences.

IV. RESULTS

The parameters employed for the numerical studies
are a bare quark mass m0 ¼ 5.5 MeV, a three-momentum
cutoff Λ ¼ 639 MeV and a scalar coupling constant
GSΛ2 ¼ 2.134. We consider three values for the diquark
coupling constant: (A) Fierz value GD=GS ¼ 3=4,
(B) strong coupling GD=GS ¼ 1.0 and (C) superstrong
coupling GD=GS ¼ 1.5. With these parameters one finds
in vacuum a constituent quark mass of 319 MeV, a pion
mass of 138MeVand pion decay constant fπ ¼ 92.4 MeV.
The vacuum mass of the σ-meson is 644 MeV, which is
thus slightly unbound. The scalar diquark is unbound for
the Fierz value of the coupling [case (A)] and bound

for the strong and superstrong diquark couplings [mðBÞ
D ¼

582 MeV for case (B) and mðCÞ
D ¼ mπ for case (C),

respectively]. In the present work, we restrict ourselves
to applications at finite temperatures and vanishing chemi-
cal potential in the isospin-symmetric case of two-flavor
quark matter.

A. Mass spectrum in the NJL/PNJL model
at finite temperature

As a first step, the mean field gap equation for the quark
mass is solved as a function of temperature for the NJL and
PNJL models, respectively. These results serve as inputs for
solving the Bethe-Salpeter equations for mesons and
diquarks in the medium. The masses of quarks, pions, σ
mesons and diquarks are obtained as poles of their

propagators and are shown in Fig. 1. We observe that
the chiral symmetry restoration which is reflected in the
dropping quark mass function induces a Mott effect for the
pion and the scalar diquark. For both states the kernel of
their Bethe-Salpeter equation contains a Pauli blocking
term since they are composed of two fermions. This Pauli
blocking partly compensates the effect of the quark self-
energies (dropping masses) and leads to a stabilization of
the bound state masses against medium effects. This results
in the crossing of the bound state masses with the
continuum threshold, leading to the dissociation of these
bound states.

B. Phase shifts of mesons and diquarks in
quark matter

In the following, we will discuss the results for the
diquark phase shifts (see also Refs. [22]) and their
consequences for the thermodynamics of quark-meson-
diquark matter at finite temperature, with and without the
coupling to the Polyakov loop. The solution for the diquark
phase shifts at finite temperature (μ ¼ 0) is shown in Fig. 2
as a function of the invariant mass variable s for different

FIG. 1 (color online). Mass spectrum of pions, sigma mesons
and diquarks as functions of the temperature T. The diquark mass

mðBÞ
D [mðCÞ

D ] corresponds to the case of strong (superstrong)
diquark coupling. Also shown is the relevant threshold 2m for
mesons and diquarks. Upper panel: Without Polyakov loop;
lower panel: with Polyakov loop.
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temperatures. Here we made the simplifying assumption
that, even in the medium, the phase shifts are Lorentz
invariant and identify the function δXðsÞ with δXðω ¼ ffiffiffi

s
p Þ

calculated at rest (q ¼ 0) for given temperature and
chemical potential of the medium. The bound state mass
is located at the jump of the phase shift from 0 to π and this
jump corresponds to a delta function in the Beth-Uhlenbeck
formulas (18) and (21) for the correlations. In the case when
the continuum of the scattering states can be neglected
since it is separated by a sufficient energy gap from the
bound state, we obtain the limiting case of thermodynamics
of a statistical ensemble of on-shell correlations.

C. Beth-Uhlenbeck equation for mesons and
diquarks in quark matter

Now we want to study the thermodynamics of the meson
and diquark correlations in a hot and dense medium
encoded in the thermodynamic potentials (18) and (21),
respectively.
In Fig. 3 we show the pressure as a function of the

temperature for pions and diquarks within the NJL and the
PNJL models, respectively. Let us note that within NJL-
type models a general decomposition of the phase shifts
into a resonant (R) and a continuum (c) part can be made:

δXðωÞ ¼ δX;RðωÞ þ δX;cðωÞ; ð26Þ
where both parts are uniquely defined by the propagator
of the correlation (see Ref. [22]) and are important to
establish in accordance with the Levinson theorem in
medium [23,36]

Z∞

0

dω
dδXðωÞ
dω

¼ 0: ð27Þ

The more conventional form of the Levinson theorem [37]
introduces the energy level of the continuum threshold
ωthr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

thr

p
, where mthr ¼ 2m applies for the con-

tinuum of two-particle states (mesons, diquarks) composed
of quarks with equal mass m:

Zωthr

0

dω
dδXðωÞ
dω

¼ −
Z∞

ωthr

dω
dδXðωÞ
dω

¼ δXðωthrÞ − δXð∞Þ: ð28Þ
Since below the threshold can be only a discrete number
nB;X of bound states in the channel X, each contributing an
amount of π to the change in the phase shift at the bound
state energies ωX;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

i

p
with i ¼ 1;…; nB;X, it

follows the Levinson theorem in the form

πnB;X ¼ δXðωthrÞ − δXð∞Þ; ð29Þ
which applies also in the case of a hot and dense
medium.

FIG. 2. Diquark phase shift δD as a function of squared center
of mass energy s at different temperatures from T ¼ 150 to
400 MeV for the three cases of diquark coupling: (A) Fierz value
GD=GS ¼ 3=4, (B) strong coupling GD=GS ¼ 1.0 and (C) super-
strong coupling GD=GS ¼ 1.5. The jump of the phase shift from
0 to π indicates the position of a bound state in the spectrum
below the threshold of the continuum states which is situated
where the phase shift starts decreasing towards zero. With
increasing temperature the threshold moves to lower s-values
and the phase shift jumps from π to 0 when the Mott temperature
is reached where the bound state gets dissociated. This behavior
is in accordance with the Levinson theorem.
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In particular, when due to the chiral restoration the
dropping mass of the quarks entails a lowering of the
continuum threshold ωthr which triggers the dissolution of
the bound states into the continuum (the Mott effect), then
nB;X ¼ 0. In that case, it holds that δXðωthrÞ ¼ δXð∞Þ,
which would be strongly violated if the phase shift (26)

would be approximated by the resonance part only. This
can be demonstrated, e.g., by employing a Breit-Wigner
type ansatz for the phase shift

δX;RðωÞ ¼
π

2
þ arctan

�
ω − ωX;R

ΓX

�
; ð30Þ

which would yield

δX;RðωthrÞ − δX;Rð∞Þ ¼ arctan

�
ωthr − ωX;R

ΓX

�
−
π

2
≠ 0:

ð31Þ

This violation of the Levinson theorem elucidates the
importance of continuum background contribution to the
phase shift (26).
In order to make the role of the Polyakov-loop sup-

pression most explicit we have chosen in Fig. 3 the
superstrong coupling case with the parametrization
GD ¼ 1.5GS, for which the masses of pions and diquarks
are degenerate. This is similar to the mass spectrum of two-
color QCD [38–41]. It is this case for which the main result
of this paper can be most clearly demonstrated, namely that
the coupling to the Polyakov loop very effectively sup-
presses the partial pressure of the colored diquark states,
thus making the thermodynamics of the PNJL model more
“realistic” than that of the NJL model.

FIG. 3 (color online). Contributions from the resonant
(positive) and scattering continuum (negative) parts to the total
pressure (thick lines) for diquarks and pions in the NJL model
(upper panel) and in the PNJL model (middle panel) as a function
of temperature. In the lower panel a direct comparison is made of
the diquark pressure with its resonant and continuum contribu-
tions for the NJL and the PNJL model, respectively, which
demonstrates the strong suppression of the diquark pressure due
to the Polyakov-loop coupling in the confining phase at low
temperatures. In this figure we have chosen the superstrong
coupling case (C) for which the masses of pions and diquarks are
degenerate.

FIG. 4 (color online). Contributions to the diquark pressure in
the NJL model (thin lines) compared to that of the PNJL model
(thick lines) as a function of temperature: resonance (dotted
lines), continuum (dashed lines) and total (solid lines) contribu-
tions for two cases of diquark coupling: strong [case (B), upper
panels] and Fierz value [case (A), lower panels]. The right panels
demonstrate the suppression of the diquark pressure due to the
Polyakov-loop coupling by comparing the NJL with the PNJL
model results. The diquark pressure contains contributions from
both diquarks and antidiquarks.
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When we reduce the diquark coupling to the more
realistic case (B), where the diquark mass is just below
the continuum threshold 2m and case (A) where it is even
above the threshold, the diquark pressure is lowered further
due to the increase in the diquark mass relative to case (C).
In Fig. 4 we show the corresponding contributions to the
diquark pressure as a function of the temperature for the
NJL and the PNJL model, respectively.
We are now in a state to summarize the results for the

thermodynamics of the quark-meson-diquark plasma
within the PNJL model. In Fig. 5 we show the contributions
from quarks, sigma mesons, pions and diquarks to the total
pressure in hot quark matter for case (A), the Fierz value of
the diquark coupling. We observe that for temperatures up
to T ∼ 120 MeV the total pressure is that of a pion gas
while for temperatures exceeding T ∼ 250 MeV the
thermodynamics is that of a quark-gluon plasma. The
intermediate temperature region is that of the chiral
restoration and deconfinement transition, where the system
consists of a mixture of partons and pions, while heavier
hadrons like the sigma meson as well as the diquarks are
subdominant. In this transition region the composition of
the thermodynamic system is governed by three suppres-
sion mechanisms for states: due to their mass, their spectral
broadening (dissociation) and the Polyakov loop. While the
mass suppresses states only at low temperatures, the
spectral broadening acts for all composite states and
suppresses them at high temperatures. The colored states
(quarks and diquarks) are suppressed in the confined phase
where the traced Polyakov loop is close to zero.

This result appears to capture the characteristic features
of QCD thermodynamics at finite temperatures as it is
simulated on the lattice [42,43]. However, before a quanti-
tative comparison with lattice QCD can be attempted, more
hadronic states need to be implemented as, e.g., in the
recent phenomenological model [44–47]. Another impor-
tant aspect is the consistent inclusion of correlation effects
into the quasiparticle picture which is under way [48].

V. CONCLUSIONS

A main result of this work is the derivation of the
generalized distribution function for color SU(3) diquarks
in a Polyakov-loop background field. In the limit of
deconfinement, it goes over to the ordinary Bose distribu-
tion function while in the opposite case it is responsible for
a strong suppression of the colored diquark state. This has
been strikingly demonstrated by considering the super-
strong coupling case GD ¼ 3=2GS for which the pion and
diquark Bethe-Salpeter equations become degenerate and
produce therefore the same solutions, masses and also
phase shifts. In this case it is just the generalized Bose
distribution function which leads to a strong suppression of
the partial pressure of the colored diquark states relative to
that of the color neutral pions. We have evaluated the
composition (partial pressures) of quark-meson-diquark
matter in the two-flavor PNJL model as a function of
the temperature at zero baryon density with the result that in
the confinement phase the system becomes a pion gas
where quarks and diquarks as colored degrees of freedom
are suppressed by the Polyakov loop and sigma mesons by
their mass. With increasing temperature the system under-
goes the transition to the deconfined phase which coincides
with chiral symmetry restoration. The meson and diquark
contributions to the pressure are vanishing due to their
dissolution in the Mott transition while their constituents
become the dominant component, now forming a Fermi gas
of colored states not suppressed by the Polyakov loop since
we are in the deconfined phase.
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FIG. 5 (color online). Pressure of quark-gluon matter with
meson and diquark correlations in the PNJL model as function of
temperature (solid lines). Also shown are the partial pressures of
quarks and gluons (dotted lines), diquarks (long-dash-dotted
lines), sigma mesons (dash-dotted lines) and pions (dashed lines).
The left panel shows the pressure contributions divided by T4

(dimensionless) while in the right panel they are in units of
MeV=fm3.
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