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In this paper we will discuss the derivation of the so-called vanishing beta function curves which can be
used to explore the fixed point structure of the theory under consideration. This can be applied to the OðNÞ
symmetric theories, essentially, for arbitrary dimensions (D) and field component (N). We will show the
restoration of the Mermin-Wagner theorem for theories defined in D ≤ 2 and the presence of the Wilson-
Fisher fixed point in 2 < D < 4. Triviality is found inD > 4. Interestingly, one needs to make an excursion
to the complex plane to see the triviality of the four-dimensional OðNÞ theories. The large-N analysis shows
a new fixed point candidate in 4 < D < 6 dimensions which turns out to define an unbounded fixed point
potential supporting the recent results by Percacci and Vacca [Phys. Rev. D 90, 107702 (2014)].
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I. INTRODUCTION

There have been many investigations on the phase
structure of the scalar OðNÞ models [1–5] using functional
renormalization group (FRG) techniques [6–9] in various
dimensions. Critical exponents were computed with high
precision, fixed points were found, and many physical
aspects seem to be well understood. Hence, we can safely
state: the FRG method is a reliable tool for nonperturbative
calculations which can be used to consider the phase
structure of a model and consequently to study e.g. the
appearance of spontaneous symmetry breaking (SSB). For
instance, according to the Mermin-Wagner (MW) theorem
[10–12] a continuous symmetry cannot be broken sponta-
neously below a lower critical dimension, which is D ¼ 2
for the OðNÞ symmetric theory for N ≥ 2. This has been
recently shown in the framework of FRG [13]. Numerical
evidence for the MW theorem is presented in [14]. The only
exception is in D ¼ 2 for N ¼ 2 (the XY model), when an
infinite order phase transition is present [15,16]. That is
called the Berezinskii-Kosterlitz-Thouless (BTK) phase
transition. To detect this kind of symmetry breaking the
local potential approximation (LPA) is not sensitive enough
[13]. Throughout this paper we will not consider the special
case when N ¼ 2 in D ¼ 2 for these aforementioned
reasons. Beyond LPA the BTK phase transition can be
observed in the framework of FRG [17–19]. In summary,
we can say that the OðNÞ scalar model represents an
excellent playground for testing new techniques. The goal
of this paper is to introduce the so-called vanishing beta
function (VBF) method in the framework of the OðNÞ
symmetric scalar field theory, where the Wetterich FRG
equation [6,7] is used in the LPA assuming that the

potential is analytic around the vanishing field. There is
an extensive study about the radius of convergence of the
Taylor-expanded effective potential in the large-N limit of
the OðNÞ model in [20]. Expanding around vanishing field
enables us to provide a one-parameter representation of the
fixed point solution which actually defines the VBF curves
through the couplings. This single parameter is the quad-
ratic coupling of the theory (m2) and the roots of the VBF
curve will define the position of the fixed points at a given
truncation level. In this approach we will lay down general
requirements that a root must satisfy in order to define a
stable fixed point potential. Using this polynomial expres-
sion for the couplings will reveal an interesting root
structure, which depends highly on dimensionality but
there is a dependence on N, too, which is rather quanti-
tative. As a consequence of the approximations used in the
VBF technique potentially artificial fixed points show up
even in the higher order of truncations. However, it can be
shown that these “spurious” fixed point solutions are
excluded by taking the infinite limit in the order of the
expansion, although strictly mathematically they must be
considered as a valid fixed point at finite truncation. We
will show, from a different aspect that has been used in [13]
and [14], that the MW theorem is not violated, although at
finite truncation order one would draw the opposite con-
clusion. An equally interesting finding is the direct obser-
vation of triviality above four Euclidean dimensions;
however for D ¼ 4 triviality can be found only if we track
down the root structure on the complex plane, too. In
theories 4 < D < 6 a new fixed point candidate is found in
the large-N limit; a detailed analysis is shown for theD ¼ 5
case. However, it turns out that this fixed point defines an
unbounded potential from below in agreement with the
findings in [21]. In the last two sections we will analyze the
N dependence and some fractional-dimensional results are
presented, too.
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A. The functional renormalization group

The effective average action of an OðNÞ symmetric
scalar field theory in D Euclidean dimensions using the
LPA approximation will have the following form:

Γk ¼
Z

dDx

�
1

2
ð∂ϕ̄Þ2 þ Ukðϕ̄2Þ

�
: ð1Þ

Uk is the dimensionful potential that depends only on the
OðNÞ invariant terms of the theory, namely on ϕ̄2, where ϕ̄ is
the vacuum expectation value (VEV) of the field. The
subscript k stands for the RG scale (i.e. theWilsonian cutoff),
on which the effective theory is being defined. The depend-
ence of Eq. (1) on the RG scale parameter k is governed by an
exact functional differential equation [6–8,22]

∂tΓk ¼
1

2
TrðΓð2Þ

k þ RkÞ−1∂tRk: ð2Þ

Here, we have introduced the logarithmic flow parameter
t ¼ lnðk=ΛÞ, and a momentum dependent regulating func-
tion Rkðq2Þ, which ensures that only the fluctuations above
the Wilsonian cutoff scale are being integrated out. The Λ is
the momentum scale on which our theory was initially

defined. Γð2Þ
k ½ϕ̄� is a shorthand notation for the second

functional derivative δ2Γk=δϕ̄δϕ̄, and the trace denotes an
integration over the momentum. Alternatively one can
introduce a ρ̄≡ 1

2
ϕ̄2, and from now on we are going to

use this as our variable. Let us note that in the LPA, the two-
dimensional Wegner-Houghton RG equation (i.e. the sharp
cutoff regulator) is mathematically equivalent (see e.g. [23])
to the effective average action RG equation [6,7,22] with the
power-law regulator Rkðq2Þ≡ q2ðq2=k2Þ−b [8] with b ¼ 1
and the functional Callan-Symanzik RG equation [24]. By
inserting Eq. (1) into Eq. (2) onewill obtain the flow equation
for the effective potential

∂tUk

¼1

2

Z
dDq
2πD

∂tRk

�
N−1

q2þRkþU0
k

þ 1

q2þRkþU0
kþ2ρ̄Uk

00

�
:

ð3Þ

This equation on the right-hand side defines a loop-integral
structurewith the propagators of theN − 1Goldstonemodes
and the single massive radial mode. The integration by the
momentum q can be performed by choosing the Rkðq2Þ
regulator function in such a way that it satisfies all the
following requirements: Γk approaches the bare action in the
limit k → Λ and the full quantum effective action when
k → 0 [9]. Various types of regulator functions can be
chosen, but a more general choice is the so-called compactly
supported smooth (CSS) regulator [25–27]which recovers all
major types of regulators in its appropriate limits. By using a

particular normalization [26,27] and the notation y ¼ q2=k2,
the dimensionless CSS regulator (rkðq2Þ≡ Rkðq2Þ=q2) has
the following form

rnormcss ðyÞ ¼ exp½lnð2Þc� − 1

exp
h
lnð2Þcyb
1−hyb

i
− 1

θð1 − hybÞ; ð4Þ

with the Heaviside step function θðyÞ where the limits are

lim
c→0;h→1

rnormcss ¼
�
1

yb
− 1

�
θð1 − ybÞ; ð5aÞ

lim
c→0;h→0

rnormcss ¼ 1

yb
; ð5bÞ

lim
c→1;h→0

rnormcss ¼ 1

exp½lnð2Þyb� − 1
: ð5cÞ

Thus, theCSS regulator has indeed the property to recover all
major types of regulators: the Litim [28], the power-law [8]
and the exponential [6,7] ones. Let us note that in the LPA the
momentum integral of the RG equation can be performed
analytically in some cases, e.g. by using the Litim, the sharp,
and the b ¼ 1; 2 power-law cutoffs. By using the optimized
(or Litim) regulator [28], Rkðq2Þ ¼ ðk2 − q2Þθðk2 − q2Þ,
one can evaluate the integral in Eq. (3) analytically. In the
present paper we are always going to use this regulator. In the
meantime we introduce the following dimensionless varia-
bles in order to be able to extract the fixed point structure of
the Wetterich equation Eq. (2):

uðρÞ ¼ U=kD;

ρ ¼ 1

2
ϕ̄2k2−D: ð6Þ

At the end of the procedure one will obtain the flow equation
for the dimensionless effective potential in D Euclidean
dimensions:

∂tu ¼ −Duþ ðD − 2Þρu0 þ ðN − 1Þ AD

1þ u0

þ AD

1þ u0 þ 2ρu00
;

AD ¼ 1

2D−1πD=2ΓðD=2ÞD : ð7Þ

The first two terms arise due to the canonical dimension of the
potential and of the fields, whereas the third and fourth terms
are a consequence of the fluctuations of theN − 1Goldstone
modes and the radial mode, respectively. The numerical
factor AD comes from the angular integration of the
D-dimensional integral in Eq. (3), and it could be absorbed
by using a rescaling ρ → ρ=AD and u → u=AD, but we will
choose not to do that, to show the explicit dimension

P. MATI PHYSICAL REVIEW D 91, 125038 (2015)

125038-2



dependence. (AD can be set to 1 at any point.) In the following
section we are going to study the scaling solutions of Eq. (7).

II. THE VANISHING BETA
FUNCTION CURVES

In the following, we are going to use the most common
ansatz for solving Eq. (7). Namely, it is the Taylor
expansion of the effective potential in the field variable.
First we are assuming that we can expand the potential in a
Taylor series around vanishing field. That is,

uðρÞ ¼ lim
n→∞

Xn
i¼1

uðiÞ

i!
ρi: ð8Þ

For the sake of simplicity we are going to use the following
notations for the coefficients λi ≡ uðiÞð0Þ. The scale
dependence is encoded into these dimensionless couplings.
Most of the time we are also going to use for the quadratic
coupling λ1 ≡m2. And sometimes for the quartic coupling
λ2 ≡ λ and for the sextic coupling λ3 ≡ τ. Keeping this in
mind, we can look at the flow equation of the effective
potential and differentiate it once, then evaluate it at ρ ¼ 0.
So, we get the flow equation for the mass

∂tm2 ¼ ðD − 2Þm2 − Dm2 −
3λAD

ð1þm2Þ2

−
ðN − 1ÞλAD

ð1þm2Þ2 : ð9Þ

If we are looking for the scale independent solutions (i.e.
the fixed point solutions) of this partial differential equa-
tion, one can take ∂tm2 ¼ 0. By doing this, we can express
λ by using only the mass term

λ ¼ −
2m2ð1þm2Þ2
ð2þ NÞAD

: ð10Þ

This curve defines the value of λ, provided ∂tm2 ¼ 0; i.e.
this relation is only true when the mass stopped running
[13,29]. If one does not have quartic coupling, i.e. λ ¼ 0,
then the solutions for this equation are just the roots of
λðm2Þ; that is,m2 ¼ −1 orm2 ¼ 0. Now we derive the flow
equation for the quartic coupling, too. To do so, we need to
perform the same idea as before, but now we need to
differentiate the flow equation of the effective potential
twice with respect to ρ and only then evaluate it at ρ ¼ 0.
One will have then

∂tλ ¼ 2ðD − 2Þλ − Dλþ AD

��
18λ2

ð1þm2Þ3 −
5τ

ð1þm2Þ2
�
þ ðN − 1Þ

�
2λ2

ð1þm2Þ3 −
τ

ð1þm2Þ2
��

: ð11Þ

Again, if we are interested in the fixed point of the equation we need to take ∂tλ ¼ 0, which enables us to express the sextic
coupling as τ ¼ τðλ; m2Þ. If we are looking for the fixed points of both equations Eq. (11) and Eq. (9) we can express the
sextic coupling by only using the mass as an explicit parameter: τ ¼ τðλðm2Þ; m2Þ ¼ τðm2Þ. This looks like

τ ¼ −
2m2ð1þm2Þ3ðDð1þm2Þð2þ NÞ − 4ð2þ N þ 2m2ð5þ NÞÞÞ

ð2þ NÞ2ð4þ NÞA2
D

: ð12Þ

This function defines the value of τ, provided ∂tm2 ¼ 0
and ∂tλ ¼ 0. When we are looking for a fixed point for the
whole system of equations we need to set the lhs of Eq. (12)
to zero (which sets ∂tτ ¼ 0 automatically), thus providing
the values for m2 where the fixed points are found. The
general statement is the following: one can express the nth
coupling simply by using the mass term m2 as an explicit
parameter. This nested formula reads

λn ¼ λnðλn−1ðλn−2ð…λ2ðm2ÞÞÞ; m2Þ ¼ λnðm2Þ: ð13Þ

It is straightforward to prove this using induction (see
the Appendix). As a consequence, one can find a
formula which tells the general form for the nth coupling
for n ≥ 2:

λn ¼ ð−1Þnþ1
2½n=2�

An−1
D

Q
n−1
i¼1 ð2iþ NÞ½ðn−1Þ=i�

×m2ð1þm2Þn
Xn−2
i¼0

Xn−2
j¼0

fi;jðNαÞðm2ÞiDj: ð14Þ

Here the notation ½:� means the integer part of its argument
and fi;jðNÞ is an integer valued function of Nα, where α is
an integer, too. From Eq. (14) we can conclude that (apart
from the prefactor which depends only on N and D) λn is a
polynomial of m2 over the integers, which has roots at
m2 ¼ 0 and m2 ¼ −1 for every n ≥ 2. Another interesting
consideration is that λ2 is the greatest common divisor of all
the λn VBF polynomials, n ≥ 2. Of course, there are many
more roots in the complex numbers domain in general
(actually the number of roots is growing with n), but we are
only going to consider the real ones, for which the physics
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is meaningful. However, in special cases like in D ¼ 4 and
4 < D < 6 in the large-N, one can observe a convergent
series of the unphysical roots on the complex plane from
which the physically sensible results can be extracted. It is
worthwhile to emphasize that Eq. (14) is the most general
form of the couplings λnðm2Þ; their qualitative behavior
highly depends on the dimensionality, as we are going to
see later on. It also depends on the number of the fields N,
of course, but this dependence is rather quantitative.
The coupling λn ¼ λnðm2Þ in Eq. (14) defines a curve in

terms of m2 on which ∂tλn−1 ¼ 0, i.e. the beta function of
the ðn − 1Þth coupling, vanishes. But we know that λn−1 ¼
λn−1ðm2Þ [which we have already in hand, otherwise we
could not build up λnðm2Þ] defines a curve on which
∂tλn−2 ¼ 0, and we can continue this till n ¼ 1. For this
reason from now on we will refer to the curves defined by
Eq. (14) as the VBF curves.
As a next step we would like to extract the fixed points of

the theory. The VBF curves of course define the possible
values of the couplings for the fixed points. In order to find
a fixed point we need to perform the following procedure.
The VBF λn defines a curve where ∂tλn−1 vanishes, but it
does not say anything about ∂tλn itself. The curve which on
∂tλn vanishes is defined by λnþ1 ¼ λnþ1ðm2Þ, and so on.
But we need to cut our Taylor expansion at some order, to
be able to carry out real computations. Let us say we
truncate it at the nth order, but then again we would need
the beta function of λn to be zero, which is encoded in the
VBF defined by λnþ1. Since we expanded the effective
potential in Taylor series until the nth order, clearly we
cannot construct that curve. The only way to get ∂tλn ¼ 0 is
to set λnðm2Þ≡ 0 which gives zero for its beta function
automatically. In other words, assume that we would like to
have an ðn − 1Þ order expansion, but before we do so we do
not set λn ¼ 0 for the moment. If λn were not zero wewould
need its beta function to vanish, too, in order to find a fixed
point. But we do not want to compute its beta function,
because at the end we are satisfied with an n − 1 order
expansion. Since we did not set λn to zero yet, we can
express it through the vanishing beta function of the
ðn − 1Þth coupling because its fixed point equation has
the form ∂tλn−1 ¼ 0 ¼ Fðm2Þ þ λn, where Fðm2Þ is a
polynomial in m2. Now, λn ¼ −Fðm2Þ, which just defines
its VBF curve. Since we did not want to have this term (i.e.
the nth), we can set Fðm2Þ ¼ 0, which is satisfied at its
roots m2

0’s; hence λn ¼ 0, too. Thus, although practically
we expanded the effective potential till the order n and we
were able to construct the VBF curves all the way till order
n, we must find the roots of the nth VBF curve to set the nth
coupling to zero, which would imply by construction that
∂tλn ≡ 0. To make a long story short, we have to solve the
following equation,

λnðm2
0Þ ¼ 0; ð15Þ

wherem2
0 represents the roots of the VBF curve λnðm2Þ. We

need to evaluate the other n − 1 VBF curves at these m2 ¼
m2

0 points to obtain the values of all the dimensionless
couplings at the fixed point, and thus define the truncated
effective fixed point potential. So far so good, but let us
suppose we find a fixed point potential which is unbounded
from below, i.e. one that defines an unstable theory. That
obviously must be wrong; hence we need to bring into play
another restriction: since the potential is a polynomial, the
asymptotics (i.e. the boundedness from below for large
field values) depends on the highest degree term in the
polynomial. As a consequence, we need to exclude the m2

0

roots that give λn−1ðm2
0Þ < 0 coupling, which is the

coefficient of the highest degree nonzero term in the
polynomial expansion.
In general we can sum up all these requirements in

the following way. Let us define the set M ¼
fm2

0 ∈ Rjλnðm2
0Þ ¼ 0g. A stable fixed point effective

potential can be found by substituting all m2
0 ∈ M into

the n−1 VBF curves fλn−1ðm2Þ; λn−2ðm2Þ;…; λ2ðm2Þ;
λ1 ≡m2g provided λn−1ðm2

0Þ ≥ 0. [If it happens to be zero,
too, one needs to apply this rule for the VBF λn−2ðm2Þ, and
so on.] In other words, the set of m2

0 ’s which defines a true
fixed point is

M� ¼ fm2
0 ∈ Rjλnðm2

0Þ ¼ 0 ∧ λn−1ðm2
0Þ ≥ 0g: ð16Þ

In the following, some example are presented individually
for D ≤ 2, 2 < D < 4 and D ≥ 4, starting with D ≤ 2.

III. VBF CURVES FOR D ≤ 2

A. Continuous symmetries (N ≥ 2)

The MW theorem essentially states that no spontaneous
breaking of continuous symmetry is present in systems of
D ≤ 2. In [14] numerical evidence was given in the
framework of the FRG that the MW theorem indeed holds;
here a beyond-LPA scheme was used, where the wave
function renormalization was taken into account, too. In
[13] it was shown, using analytical considerations, that the
MW theorem is not violated even at the LPA level. We will
verify the MW theorem for the case of the expanded
potential (where this statement cannot be seen directly) by
applying the rules that have been settled above. Although
the title of this section suggests that we include the case of a
system with D ¼ 2 and N ¼ 2, we will perform our
analysis using D ¼ 2 with N ≥ 3, since in the former case
an infinite order BTK phase transition is present ([15,16]),
as it was mentioned above. To detect this kind of symmetry
breaking the LPA is not sensitive enough (cf. [13]).
However, beyond LPA the BTK phase transition can be
shown in the framework of FRG [17–19].
Using Eq. (14) for D ¼ 1 and D ¼ 2 case one can find a

simplified expression for the nth coupling
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λn ∝ ð−1Þnþ1m2ð1þm2Þn
Xn−2
i¼0

giðN;DÞðm2Þi: ð17Þ

Here we only indicated the polynomial structure in m2,
although the prefactors are slightly modified, too. The
coefficient functions giðN;DÞ are defined as follows:

giðN;DÞ ¼
Xn−2
j¼0

fi;jðNαÞDj: ð18Þ

Interestingly, when setting D ≤ 2 the finding is that all the
gi’s are positive for every term, at least till the highest order
(n ¼ 45) that has been considered in the expansion; this is
the observation. This fact suggests that the roots (which are
not complex) must be either negative or zero.
Let us find the fixed points according to the rule that has

been established in the previous section, using N ¼ 3 and
D ¼ 2. The following VBF curves are found:

λ2 ¼ −
8π

5
m2ð1þm2Þ2;

λ3 ¼
64π2

175
m2ð1þm2Þ3ð5þ 27m2Þ;

λ4 ¼ −
512π3

7875
m2ð1þm2Þ4ð25þ 670m2 þ 1671ðm2Þ2Þ;

λ5 ¼
4096π4

606375
m2ð1þm2Þ5ð175þ 18595m2

þ 161115ðm2Þ2 þ 254799ðm2Þ3Þ;… ð19Þ

Considering only the real roots, we can find that they are all
situated in the interval ½−1; 0�. In Fig. 1, one can see the plot
of the VBF curves versus m2. The mere fact that we can
find roots is against the MW theorem, because for that to
hold true, we should have no roots at all, except at the
ending points of the interval ½−1; 0�.
We found true fixed point potentials at a finite truncation

level according to Fig. 1, which should not be there as a
consequence of the MW theorem. The situation is getting
worse when we go to higher order in the truncation: indeed,
in this case we are going to have more zeros; hence more
and more fixed point potentials emerge. How can we
resolve this contradiction? One way to overcome this
situation would be that if all the roots between −1 and 0
turned into complex valued roots as we went to
higher order.
However, from the order of the expansion we used, we

cannot put our hope in this. There is another scenario, too.
Let us analyze the VBF curves more carefully. Apparently,
one can find a pattern of the roots for the VBF curves:
evaluating the λn−1 VBF at each of the roots of λn, one will
find real numbers alternating in sign starting from the
closest root to −1 with sgnλn−1ðm2

1Þ ¼ þ1 (here the 1 in
the subscript indicates the closest root of λn to −1).

For instance in our example in Fig. 1 that was m2
1 ≈

−0.484 corresponding to the stable potential (Fig. 2). In
other words, from the set M defined above, we will
consider only Mnf−1; 0g and the claim is as follows: if
we make an ordering from the smallest value to the largest
in this set, then every odd element of Mnf−1; 0g is in the
set of M�nf−1; 0g; hence for every such element λn−1 > 0
thus defining a stable potential. So, we are still going to
have fixed points even though the number of them is halved

FIG. 1 (color online). The VBF curves for the couplings
λ2; λ3; λ4 and λ5 in the O(3), D ¼ 2 model. Each curve is defined
by the vanishing beta functions: ∂tm2 ¼ ∂tλ2 ¼ ∂tλ3 ¼ ∂tλ4 ¼ 0

respectively. The roots for λ5ðm2Þ are indicated by black dots.
These roots are going to define the fixed point potentials at the
truncation level n ¼ 4. Two of its roots are indicated by a green
dot and a red triangle to demonstrate a valid and a false fixed
point, respectively. At the green dot (m2 ≈ −0.484) we find that
λ4 > 0, and evaluating λ4 at the red triangle (m2 ¼ −0.137) we
get λ4 < 0, hence defining an unbounded potential (see Fig. 2).
On λ4 and on λ5 a scaling is performed for the sake of the
presentation.

FIG. 2 (color online). The fixed point potentials evaluated at the
fixed point discussed in Fig. 1. A stable potential can be obtained
form2 ≈ −0.484 and an unstable one form2 ¼ −0.137, which are
indicated on the figure by ust, uin, respectively.
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by taking into account only the fixed points which define
stable potential. It seems that this procedure does not help
too much, but, actually, by doing this, we can extract some
useful information: each root of the λn VBF is surrounded
by the roots of the λn−1; otherwise the alternating signs that
were explained above could not be possible. So, it means
that by deriving higher and higher order VBF curves the
position and the number of roots change in the way that all
of the previous roots are around the new ones; see Fig. 3.
Let us call this interesting pattern of the set of roots theM�
pattern for future use. We can do one thing with this
without knowing anything about the structure but the root
pattern statistics: we can simulate a sequence of sets of
points which behave in this way.
Let us consider a randomly generated number X1 which

can take a value in the interval ð−1; 0Þ. We generate this
number and then we consider two new random numbers:
X1
2 and X2

2. The first one can take any value in the interval
ð−1; X1Þ and the second in ðX1; 0Þ. After we generate
values for X1

2 and X2
2, they are going to be the new ending

points of the intervals where we define again random
numbers but this time three: X1

3, X
2
3 and X3

3. We continue
this procedure with the random numbers Xi

n with i ¼
1; 2;…; n and n → ∞, where n indicates that we defined
them in the nth step in the interval ðXi−1

n−1; X
iþ1
n−1Þ, including

−1 and 0, too. By increasing n we can obtain the
distribution of the points created in the way described
above; this is shown in Fig. 4. From this construction one
can see that the distribution of the randomly generated
points is changing in a way that they are accumulating at
the two ending points of the interval. This suggests that the
limit of the probability density for Xn (at least in distri-
butional sense) is

lim
n→∞

fXn
ðxÞ ¼ 1

2
ðδðxþ 1Þ þ δðxÞÞ: ð20Þ

The aim was to simulate the zeros of the VBF polynomials
λn, and we found that the roots are accumulating at −1 and
0. Thus, if there exists a limit for the VBFs (limn→∞λn ¼ λ),
then this will give zero only at −1 and 0, even if this limit is
not a continuous function. But this is physically well
justified since this would indicate that we do not find
any roots other than the two ending points of the interval,
which leads us to the conclusion that no SSB is present in
dimensions D ¼ 2 with N ¼ 3. Indeed, this is a seemingly
paradoxical result, namely that we would expect infinitely
many fixed points as the degree of the VBF polynomials
grows, but at the end we will find two actual fixed
points defining only one phase, in agreement with the
MW theorem that we wanted to show. We can make
another remark on the role of the convexity (or IR) fixed
point m2 ¼ −1. From the VBFs one can see that every
higher coupling vanishes at this point, i.e. λ2ð−1Þ ¼
λ3ð−1Þ ¼ � � � ¼ 0; hence the potential, which is defined
by this fixed point, is an unstable one, corresponding to the
dimensionless potential u ¼ −ρ2. One can now speculate
whether this fixed point is a real one or if it is just an artifact
of the approximations that we use in the FRG. Similar
results can be obtained for the D ¼ 1 (see Fig. 5). For N
dependence and fractional dimensions, see Secs. VI and
VII, respectively.

B. Z2 symmetry (N ¼ 1)

In the case of the discrete symmetry the OðNÞ theory is
equivalent to the Ising model, and as the symmetry is being
noncontinuous, the MW theorem does not necessarily hold

FIG. 3 (color online). The roots of the VBF curves λ2;…; λ15. Observe the pattern which is given by the following rule: any root of λn
is between the roots of λn−1 (except for −1 and 0 of course).
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for N ¼ 1. Indeed, it is well known that in the Ising model
we can find a spontaneous symmetry breaking even in the
D ¼ 2 case, which was carried out in an exact calculation
by Onsager [30]. Here, we are going to see that we can
reproduce this result using the technique introduced above.
In Fig. 6 we can see the position of the roots for D ¼ 1

and D ¼ 2 in a separate plot. The VBF polynomials are
described by Eq. (17) with different gi coefficients, of
course. We can see qualitative difference between the two

figures; namely, in the one-dimensional case, the first root
is converging tom2 ¼ −1 and for the two-dimensional case
the asymptotic goes to m2 ¼ −0.835� 0.001, defining a
threshold for all the roots in higher orders. One can fit a
function of the form of fðxÞ ¼ aþ bxc on the positions of
the first roots, with fit parameters a ¼ −1.00� 0.0002,
b ¼ 2.08� 0.002 and c ¼ 0.85� 0.0006 in D ¼ 1; and
a ¼ −0.835� 0.001, b ¼ 1.56� 0.004 and c ¼ 0.738�
0.003 in D ¼ 2. Now, since the root position pattern is the

FIG. 5 (color online). Roots of a (D ¼ 1)-dimensional theory with N ¼ 3 field components. A similar structure can be observed as in
Fig. 3.

FIG. 4 (color online). Histograms of the distribution of the points generated in Xn: (a) the distribution of X10, (b) the distribution of
X50, and (c) the distribution of X28000. Note that the positions of the points are tending to −1 and 0 and at very high n the number of
points between the two end points is negligible; in other words, the probability of finding a point between the two end points is tending
to zero as n → ∞.
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same as we observed above, we can apply the random
number procedure for D ¼ 1 in the interval ½−1; 0� and for
D ¼ 2 in the interval ½−0.835; 0�. The limiting result is the
following: in one dimension the roots are accumulating at
m2 ¼ −1 andm2 ¼ 0; thus we can conclude only the stable
Gaussian fixed point potential is well defined at the latter.
In the case of the two dimensions we will find two fixed
points, the Gaussian one (m2 ¼ 0) and another one which is
at m2 ¼ −0.835. Now, it is a question whether this fixed
point is stable or not. The finding is the following: for every
truncation in the present computation (where the highest
order was n ¼ 45) λnðm2 ¼ −0.835Þ > 0; thus we can
safely state that it defines a stable fixed point potential,
hence indicating a spontaneous symmetry breaking phase.
It is interesting that even at LPA level one can observe the
SSB for the two-dimensional Ising model contrary to the

finding in [13], where even with the numerical spike plot
technique [31,32] it is undetectable, due to its dependence
on the numerical precision.

IV. VBF CURVES FOR 2 < D < 4

The OðNÞ models which belong to the class 2 < D < 4
have the richest fixed point structure; hence studying them
is the most challenging. We are going to perform a detailed
analysis for the only integer dimension found in this
interval, D ¼ 3 restricting ourselves to N ¼ 2. We expect
here to obtain the well-known Wilson-Fisher fixed point in
the broken regime; however, we are going to see that there
is no clear root structure to be observed for the roots
m2 > 0. In this case we have the following generic form for
the VBFs in 2 < D < 4, similarly to Eq. (17):

FIG. 6 (color online). In the upper (lower) panel the position of the roots of the VBF curves are shown for N ¼ 1 inD ¼ 1 (D ¼ 2). In
the one-dimensional case one finds the same pattern that was shown above for N ¼ 3 with a convergence to m2 ¼ −1. In two
dimensions the roots are converging towards m2 ¼ −0.835 signaling a SSB phase.
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λn ∝ ð−1Þnþ1ðm2Þ1þΘðn−4Þð1þm2Þn

×
Xn−2
i¼0

giðN;DÞðm2Þi−Θðn−4Þ: ð21Þ

Here, giðN;DÞ is defined in a similar way as above in
Eq. (18), but now, as we can see, the exponent of m2 has
changed; hence in the sum Eq. (18) there must be DαðjÞ

rather than Dj, where αðjÞ represents the remaining
exponents, after the prefactor of the sum is factored out.
The θ function in the exponent is just the Heaviside step
function: Θðn − 4Þ ¼ 1 if n ≥ 4 and 0 otherwise. The first
few polynomials from the VBFs for D ¼ 3 and N ¼ 2 are

λ2 ¼ −3π2m2ðm2 þ 1Þ2;
λ3 ¼ 3π4m2ðm2 þ 1Þ3ð11m2 þ 1Þ;
λ4 ¼ −27π6ðm2Þ2ðm2 þ 1Þ4ð23m2 þ 4Þ;

λ5 ¼
27π8

5
ðm2Þ2ðm2 þ 1Þ5ð2993ðm2Þ2 þ 719m2 þ 14Þ;

λ6 ¼ −
27π10

5
ðm2Þ2ðm2 þ 1Þ6ð97167ðm2Þ3 þ 27418ðm2Þ2

þ 997m2 − 14Þ;… ð22Þ

Contrary to the cases of D ≤ 2, the coefficients gi can take
now negative values, too. From these considerations one
can already expect a different root structure from that which
we had for D ≤ 2. In Fig. 7 we see the VBF curves up to
λ6ðm2Þ and in Fig. 8 the root structure up to order n ¼ 41.
For our analysis we are going to separate the real line ofm2

into three regions. First, we will consider the roots in the

interval ½−1; 0�; then we will turn to the complement set,
separately for the intervals ð−∞;−1Þ and ð0;∞Þ.
FromFig. 10 it is clear that in the interval ½−1; 0�wehave a

very similar pattern for the roots (above some n) to the one
that we had in the two-dimensional case (see Fig. 3).
However, there is a striking difference between the D ≤ 2
case and the present D ¼ 3 theory: the roots seem to be
accumulating around the valuem2 ≈ −0.23, rather than −1.
Although this is of course an approximated value, for the
sake of simplicity, wewill use the equal sign in the following
whenever we consider this value: m2 ¼ −0.23. If one
restricts the pattern to the ½−0.23; 0� interval, then the
random number generating model for the root pattern
statistics becomes available again. Since the distribution
of the points signals the accumulation at m2 ¼ 0 and m2 ¼
−0.23 the probability density of finding a root in this interval
will have the same form as in Eq. (20); the only difference is
that now the Dirac deltas are centered at m2 ¼ −0.23 and
m2 ¼ 0 rather thanm2 ¼ −1 andm2 ¼ 0.We can also check
the convergence of the roots by establishing an ordering
among them: m2

1, m
2
2 and m2

3, where the first indicates the
root that is closest, the second is the second closest and the
third is the third closest root to m2 ¼ −1 at each order. The
root labeled bym2

1 starts to go towards−1 but at order n ¼ 6

it stops and starts to converge to m2 ¼ −0.23 in an
oscillatory way.
On the other hand, the rootsm2

2, m
2
3 also converge to this

value, and it is possible to fit a curveon them, but this time the
fit is an exponentially decaying one, as it can be seen from
Fig. 10(a). The convergence of these roots confirmswhat we
expect from theM� pattern: the two roots that will remain in
this interval for n → ∞ arem2 ¼ 0 andm2 ¼ −0.23, which
correspond to the Gaussian and the Wilson-Fisher fixed
point, respectively. One needs to check whether theWilson-
Fisher (WF) fixed point defines a bounded potential.

FIG. 7 (color online). In this plot the VBFs up to λ6 are shown
for D ¼ 3, N ¼ 2. For each λi the root that is closest to −1 (from
above) is indicated with a black dot. Note that if we consider the
position of these points as a sequence then they will converge to a
finite value m2 ¼ −0.23; see also Fig. 10.

FIG. 8 (color online). Here we present the root structure of the
VBF curves up to order n ¼ 41, in the O(3), D ¼ 3 model.
Observe that we can distinguish three regions where the roots are
positioned: m2 > 0, m2 < −1 and m2 ∈ ½−1; 0�. For a detailed
picture see Fig. 10.
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Substituting the value m2 ¼ −0.23 into the VBF poly-
nomials λn will give the following result: there are VBF
curves for which λnðm2 ¼ −0.23Þ < 0 and for which
λnðm2 ¼ −0.23Þ > 0. This is due to the oscillatory behav-
ior of the root m2

1, but we know that this will converge to a
finite value, and finally the WF fixed point can be defined
as the limit of m2

1. But until this happens, we will find
situations which would give the weird result that the
Wilson-Fisher fixed point defines an unbounded potential
from below; hence, strictly speaking, we should not
consider it as a physical fixed point. This is the case for
example with λ8 and λ9 (see Fig. 9); hence this tells us that
there is no Wilson-Fisher fixed point at the truncation level
n ¼ 8. Even though this is true, we must not forget that the
Taylor expansion is an approximation, so the real fixed
point structure of the theory will be found when n → ∞;
hence the “absence” of the WF fixed point can be
considered as an artifact of the expansion. Let us consider
now the region m2 < −1. A magnified picture of it can be
seen in Fig. 10(b). Here, we can observe roots which
are running into the convexity fixed point as n grows.

FIG. 9 (color online). The absence of the Wilson-Fisher fixed
point at the truncation order n ¼ 8. We can see that the roots of λ9
to the left define a negative valued λ8ðm2

WFÞ, which will provide
an unphysical potential. Moreover, the second root to the right
does not give a sensible potential either. This phenomenon occurs
because of the oscillatory nature of m2

1, but at n → ∞ we expect
to see a stable fixed point potential at the WF fixed point. λ8 has
been rescaled with a factor of 2 × 10−7.

FIG. 10 (color online). The root structure of the D ¼ 3, N ¼ 2 theory separated into different regions. In (a) and (b) we can conclude
for the n → ∞ limit; that is, we will have the following fixed points: Gaussian, Wilson-Fisher and the IR. These suggestions are also
confirmed by functions. Regarding (c) for m2 > 0, no clear answer is found: the red lane indicates the last real root for m2 > 0.
For details see the text. (a) The region −1 < m2 < 0. (b) The region m2 < −1. (c)The region m2 > 0.
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The position of the roots would show a similar pattern to
the M� pattern; however, here we have difficulties with the
unbounded interval ð−∞;−1�. We will show how it is
possible to overcome such a situation in the next section;
however, there will be some requirements, which are not
fulfilled in the present case. Here, we can only assume that
all such roots will converge tom2 ¼ −1 providing us the IR
(or convexity) fixed point in the n → ∞ limit. For two such
roots we can show the convergence by doing a fit.
Interestingly, in this case the roots are following a different
trend to approach −1: the first one is an exponential
function fðxÞ ¼ aþ cebðx−12Þ with a ¼ −1.014� 0.005,
b ¼ −0.39� 0.01 and c ¼ −1.43� 0.05; the second is
power law gðxÞ¼aþcðx−20Þb with a¼−0.885�0.003,
b ¼ 1.35� 0.08 and c ¼ −7.2� 0.06. Neither of them
goes to −1 precisely; however, these are the best fits that
can be found. For large n values, when these roots are very
close to −1, they develop an imaginary part; hence they
cannot be considered as true fixed points, strictly speaking.
One has to go so close to −1 that this effect can be
considered as negligible, taking into account that the
VBF curves around −1 are extremely flat thanks to the
ð1þm2Þn factor in Eq. (14). Thus, finding roots around −1
is not always a reliable thing; it might depend on the
precision of the root finding algorithm, too.
The remaining region that we need to consider is the half

interval m2 > 0. The position of the roots for this region is

shown in Fig. 10(c). One can find again some pattern which
could remind us of the M� pattern; however, in this case
besides the fact that the interval is unbounded from above,
the roots do not heave a clear bound even from below. The
general behavior of the root positions is that they have
the last real value at about m2 ¼ 0.01–0.02 [indicated by
the red lane in Fig. 10(c)], and below that they will have
complex values. Even considering the generated complex
roots does not help us to understand this part of the root
structure; however, in the case of the four-dimensional
OðNÞmodels we can use these complex roots to capture the
real physics, as we will see in Sec. V B.
The most important result of this section is the

appearance of the Wilson-Fisher fixed point. It may well
be possible to find more physical fixed points in other
fractional dimensions between two and four dimensions for
various N values, but it is beyond the scope of the present
study.

V. VBF CURVES FOR D ≥ 4

So far we considered D ¼ 1; 2 and 3. In this section we
are going to investigate the theories inD ≥ 4. Let us look at
the first two VBF curves (λ2 and λ3) in arbitrary dimensions
and field components. We already derived their formulas in
Sec. II: Eq. (10) and Eq. (12). Now, we are interested in the
roots of the general expressions:

0 ¼ −
2m2ð1þm2Þ2
ð2þ nÞAD

;

0 ¼ −
2m2ð1þm2Þ3ðDð1þm2Þð2þ NÞ − 4ð2þ N þ 2m2ð5þ NÞÞÞ

ð2þ NÞ2ð4þ NÞA2
D

; ð23Þ

for λ2 and λ3, respectively. The first equation gives zero at
m2 ¼ −1 and m2 ¼ 0 independently from the dimension.
Among the roots of the second equation in Eq. (23) of
course we discover again m2 ¼ −1 and m2 ¼ 0, but
factorizing with respect to these roots, one will be left
with the equation for the third root, and it will depend onD.
Let us solve it for m2. The result is the following:

m2 ¼ −DN − 2Dþ 4N þ 8

DN þ 2D − 8N − 40
: ð24Þ

This expression shows the “running” of the root (the
Wilson-Fisher fixed point) with the dimension. For sub-
stituting D ¼ 1; 2 and 3 (and N ¼ 3), one would get the
results that we obtained in the previous sections. However,
evaluating it at D ¼ 4, we will lose the N dependence
completely. In other words: no matter what OðNÞmodel we
consider, the WF fixed point coincides with the Gaussian in

the D ¼ 4 case. In Fig. 11 one can see the λ3 VBF for
various dimensions. The observation is the following: the
only root in the interval ð−1; 0Þ drifts towards the positive
real values. At D ¼ 4 it merges into zero; hence, besides
the convexity and the Gaussian fixed point, there are no
further fixed points present. Above four dimensions the
root gets positive values. We can address the question if this
is a true fixed point or not. If one substitutes the value of
these positive roots into the VBF λ2ðm2Þ, one will immedi-
ately see that λ2ðm2

0Þ < 0, thus defining an unstable
potential at this truncation level. As a consequence, there
are no other true fixed points besides the Gaussian and the
IR; hence we can call the system trivial. It is possible to
derive the dimension dependence for other λi’s, too, with
similar qualitative behavior: the roots start from inside the
interval ð−1; 0Þ with D ¼ 1 and as the dimension grows,
they are tending out from the interval. As D takes the value
of 4, the last (i.e. the closest to m2 ¼ −1) root of the VBF
under consideration merges into m2 ¼ 0, and all the others
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have already obtained positive values; see Fig. 12, where
we illustrate this situation with λ4.
In the following, we are going to discuss the VBF curves

at a higher truncation level for D ¼ 5 in detail, as a
representative of theories for D > 4. However, we need
to distinguish the case when D ¼ 4, since showing the

triviality in this case is not that straightforward as it is for
D > 4; hence, the four-dimensional case is going to be
presented in a separate section. In the last two sections
various examples for theories in dimensions D ≥ 4
are shown.

A. Triviality of the OðNÞ model in D > 4

For any D > 4 theories the finding is that the VBF
curves have the following structure:

λn ∝ ð−1Þnþ1ðm2Þð1þm2Þn
Xn−2
i¼0

giðN;DÞðm2Þi: ð25Þ

Notice that it has essentially the same structure that we had
in the cases D ≤ 2, but there is one crucial difference. For
theoriesD ≤ 2 we found the coefficient functions gi’s to be
always positive, hence defining only negative (and com-
plex) roots for the polynomial; moreover they were inside
the interval ð−1; 0Þ. In this case likewise to 2 < D < 4 we
can obtain negative values for gi’s, too, but contrary to that
case, here we do not obtain roots inside the interval ð−1; 0Þ:
all the real roots in this case are positioned in the disjoint
union of the complement set of ð−1; 0Þ, i.e. in
ð−∞;−1� ∪ ½0;∞Þ. The first few VBFs are the following:

λ2 ¼ −24π3m2ðm2 þ 1Þ2;

λ3 ¼
288π6

7
m2ðm2 þ 1Þ3ð39m2 − 5Þ;

λ4 ¼ −
1536π9

7
m2ðm2 þ 1Þ4ð576ðm2Þ2 − 425m2 þ 25Þ;

λ5 ¼
92160π12

539
m2ðm2 þ 1Þ5ð10233ðm2Þ3 − 176625ðm2Þ2

þ 36125m2 − 1225Þ;… ð26Þ

These curves are shown in Fig. 13. Now, we are going to
analyze their root structure. In the case for theories in D >
4 we can clearly identify a pattern of the roots again, just
like we did it for D ≤ 2, i.e. the M� pattern. For the
particular case D ¼ 5; N ¼ 3 one can see the position of
the VBF roots in Fig. 14. What we can observe is just the
reverse of what happened in the OðNÞ models for D ≤ 2.
The roots are situated only outside the interval ð−1; 0Þ, and
they have a similar pattern to the one we had for the D ≤ 2
cases; i.e. each root of λnþ1 is surrounded by the roots of λn.
We can call it only similar, since we clearly have a

problem in the present case: we are not able to use our
random number generating model that we did in Sec. III for
simulating the positions of the roots, because the set
ð−∞;−1� ∪ ½0;∞Þ is unbounded. For that reason, the
highest (lowest) roots of the VBF λnþ1 do not have an
upper (lower) neighbor from the set of the roots of the VBF
λn. However, we are able to do the following trick: let us
one-point compactify the real line R, meaning that we

FIG. 12 (color online). In this figure one can see the different λ4
VBF curves for different dimensions. Observe that the two roots
from the interval ð−1; 0Þ run to the right as D grows. For D ¼ 4
the root indicated with a triangle has got already a positive value
and the one which was indicated by a dot has just melted into
zero. For D ¼ 5 both of the roots have positive values. The
triangle is not present in the plot, since it took the value
m2 ¼ 0.673. For this illustration N was set to 3 and the VBF
curves are rescaled as λ04 ∝ λ410

−α, where α ¼ 5; 6; 7; 8 and 9 for
D ¼ 1; 2; 3; 4 and 5, respectively.

FIG. 11 (color online). In this figure one can see how the λ3
VBF curves change with the dimension. Observe that the only
root from the ð−1; 0Þ interval runs into zero as D → 4. ForD ≥ 4

the root obtains a value m2
0 > 0; hence there is no fixed point in

the SSB phase but there is one in the symmetric phase, which
turns out to be unstable because λ2ðm2

0Þ < 0. Note that we
indicated only integer values for D but the transformation is
continuous in the dimension; hence all the values between the
integers would define similar curves. For this illustration N was
set to 3 and the VBF curves are rescaled as λ03 ∝ λ310

−α, where
α ¼ 0; 4; 4; 5 and 6 for D ¼ 1; 2; 3; 4 and 5, respectively.
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“glue” together the points m2 → �∞, thus creating a
closed set for ½0;−1�. This may look like an ad hoc idea
but we will see that it works. Let us consider for instance
the orders n ¼ 6 and n ¼ 7 in Fig. 14. The highest valued
root in the region m2 > 0 from n ¼ 7 would need a root
from n ¼ 6 to restore the right pattern, but apparently there
is no such root. However, if we extend our picture with the
compactified real line, we will see that in the region m2 <
−1 the right root appears just where we would need it at
order n ¼ 6, and thus the pattern goes on. This is true for all
the other roots (see Fig. 14); thus the compactification of
the real line is well justified in this way, hence providing us
with an M� pattern on the compactified real line. In the
interval ½0;−1� one can now use the technique that we
introduced in Sec. III. The result of such a random number
procedure is shown in Fig. 15.
We can see that the positions of the roots are again

accumulating at −1 and 0, but now they are approaching

from the complement interval of ð−1; 0Þ. In this way we
can see how the triviality is emerging in the limit n → ∞.

B. Triviality of the OðNÞ model in D ¼ 4

In this section we are going to discuss the D ¼ 4 OðNÞ
models, and special attention will be given to the case
N ¼ 1, which has been in the center of interest since
triviality is predicted to occur in the ϕ4 theory. To have a
clue on triviality beyond perturbation theory we still need
to rely on lattice simulations, which actually support the
trivial behavior of such theories [33]. Here, we are going to
show a result which suggests that indeed the trivial scenario
holds for such models; i.e. no UV fixed point different from
the Gaussian is present in the OðNÞ models taking into
account all the symmetry respecting terms in four dimen-
sions (the ϕ4 case is shown in Fig. 11). We are going to
present the result for N ¼ 1 but this holds for general N.
The VBF polynomials in D ¼ 4 have the form

λn ∝ ð−1Þnþ1ðm2Þ1þΘðn−3Þð1þm2Þn

×
Xn−2
i¼0

giðN;D ¼ 4Þðm2Þi−Θðn−3Þ: ð27Þ

In particular the first few λi for N ¼ 1 are

λ2 ¼ −
64π2

3
m2ðm2 þ 1Þ2;

λ3 ¼
8192π4

5
ðm2Þ2ðm2 þ 1Þ3;

λ4 ¼ −
524288π6

35
ðm2Þ2ðm2 þ 1Þ4ð14m2 − 1Þ;

λ5 ¼
67108864π8

315
ðm2Þ2ðm2 þ 1Þ5

× ð168ðm2Þ2 − 41m2 þ 1Þ;… ð28Þ

FIG. 14 (color online). In the upper (lower) panel the roots of the VBF curves are shown for λ3;…;λ10 (λ6;…; λ15), form2≥0 (m2 ≤ −1).
One can observe a pattern of the roots similar to theD ≤ 2 case: each root of VBF λnþ1 is surrounded by the roots of λn. The only problem in
this case is, since the interval is unbounded, this pattern is not entirely true: indeed, the highest (lowest) roots of λnþ1 nowdonot have an upper
(lower) neighbor from the roots of λn. We can overcome this difficulty by one-point compactifying the real line R. For details see the text.

FIG. 13 (color online). The VBF curves λ0i (i ¼ 2;…5; 8).
Observe that the roots of each curve are always outside the
interval ð−1; 0Þ. For λ8 we have negative roots, too. For display
purposes the VBF curves are rescaled as λ0i ∝ λi10

−α, where
α ¼ 1; 3; 6; 9 and 19 for i ¼ 2; 3; 4; 5 and 8, respectively.
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By analyzing the root structure of these equations one will
find that all the roots are situated outside the interval of
ð−1; 0Þ and likewise in the D > 4 cases (see Fig. 16); the
only difference is that at the order n ¼ 7 the VBF curve λ7
develops roots on the complex plane, too, with Rem2 > 0.
We have already met such a situation in theories defined in
2 < D < 4 dimensions. In that case, we neglected these
roots since we considered them to be unphysical. In the
present case we still stick to our convention; that is, we
neglect them as possible fixed point candidates. However,

we can identify an interesting behavior for such nonreal
roots. Let us look at the root structure of the theory in
Fig. 17, where we present the position of the real roots for
all relevant intervals of m2.
What we can observe is that the roots are approaching

the points −1 and 0, just like in the case for D > 4.
However, as we indicated above, complex roots are
emerging: the first one and its conjugate from n ¼ 7,
two and their conjugates from n ¼ 11, three and the
conjugates from n ¼ 15 and from n ¼ 18 four complex
roots plus conjugates. Among these roots, being complex,
we cannot make an ordering; however we are able to do that
for the real part of them. The real parts of the roots are
indicated in Fig. 17. Complex roots with negative real parts
do not occur; hence it is enough to consider the Rem2 > 0.
The figure shows that for the real part of the roots, there

is indeed a pattern, namely almost the same that we
observed for both the cases D ≤ 2 and D > 4; the only
differences are in the orders where the complex roots
appear. Here, we observe that above and below the real part
of the newly appearing complex roots the pattern continues;
only at those particular points do we find the breaking of
the pattern (these are indicated by red circles in Fig. 17): no
root from the real part of the λnþ1 goes between the
corresponding roots of λn. Now, if we consider the limiting
distribution of such a pattern of the points, we will find that
this anomaly will not have an effect on it: after compacti-
fication of the real line, as we did it for the D > 4, the
points are just accumulating at −1 and 0; hence we will find
exactly the same result as in Eq. (20), but now only for the
real part of m2. We are not done yet, since we have only

FIG. 16 (color online). The real roots of the four-dimensional
OðNÞ model are shown. No root in the interval ð−1; 0Þ is found;
on the contrary, all roots are outside this interval. One can see
that, just like in the case of D > 4, the roots are approaching −1
and 0 from the outside region. However, more careful analysis is
needed in this case. For details see the text.

FIG. 15 (color online). Histograms of the distribution of the points generated in Xn: (a) the distribution of X20, (b) the distribution of
X100, and (c) the distribution of X15000. Observe that the points are accumulating at −1 and 0 but this time from the outside region.
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considered the real part so far. This result on the limiting
position of the roots does not make any sense if we find a
finite imaginary part of m2 in this limit. Let us consider
therefore the roots on the complex plane. This is shown in
Fig. 18. We can see the developing imaginary part at the
order n ¼ 7 for the first time.
Interestingly, the absolute value of the imaginary part

will have a maximum at some point and it is tending to zero
just like the real part. We can also express the imaginary
part as a power law of the real part close to the origin:
Imm2 ¼ �aðRem2Þb, where the parameters are a ¼
0.162� 0.001 and b ¼ 0.589� 0.001. Now, considering
the “running” of the second and the third complex roots

(m2
2; m

2
3), which are appearing first at the orders n ¼ 11 and

n ¼ 18, respectively, we will find that they behave in a very
similar way to the first complex root (m2

1); moreover, they
collapse onto each other close to the origin (see Fig. 18),
thus approaching 0 with the same exponent. We can see that
both the real and the imaginary parts of the roots are
approaching zero as the order n grows; hence we can say
that the roots, although they are not defined as physical
ones when they have complex values, accumulate at −1 and
0 in the n → ∞ limit. It is interesting that only in the limit is
the imaginary part absent entirely, and until we take this
limit we will have a gap between m2 ¼ 0 and the last
noncomplex valued root in the particular order n. With this

FIG. 18 (color online). The roots on the complex plane. In the upper panel one can see the emergence and disappearance of the first
complex root (m2

1). It appears at n ¼ 7 and tends to zero as we go to higher orders in n. In the lower panel the second and third complex
roots are indicated (m2

2 and m2
3). They appear at orders n ¼ 11 and n ¼ 15 respectively, and coincide with the curve defined by the

complex root m2
1. The fitted power-law curves are defined in the text, and the fitting procedure was performed on 24 data points.

FIG. 17 (color online). The real parts of the roots. The black dashed line indicates the average threshold between the purely real and
complex root values. It is at about m2 ¼ 0.022. For every value of Rem2 under this line we have an imaginary part for the root. New
complex roots are emerging at orders n ¼ 7, n ¼ 11, n ¼ 15 and n ¼ 18. At these orders we can see a “violation of the pattern”which is
being indicated by the arrows: pointed black arrows for the purely real and dashed gold for the complex roots. Apart from the newly
emerging complex roots the pattern holds. For details see the text.
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procedure we were able to show that only two fixed points
are present (with the Gaussian as the only stable one) in the
unexpanded OðNÞmodel just like inD > 4. Altogether this
signals the triviality for the OðNÞ theories when the
dimension is D ≥ 4. Hence, we were able to show non-
perturbative evidence of the triviality for theories defined
in D ≥ 4.
Regarding the D ¼ 3 case, in Sec. IV, the roots on the

complex plane do not behave in the same way that they do
in the four-dimensional case (Fig. 18); hence we cannot
obtain the distribution of the roots by using the random
number generating algorithm for the compactified M�
pattern.

VI. THE N DEPENDENCE AND THE
LARGE-N LIMIT

In this section we are going show what is the effect of
changing the number of fields, i.e. N, for particular
dimensions. We can even compute the limit when N→∞
(cf. [7,34]), which is equivalent to the spherical model [35].
To obtain the RG equation for large-N, we are going to
rescale Eq. (7) by N, and considering the new variables
ρ → ρ=N and u → u=N. The derivative of the potential
remains invariant under this rescaling u0 → ∂u=N

∂ρ=N ¼ u0. As a
first step, we divide the RG equation (7) by N:

∂t
u
N

¼ ðD − 2Þ ρ
N
u0 −D

u
N
þ AD

1þ u0
−
AD

N
1

1þ u0

þ AD

N
1

1þ u0 þ 2ρu00
: ð29Þ

Next we perform the rescaling

∂tu ¼ ðD − 2Þρu0 −Duþ AD

1þ u0
−
AD

N
1

1þ u0

þ AD

N
1

1þ u0 þ 2ρu00
: ð30Þ

By taking the limit N → ∞ the following terms remain:

∂tu ¼ ðD − 2Þρu0 −Duþ AD

1þ u0
: ð31Þ

From this equation one can derive the VBF curves with the
usual steps; just the N dependence is absent from the
formula Eq. (14).
In this section we cannot show of course the full N

dependence; these are only a few checks for particular
values of N. One should derive the root structure for each
N, independently. However, these few examples could give
us some idea what is going on when N is being changed.

A. N dependence for OðNÞ theories in D ≤ 2

Let us consider three different two-dimensional theories
with field components N ¼ 7 and N ¼ 15 and N → ∞.
The positions of their roots are shown in Fig. 19. We can
see in the two finite N cases that there seems to be a
problem in the low orders of the expansion: the position of
the roots will not satisfy the requirement of theM� pattern;
however, as the order grows the pattern is restored. We need
to mention that when a particular root gets very close to −1
in the next order sometimes it becomes complex, but its real
part still stays around −1; hence one cannot see this
accumulation exactly, but rather we can say this root
“melted” into −1. This might be related to the fact that
we already explained for the D ¼ 3 case: the VBF poly-
nomials get extremely flat close to −1 because of the
ð1þm2Þn factor in Eq. (14); hence it could mean some
problem for the root finding algorithm to provide the right
value. One way or another, a complex root does not define a
physically sensible theory; thus we can still look at this
pattern which will provide Eq. (20) as the probability
density of the root positions when n → ∞.
However, no complex roots occur for the large-N case

where we know that only the symmetric phase must be
present, as it was proven analytically in [13] in the
framework of FRG. The fact that a root gets complex or
accumulates at one of the stable fixed points −1; 0 is
irrelevant from the point of view of the physics: in both of
the cases only −1 and 0 survive when n → ∞. For D ¼ 1
we can find similar results. These were, of course, only a
few checks on the N dependence and it should be
considered case by case for every N; however, from our
experience we could assume that in n → ∞ roots inside the
interval ð−1; 0Þ either get complex or they are arbitrarily
close to −1 or 0 for any field component N.

B. N dependence in 2 < D < 4

In dimensions 2 < D < 4 for finite N we will get a very
similar result to the one which we obtained in Sec. IV. For
these values of the dimension, one has the richest fixed
point structure of all; hence it should be checked case by
case. However, here we will only focus on the integer
valued dimension D ¼ 3. For the large-N in D ¼ 3 the
positions of the VBF roots show a significant difference
comparing them to the finite N (compare Fig. 20 and
Fig. 8). We can identify the Wilson-Fisher fixed point just
as we did it in Sec. IV, but in this case we cannot see the
additional “fake” fixed points at any truncation level. Also
for them2 > 0 roots we can see differences: they start to be
organized in the pattern which leads us to the distribution
found in Sec. III, Eq. (20). In this case it is also remarkable
that no complex roots are found unlike for finite N.
Comparing our results to [7,34], where in the large-N the

fully analytic solution was derived without relying on
the polynomial expansion, we can see that in the case of
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the analytic solution a line of fixed points starting from the
Gaussian is found, whereas in our case, using the VBF,
seemingly, we do not have that. However, we can observe a
unique behavior of the VBF curves, namely, that the
multiplicity of the Gaussian fixed point grows with the
truncation order. More precisely, we have

λn ∝ ð−1Þnþ1ðm2ÞγðnÞð1þm2Þn
Xn−2
i¼0

giðm2Þi; ð32Þ

where γðnÞ is an integer function of the truncation order n:

γðnÞ ¼

8>><
>>:

1 if n ¼ 2; 3

2 if n ¼ 4
½nþ1�
2

if n ≥ 5

: ð33Þ

This is the only case (that is found), which has the property
of growing multiplicity of the rootm2 ¼ 0. That might be a
fingerprint of the line of fixed points which can be found in

FIG. 20 (color online). The roots of the VBF inD ¼ 3, N → ∞
are shown. Comparing it to Fig. 8 the most striking difference is
that there are no “fake” roots between the root which is indicating
the Wilson-Fisher (m2 ¼ −0.388) and the one which is for the
Gaussian, i.e. m2 ¼ 0. It is equally interesting that in this case
we do not find any threshold beyond which the roots become
complex in the m2 > 0 region.

FIG. 19 (color online). The N dependence of the root positions inD ¼ 2. We can see that theM� pattern restores at larger order of the
expansion for various N. Sometimes one will find complex roots close to −1which can be considered unphysical. In this way it does not
actually matter if we consider the limit of the distribution of the roots or it gets complex, providing an unphysical situation. When the
n → ∞ limit is taken the only two roots that can be found are −1 and 0. In the large-N limit no complex valued root has been found till
the order n ¼ 34. (a) N ¼ 7. (b) N ¼ 15. (c) N → ∞.
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the full analytical solution presented in the aforementioned
papers.

C. N dependence in D ≥ 4

One of the most important results for theoriesD ≥ 4 was
the triviality (Sec. V). Our finding is that the modification
of the number of the field components N does not give any
qualitatively different result for any such theory, when N is
kept finite. However, we can discover differences between
the results when N < ∞ and N → ∞ for theories inD > 4.
In four dimensions we will see the “compactified” M�

pattern of the real part of the roots as in Fig. 17. The only
question is whether the convergence on the complex plane
towards the origin still holds. We present the results in
Fig. 21, for N ¼ 4, N ¼ 15, N ¼ 40 and N → ∞. We can
observe that the convergence to the origin slows down as N
grows; however, for the N < ∞ cases, it is possible to fit a
curve on them near the origin. The same form of the power
law is found for each N, that is, fðxÞ ¼ axb, just like in
the case of N ¼ 1 in Sec. V. The parameters are the
following: a ¼ 0.193� 0.001, b ¼ 0.587� 0.002 for

N ¼ 4; a ¼ 0.249� 0.002, b ¼ 0.586� 0.002 for
N ¼ 15; and a ¼ 0.302� 0.006, b ¼ 0.584� 0.004 for
N ¼ 40. It is interesting that close to the origin the
exponent of the power law seems to take the value
0.586� 0.002, and thus one can speculate whether it is
universal.
Regarding the N → ∞ case, we did not reach the region

where we could do the fit; however, the absolute value of
the imaginary part reached its maximum and started to
decrease. We expect the same behavior (maybe with a
different exponent) as for the finiteN cases; however, to see
that we would need to go to a higher expansion order than
the one used in this case (n ¼ 53).
For theories in greater than four dimensions the fixed

point structure does not change much compared to the
results of Sec. V; only quantitative differences can be
observed. We will present a few plots on the root positions
in Fig. 22. Arbitrarily we have chosen the cases
fD¼ 5;N ¼ 6g, fD¼ 8;N ¼ 10g and fD¼ 11;N ¼ 12g.
The roots are positioned in such a way that they accumulate
more and more at the two stable roots −1 and 0, which is
essential for triviality. There can be minor deviation from

FIG. 21 (color online). The convergence to the origin on the complex plane is shown for (a) N ¼ 4, (b) N ¼ 15 and (c) N ¼ 40. On
(d) the N → ∞ is presented; in this case the number of the data points is not enough to fit a curve on the points near the origin (the
expansion order in this case is n ¼ 53, and for the finite N cases n ¼ 35). However, the same behavior is expected: the convergence to
the origin slows down asN grows. For the finiteN cases a power-law fit can be found around the origin (the fit was performed on 24 data
points), for which the exponent seems to be universal. For details see the text.
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the pattern M�; however, at some point the pattern is
restored completely, and one can obtain the triviality in the
same way that we did it for the case D ¼ 5, N ¼ 1.
A more interesting case that can be found is in the

large-N limit. From Eq. (31) one can derive again the VBF
curves in D > 4. In the present section we are going to
study only theD ¼ 5 theory for the large-N limit. In Fig. 23
one can see the root positions for this model. The first

thing that we can notice is that there is a stable line at
m2 ¼ 0.139 which would signal a new fixed point
solution. There has been a recent work [21] on the topic
of whether such a fixed point exists in models 4 < D < 6
and the answer was that, if there is such a fixed point it will
provide an unphysical fixed point potential. In an earlier
work [36] related to holography a similar conclusion
was drawn.

FIG. 22 (color online). The VBF roots of the OðNÞmodel in (a)D ¼ 5 andN ¼ 6, (b)D ¼ 8 andN ¼ 10, and (c)D ¼ 11 andN ¼ 12.
On each plot the accumulation of the roots atm2 ¼ −1 andm2 ¼ 0 can be observed. For the rootsm2 < −1 there can be small deviation
from theM� pattern (most likely due to the extreme flatness of the VBFs around −1), but at some point the pattern restores completely.

FIG. 23 (color online). In the left panel the root structure provided by the real roots is shown. A stable line of the roots can be observed
at the value m2 ¼ 0.139. In the right panel the same root structure is shown, but now the real parts of the complex roots have been taken
into account, too. The real parts of the complex roots show the M� pattern, and also a power-law curve can be fitted on them:
fðxÞ ¼ axb, with a ¼ 0.807� 0.005 and b ¼ −0.492� 0.002. In the n → ∞ we expect to find triviality again. For details see the text.
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In the papers [37] an IR fixed point was found for an
OðNÞ symmetric theory with N þ 1 scalars in D ¼ 6 − ϵ
for sufficiently largeN, including a cubic interaction, too. It
was argued that this IR fixed point of the cubic OðNÞ theory
with N þ 1 scalars is equivalent to a UV fixed point of the
OðNÞ model in the large-N, which would imply an
unexpected asymptotically safe behavior of such theories.
Now, since we have found such a fixed point, we need to
check whether it gives a stable fixed point potential.
Substituting the value m2 ¼ 0.139 into the VBF polyno-
mials will provide the exact value for the corresponding
coupling at that fixed point, hence defining the fixed
point potential. The finding is the following: the highest
order in the expansion is n ¼ 46, and what we get is
λnðm2 ¼ 0.139Þ ≤ 0 for 2 ≤ n ≤ 46. This signals that the
fixed point potential defined by this root is unbounded from
below in agreement with the findings in [21]. Since the RG
equation of the effective potential can be considered to be
exact in the large-N, this unstable fixed point should be
found also beyond LPA. In Fig. 23 one can also observe
that there is a gap between the roots corresponding to this
newly found unstable fixed point, which can be filled in by
considering the real part of the roots. In the same figure,

considering the lower panel, we can see how the real parts
of such roots behave. We can fit a power-law decaying
curve again on the real part of the first root. This curve goes
through the line m2 ¼ 0.139 and in the asymptotic limit
goes to zero. The imaginary part behaves pretty much in the
same way as in the D ¼ 4 case (see Fig. 21). Here, we can
use the same argument as for D ¼ 4, N ¼ 1: one needs to
consider the positions of the roots on the complex plane in
order to catch the underlying physics. According to our
findings, the real parts of these roots exhibit the same M�
pattern; hence for n → ∞ we can expect them to accumu-
late atm2 ¼ 0, leaving us with three fixed points, which are
defined by the roots: m2 ¼ −1 (since for m2 < −1 the root
structure is the same as it was for the finite N case),m2 ¼ 0

andm2 ¼ 0.139. Out of these three roots only the Gaussian
(m2 ¼ 0) seems to provide a stable fixed point potential;
thus triviality was found again.

VII. THE FRACTIONAL DIMENSIONS

We present a few examples of the fractional-dimensional
cases in the intervals of the dimension that we have
investigated. In Fig. 24 the results are shown for

FIG. 24 (color online). The root structure is shown for some fractional-dimensional cases. The usual fixed points are found for 4 < D;
thus the most remarkable is (d), where we obtain a fixed point candidate for D ¼ 4.6 in the large-N. However, it turned out to define an
unstable fixed point potential just like it is shown in [21].(a) D ¼ 1.3 and N ¼ 1, (b) D ¼ 2.6 and N ¼ 1, and (c) D ¼ 3.1 and N ¼ 1.
(d) D ¼ 4.6 and N → ∞
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fD ¼ 1.3; N ¼ 1g, fD ¼ 2.6; N ¼ 1g, fD ¼ 3.1; N ¼ 1g
and fD ¼ 4.6; N → ∞g. In the first three cases the usual
fixed points are found; however it could be possible to find
additional fixed points for 2 < D < 4, but that would
require a more detailed study of this interval of the
dimension. For the two D values, which are in this interval,
we found the WF fixed point, too, and it can be observed
that they are situated at different values of m2: for D ¼ 2.6
m2

WF ¼ −0.34 and for D ¼ 3.1 it oscillates around
m2

WF ¼ −0.16. The most remarkable case is when we set
N → ∞ and choose D ¼ 4.6 ∈ ð4; 6Þ. Just as we saw it for
the large-N in D ¼ 5, here, we find again a fixed point
candidate at the value m2 ¼ 0.108. However, again in
agreement with [21], this fixed point is found to be an
unphysical one; i.e. the root m2 ¼ 0.108 defines an
unstable fixed point potential. (More precisely, it is a
metastable potential.)

VIII. CONCLUSION

We investigated the fixed point structure of the OðNÞ
model for various dimensions and field components. In this
paper we considered only the integer-dimensional cases in
detail, but results for fractional dimensions are presented in
the last section, too. For our analysis we used the LPAwith
a Taylor-expanded potential around zero VEVof the field.
In this case from the fixed point equation one is able to
express all the fixed point couplings through a polynomial
in the mass of the theory; see Eq. (14). Each nth polynomial
is obtained from the fixed point equation of the ðnþ 1Þth
coupling; that is, the equation for ∂tλnþ1ðλn; m2Þ ¼ 0 can
be solved for λn ¼ λnðm2Þ, hence the name VBF curve. A
general property of these polynomials is that they always
have a root at m2 ¼ −1 and m2 ¼ 0 corresponding to the
convexity (or IR) and the Gaussian fixed point, respec-
tively. These polynomials can be obtained for arbitrary
components of the field N and dimension D. To find a true
fixed point at a given level of truncation, we established the
following rule: let m2

0 be a root of the polynomial λnðm2Þ;
then a physically well-defined (i.e. bounded from
below) fixed point potential is given by the set of
couplings fλn−1ðm2

0Þ;λn−2ðm2
0Þ;…;λ1ðm2

0Þ¼m2
0g, provided

λn−1ðm2
0Þ≥0 [if it happens to be a root for the ðn − 1Þth

polynomial, too, then the same rule holds for the ðn − 2Þth
polynomial, and so on]. Using this rule to find fixed points
at a truncation level n gave us a nice opportunity to make
considerations about theories in different dimensions.
First, we considered theories forD ≤ 2, and in particular,

we analyzed the case of D ¼ 2 in detail. The finding is that
for all the theories we considered up to and including
dimension 2 they behave qualitatively in the same way for
N ≥ 2. In such theories for continuous symmetries the MW
theorem must hold as it was shown in [13]. We provided a
statistical approach to show the validity of the theorem by
considering the statistics of the root patterns. It was found

that for such systems (D ≤ 2) all the roots are in the closed
interval ½−1; 0�. Since at every truncation level a new root
appears, it seems to be paradoxical to prove the MW
theorem: we would not expect any root inside the interval
but practically there appears (countably) infinitely many.
A true fixed point in this interval signals a SSB phase;
hence the MW theorem seemed to be violated. However, it
turned out that this is only the case for finite n truncation.
As n → ∞ we can recover the MW theorem by simulating
the position of the roots and derive their distribution in
the infinite limit; see Sec. III. For discrete symmetry
N ¼ 1 the OðNÞ model is equivalent to the Ising model
which has a SSB phase in D ¼ 2. This result is also shown
as a part of this section.
In Sec. IV we investigated the theory for D ¼ 3 with

N ¼ 2, and in 2 < D < 4 the finding is that the theories
that have been considered have similar properties. We
found an additional fixed point beside the Gaussian and the
IR fixed point, namely, the Wilson-Fisher fixed point.
Although these fixed points have been found, we could not
clearly analyze the root structure for them2 > 0 region. It is
also possible that one could find additional fixed points in
2 < D < 4 for fractional dimensions, but it would require
more detailed study. The main result of this section was that
we were able to show the appearance of the Wilson-Fisher
fixed point.
For D ≥ 4 we found two qualitatively different results

(see Sec. V). However, essentially they lead us to the same
physics, namely, to the triviality of the model; that is, only
the Gaussian fixed point exists for such theories. For
theories D > 4 we analyzed the D ¼ 5 case, where the
fixed point structure shows similarity to theD ¼ 2 case, but
now the roots only appear outside of the interval ð−1; 0Þ;
however, for the root pattern the statistical simulation can
be used again if we compactify the real line of m2. In this
way triviality can be shown. The situation for D ¼ 4 is
different: here we need to consider the complex roots that
appear during the calculations, but it can be shown that
both the real and the imaginary part converges to the origin
on the complex plane, hence leading to the triviality of
the model.
In Sec. VI we showed some results considering different

values of N. The most interesting outcome is connected to
the recent results in [21,37], where it was argued that in the
OðNÞ model for N → ∞ if a nontrivial fixed point exists in
dimensions 4 < D < 6, then it defines an unstable fixed
point potential. From our analysis we found such a fixed
point, and indeed, it can be shown that it defines an
unbounded effective potential. In the last section we gave
some results for fractional dimensions, obtaining similar
behavior to the integer-dimensional cases.
According to our findings, we can draw the conclusion

that although we used the LPA during our computations,
that seems to be enough to obtain the right qualitative
physical results (MW theorem, the presence of the
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Wilson-Fisher fixed point and triviality), when one extrap-
olates to infinite order the results obtained in a given order
of the Taylor expansion. On the other hand, one has to be
careful with such expansions, since as we saw, at finite level
of the truncation it can generate fake fixed points from the
physical point of view.
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APPENDIX: THE PROOF OF THE
NESTED FORMULA

We would like to prove the nested formula for the
coupling constants in Eq. (13). The easiest to consider first
is the case for the large-N,D ¼ 2, because the RG equation
has the simplest form for these parameters [see Eq. (31)];
however, it can be generalized to arbitrary N and D, which
we will present after this simpler example. Without the loss
generality, we set the constant AD ¼ 1. Our starting point is
the RG equation, and we start to differentiate it with respect
to ρ:

∂tu ¼ −2uðρÞ þ 1

u0ðρÞ þ 1
;

∂tu0 ¼ −2u0ðρÞ − u00ðρÞ
ðu0ðρÞ þ 1Þ2 ;

∂tu00 ¼ −2u00ðρÞ þ 2u00ðρÞ2
ðu0ðρÞ þ 1Þ3 −

uð3ÞðρÞ
ðu0ðρÞ þ 1Þ2 ;

∂tu000 ¼ −2uð3ÞðρÞ − 6u00ðρÞ3
ðu0ðρÞ þ 1Þ4 þ

6uð3ÞðρÞu00ðρÞ
ðu0ðρÞ þ 1Þ3

−
uð4ÞðρÞ

ðu0ðρÞ þ 1Þ2 :… ðA1Þ

Let us rewrite the last three equation in the following form:

∂tu0 ¼ F1ðu0Þ þ gðu0Þu00;
∂tu00 ¼ F2ðu0; u00Þ þ gðu0Þuð3Þ;
∂tu000 ¼ F3ðu0; u00; u000Þ þ gðu0Þuð4Þ; ðA2Þ

where we defined

F1ðu0Þ≡−2u0ðρÞ;

F2ðu0;u00Þ≡−2u00ðρÞþ 2u00ðρÞ2
ðu0ðρÞþ 1Þ3−

uð3ÞðρÞ
ðu0ðρÞþ 1Þ2 ;

F3ðu0;u00;u000Þ≡−2uð3ÞðρÞ− 6u00ðρÞ3
ðu0ðρÞþ 1Þ4þ

6uð3ÞðρÞu00ðρÞ
ðu0ðρÞþ 1Þ3 ;

gðu0Þ≡−
1

ðu0ðρÞþ 1Þ2 : ðA3Þ

We can find the following relations between Fi’s:

F2ðu0; u00Þ ¼
∂F1

∂ρ þ ∂F1

∂u0 u
00 þ ∂gðu0Þ

∂u0 u002;

F3ðu0; u00; u000Þ ¼
∂F2

∂ρ þ ∂F2

∂u0 u
00 þ ∂F2

∂u00 u
000 þ ∂gðu0Þ

∂u0 u00u000:

ðA4Þ

Of course, ∂Fi=∂ρ ¼ 0 since in this case there is no explicit
ρ dependence, but for the sake of consistency, we will
indicate this term as well. We can make the following
statement for n ≥ 1:

∂tuðnÞ ¼ Fnðu0; u00; u000;…; uðnÞÞ
þ gðu0Þuðnþ1Þ;

Fnðu0; u00; u000;…; uðnÞÞ ¼ ∂Fn−1

∂u0 u00 þ ∂Fn−1

∂u00 u000 þ � � �

þ
� ∂Fn−1

∂uðn−1Þ þ
∂gðu0Þ
∂u0 u00

�
uðnÞ:

ðA5Þ

We are going to show this by induction. Let us suppose
Eq. (A5) is true. We are going to show that it holds for
nþ 1, too. Let us differentiate Eq. (A5) once with respect
to ρ. It yields

∂tuðnþ1Þ ¼ ∂Fn

∂ρ þ ∂Fn

∂u0 u
00 þ ∂Fn

∂u00 u
000 þ � � �

þ ∂Fn

∂uðnÞ u
ðnþ1Þ þ ∂gðu0Þ

∂u0 u00uðnþ1Þ þ gðu0Þuðnþ2Þ;

∂tuðnþ1Þ ¼ ∂Fn

∂ρ þ ∂Fn

∂u0 u
00 þ ∂Fn

∂u00 u
000 þ � � �

þ
� ∂Fn

∂uðnÞ þ
∂gðu0Þ
∂u0 u00

�
uðnþ1Þ þ gðu0Þuðnþ2Þ;

∂tuðnþ1Þ ¼ Fnþ1ðu0; u00; u000;…; uðnþ1ÞÞ
þ gðu0Þuðnþ2Þ; ðA6Þ

where
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Fnþ1ðu0;u00;u000;…;uðnþ1ÞÞ ¼ ∂Fn

∂u0 u
00 þ∂Fn

∂u00 u
000 þ � � �

þ
� ∂Fn

∂uðnÞ þ
∂gðu0Þ
∂u0 u00

�
uðnþ1Þ:

ðA7Þ

In this way it was shown that the rhs always depends on the
highest derivative of uðρÞ linearly, e.g. uðnþ1Þ in Eq. (A5).
Now, if we look for the scaling solution then the lhs
vanishes; hence from Eq. (A5),

uðnþ1Þ ¼ −
Fnðu0; u00; u000;…; uðnÞÞ

gðu0Þ : ðA8Þ

Evaluating this expression at ρ ¼ 0 gives

λnþ1 ¼ −
Fnðλ1; λ2; λ3;…; λnÞ

gðλ1Þ
: ðA9Þ

From this expression the nesting is straightforward:

λnþ1 ¼ −
Fnðλ1; λ2; λ3;…; λnÞ

gðλ1Þ
¼ −

Fnðm2Þ
gðm2Þ : ðA10Þ

Here, we used the notation m2 ≡ λ1. Thus, the formula of
the nested couplings in Eq. (13) is proved for N → ∞
and D ¼ 2.
Note that in the finite N case there are terms in the initial

RG flow like ρu0 and ρu00. Evaluating the equation at ρ ¼ 0
is crucial to be able to neglect these terms, which would
prevent us from performing the nesting. Thus, expanding
into Taylor series around zero is the only case when we can
define VBFs.
In what follows, we will give a proof of the nested

formula in Eq. (13) for arbitrary field components N and
dimensions D. Again, we set the constant AD ¼ 1. Let us
start again by differentiating the RG equation [in this case
Eq. (7)] with respect to ρ:

∂tu¼ ðD− 2Þρu0ðρÞ−DuðρÞþ N − 1

u0ðρÞþ 1

þ 1

2ρu00ðρÞþu0ðρÞþ 1
;

∂tu0 ¼ ðD− 2Þρu00ðρÞþ ðD−2Þu0ðρÞ−Du0ðρÞ

−
ðN − 1Þu00ðρÞ
ðu0ðρÞþ 1Þ2 −

2ρuð3ÞðρÞþ 3u00ðρÞ
ð2ρu00ðρÞþu0ðρÞþ 1Þ2 ;

∂tu00 ¼ ðD− 2Þρuð3ÞðρÞþ 2ðD− 2Þu00ðρÞ−Du00ðρÞ

þ ðN − 1Þ
�

2u00ðρÞ2
ðu0ðρÞþ 1Þ3−

uð3ÞðρÞ
ðu0ðρÞþ 1Þ2

�

þ 2ð2ρuð3ÞðρÞþ 3u00ðρÞÞ2
ð2ρu00ðρÞþu0ðρÞþ 1Þ3 −

2ρuð4ÞðρÞþ 5uð3ÞðρÞ
ð2ρu00ðρÞþu0ðρÞþ 1Þ2 :

ðA11Þ

Let us express the equations above in the following way:

∂tu0 ¼F1ðu0;ρu00Þþ gðu0Þu00 þhðu0;2ρu00Þð3u00 þ 2ρuð3ÞÞ;
∂tu00 ¼F2ðu0;u00;ρuð3ÞÞþ gðu0Þuð3Þ

þhðu0;2ρu00Þð5uð3Þ þ 2ρuð4ÞÞ; ðA12Þ

where

F1ðu0;ρu00Þ≡ ðD−2Þρu00ðρÞþðD−2Þu0ðρÞ−Du0ðρÞ;
F2ðu0;u00;ρuð3ÞÞ≡ ðD−2Þρuð3ÞðρÞþ2ðD−2Þu00ðρÞ

−Du00ðρÞþðN−1Þ 2u00ðρÞ2
ðu0ðρÞþ1Þ3

þ2ð2ρuð3ÞðρÞþ3u00ðρÞÞ2
ð2ρu00ðρÞþu0ðρÞþ1Þ3 ;

gðu0Þ≡−
N−1

ðu0ðρÞþ1Þ2 ;

hðu0;2ρu00Þ≡−
1

ð2ρu00ðρÞþu0ðρÞþ1Þ2 : ðA13Þ

We can establish the relation again just like in Eq. (A4):

F2ðu0;u00;ρuð3ÞÞ ¼
∂F1

∂ρ þ∂F1

∂u0 u
00 þ∂F1

∂u00 ρu
ð3Þ þ∂gðu0Þ

∂u0 u00u00

þdhðu0;2ρu00Þ
dρ

ð2ρuð3ÞðρÞþ3u00ðρÞÞ:

ðA14Þ

We can make the following statement for n ≥ 1:

∂tuðnÞ

¼ Fnðu0; u00;…; ρuðnþ1ÞÞ þ gðu0Þuðnþ1Þ

þ hðu0; 2ρu00Þðð2nþ 1Þuðnþ1Þ þ 2ρuðnþ2ÞÞ;
Fnðu0; u00;…; ρuðnþ1ÞÞ

¼ ∂Fn−1

∂ρ þ ∂Fn−1

∂u0 u00 þ � � �

þ ∂Fn−1

∂un ρuðnþ1Þ þ ∂gðu0Þ
∂u0 u00uðnÞ

þ dhðu0; 2ρu00Þ
dρ

ð2ρuðnþ1ÞðρÞ þ ð2n − 1ÞuðnÞðρÞÞ:

ðA15Þ

Let us suppose that Eq. (A15) is true for the nth term. Now,
we will show that it is true for the (nþ 1)th term:
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∂tuðnþ1Þ ¼ ∂Fn

∂ρ þ ∂Fn

∂u0 u
00 þ � � � þ ∂Fn

∂unþ1
ρuðnþ2Þ þ ∂gðu0Þ

∂u0 u00uðnþ1Þ þ gðu0Þuðnþ2Þ

þ dhðu0; 2ρu00Þ
dρ

ðð2nþ 1Þuðnþ1Þ þ 2ρuðnþ2ÞÞ þ hðu0; 2ρu00Þðð2nþ 3Þuðnþ2Þ þ 2ρuðnþ3ÞÞ;

¼ Fnþ1ðu0; u00;…; ρuðnþ2ÞÞ þ gðu0Þuðnþ2Þ þ hðu0; 2ρu00Þðð2nþ 3Þuðnþ2Þ þ 2ρuðnþ3ÞÞ; ðA16Þ

where

Fnþ1ðu0; u00;…; ρuðnþ2ÞÞ ¼ ∂Fn

∂ρ þ ∂Fn

∂u0 u
00 þ � � � þ ∂Fn

∂unþ1
ρuðnþ2Þ þ ∂gðu0Þ

∂u0 u00uðnþ1Þ

þ dhðu0; 2ρu00Þ
dρ

ðð2nþ 1Þuðnþ1Þ þ 2ρuðnþ2ÞÞ: ðA17Þ

In this way, by induction, we could show that the statement of Eq. (A15) is true. Here (in the case of finiteN), we have to set
ρ ¼ 0 and only then is it possible to do the nesting like in Eq. (A10). From this point it is straightforward to show this.
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