
Baryon chemical potential and in-medium properties of BPS skyrmions

C. Adam,1 T. Klähn,2 C. Naya,1 J. Sanchez-Guillen,1 R. Vazquez,1 and A. Wereszczynski3
1Departamento de Física de Partículas, Universidad de Santiago de Compostela

and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela, Spain
2Institute for Theoretical Physics, University of Wrocław, 50-137 Wrocław, Poland

3Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland
(Received 28 April 2015; published 29 June 2015)

We continue the investigation of thermodynamical properties of the Bogomol'nyi-Prasad-Sommerfield
(BPS) Skyrme model. In particular, we analytically compute the baryon chemical potential both in the full
field theory and in a mean-field approximation. In the full field theory case, we find that the baryon
chemical potential is always exactly proportional to the baryon density, for arbitrary solutions. We further
find that, in the MF approximation, the BPS Skyrme model approaches the Walecka model in the limit of
high density—their thermodynamical functions as well as the equation of state agree in this limit. This fact
allows one to read off some properties of the ω meson from the BPS Skyrme action, even though the latter
model is entirely based on the (pionic) SUð2Þ Skyrme field. On the other hand, at low densities, at the order
of the usual nuclear matter density, the equations of state of the two models are no longer universal, such
that a comparison depends on some model details. Still, also the BPS Skyrme model gives rise to nuclear
saturation in this regime, leading, in fact, to an exact balance between repulsive and attractive forces. The
perfect fluid aspects of the BPS Skyrme model, which, together with its BPS properties, form the base of
our results, are shown to be in close formal analogy with the Eulerian formulation of relativistic fluid
dynamics. Within this analogy, the BPS Skyrme model, in general, corresponds to a nonbarotropic perfect
fluid.

DOI: 10.1103/PhysRevD.91.125037 PACS numbers: 11.30.Pb, 11.27.+d

I. INTRODUCTION

The derivation of properties of baryonic matter, especially
beyond the nuclear matter density, is still one of the most
challenging problems in current strong interaction physics.
Since neither perturbative nor lattice computations apply in
this regime, one is forced to use an effective model approach
where both the field content and the form of the action are
postulated from general considerations (symmetries, low
energy degrees of freedom) rather than derived from the
underlying fundamental quantum theory, i.e., QCD.
One of the most popular and successful effective theories

is the Skyrme model framework [1], where the fields are
reduced to low energy effective chiral fields (pions and,
optionally, higher mesons). Baryons, on the other hand, are
not introduced as independent degrees of freedom but
appear, instead, as collective excitations in this mesonic
matter, that is, as topological solitons with an identification
between the baryon charge and the topological degree.
Very promising results of the original Skyrme proposal

when applied to the baryon sector [2–8] (and also to some
light nuclei) have to be contrasted with its problems in the
modeling of higher nuclei and (infinite) nuclear matter.
There are two main reasons for this fact. First, the nuclear
binding energies found in the Skyrme model are too large.
Second, Skyrmions with high baryon charge behave as
crystals, that is, form a lattice built out of smaller charge
substructures [9], which is in contrast to the liquid-type

behavior of nuclear matter. Recently, three possible ways to
cure the binding energy problem have been proposed: one
may include a dominating sextic term in the model (the
near-BPS Skyrme model [10–12]), add (infinitely) many
vector mesons (the BPS Skyrme vector meson model
[13,14]), or include a “repulsive” potential (the lightly
bound model [15]).
In particular, the BPS Skyrme model (the BPS restriction

of the near-BPS Skyrme model) already provides quite
accurate binding energies of the most abundant higher nuclei
(after taking into account the semiclassical rotational and
isorotational corrections as well as the Coulomb interaction
and a small isospin breaking [16]). It also leads to a perfect
fluid energy-momentum tensor with special diffeomor-
phisms (SDiff) symmetries. Therefore, this model plays
the role of a field theoretical realization of the liquid droplet
model of atomic nuclei. Its near-BPS generalization, thus,
seems to be a natural candidate for an effective model of
nuclear matter within the Skyrme framework. Furthermore,
the fact that the BPS Skyrme model has the energy-
momentum tensor of a perfect fluid (without any averaging
or mean-field (MF) approximation) led recently to noticeable
progress in the understanding of thermodynamic properties
of Skyrmions and nuclear matter as a Skyrmionic medium
[17]. With our model, it was possible to find an exact
equation of state relating the local energy density and the
pressure which, as the energy density is generically spatially
dependent (local spatial fluctuations), allows one to study
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Skyrmionic matter beyond the MF approximation. This was
crucial for a better understanding of the long-standing issue
of the too high compression modulus (too low compress-
ibility) in the Skyrme model [17]. The reason for these
achievements is a rather unique property of the BPS Skyrme
model, namely the equivalence of the microscopic (in terms
of observables related to the original effective chiral fields)
and macroscopic (in terms of thermodynamical functions
and variables) thermodynamical descriptions.
The sextic term, which is just the square of baryonic

current, has been included in many effective models [18]
(see recent [19]), and may be induced by the topological
Wess-Zumino-Witten coupling with the vector meson ωμ

[20–25]. It is known to significantly improve quantitative
predictions of the model in the baryon sector.
The fact that the BPS Skyrme model provides the rare

possibility to study nuclear matter beyond the MF limit
has been recently employed in a neutron star context,
where the BPS Skyrme model was coupled to gravity [26]
(the original Skyrme model was used for the description
of neutron stars in [27]). It has been found that such
Skyrmionic stars have masses and radii in very good
agreement with current data for neutron stars, but, what is
perhaps even more important, their properties do change if
one performs the full field theory and gravity computation
instead of the usual MF approximation known as the
Tolman-Oppenheimer-Volkoff approach.
Beyond this progress, there is, however, another thermo-

dynamical function [besides the energy (density), pressure,
and volume] which is extremely important but poorly
understood in Skyrme type models, namely, the baryon
chemical potential, which is crucial if one wants to consider
the model as a realistic description of cold and dense nuclear
matter. It governs the stability of phases, possible phase
transitions as well as the coexistence of different phases.
Therefore, for any realistic application of gravitating BPS
Skyrmions to neutron stars (which means taking into account
β-equilibrium, existence of skin and crust, or possible quark
core–hybrid stars) one has to know this thermodynamical
function.
It is the main aim of the present work to fill this gap in

our knowledge of the thermodynamical properties of the
BPS Skyrme model.
We shall find that it is again the BPS character of the BPS

Skyrme model which, together with its perfect fluid form,
allow one to find the baryon chemical potential both in a
MF approach and in an exact calculation. In particular,
the MF baryon chemical potential may be expressed by an
integral over field space (target space integral), exactly like
other bulk and MF quantities, and so only depends on the
target space geometry and some global (integration) con-
stants (the pressure and the baryon number), thereby
underlining the geometric nature of the underlying model.
Furthermore, using these results we are able to compute

the mass of a BPS Skyrmion in a Skyrmionic medium,

which is of high phenomenological importance as it may be
related to the in-medium masses of baryons.

II. PROPERTIES OF THE BPS SKYRME MODEL

The BPS Skyrme model is defined by the following
Lagrange density [we use the metric convention
ðþ;−;−;−Þ]:

LBPS ≡ L6 þ L0 ≡ −ð24π2Þ2λ6BμBμ − λ0U: ð2:1Þ
It consists of the sextic term L6, i.e., the baryon current
squared

Bμ ¼ 1

24π2
ϵμνρσTrLνLρLσ; Lμ ¼ U†∂μU; ð2:2Þ

and a nonderivative part, that is, a potential UðUÞ. In the full
near BPS Skyrme model, this BPS action is supplemented
by the usual Skyrme (perturbative) model. However, in order
to keep the binding energies on an acceptable level, the BPS
part must give the leading contributions to masses, while the
non-BPS part should enter as a rather small addition. Hence,
for the description of static properties already the BPS
Skyrme model should give a rather accurate approximation,
and we shall restrict to this submodel in the following.
For convenience, we redefine the coupling constants as
λ6 ¼ λ2=ð24Þ2 and λ0 ¼ ν2.
Starting from now, we restrict considerations to the static

case. The BPS property of the model means that one can
reduce the static field equations to a first order (Bogomolny)
equation

λπ2B0 ¼ �ν
ffiffiffiffi
U

p
; ð2:3Þ

whose solutions saturate the following topological bound:

EBPS ≥ 2π2λνjBjh
ffiffiffiffi
U

p
i; h

ffiffiffiffi
U

p
i≡ 1

2π2

Z
S3

dΩ
ffiffiffiffi
U

p
;

ð2:4Þ
where h ffiffiffiffi

U
p i is the average value of the square root of the

potential on the target space. Further, B ¼ R
d3xB0 is the

baryon number (topological degree) of the Skyrme field.
In fact, this equation can be analytically solved and
possesses infinitely many SDiff related solutions in each
topological sector.
As already mentioned, the energy-momentum tensor has

a perfect fluid form and, for static configurations, reads

T00 ¼ ε; Tij ¼ −Pδij; ð2:5Þ
where the energy density ε and pressure P are

ε ¼ λ2π4B2
0 þ ν2U; ð2:6Þ

P ¼ λ2π4B2
0 − ν2U: ð2:7Þ
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Hence, the Bogomolny equation (2.3) is equivalent to
the zero-pressure condition, i.e., to Eq. (2.7) for P ¼ 0;
see [28]. Besides, it follows from the conservation law for
the energy-momentum tensor that P must be constant, so
Eq. (2.7) with a nonzero pressure still leads to a first-order
equation providing us with a one parameter family of
(nonequilibrium) solutions of the full equations of motion.
The fact that, as a consequence of the BPS and perfect fluid
properties of the model, the static field equations for
nonzero pressure are still of first order is very important
for the thermodynamic properties of the BPS Skyrme
model. Briefly, it implies that bulk and MF quantities of
the model (like energy, volume, MF energy density, MF
baryon density, or MF chemical potential) which, in a first
instance, are given by normal integrals over physical space
R3, may be transformed into target space integrals. This
also implies that the resulting quantities do not depend on
particular solutions, but only on the model itself (the chosen
potential) and on some global constants (baryon number
and pressure). These bulk and average quantities are,
therefore, at the same time, thermodynamic variables by
construction, without any need for a further thermodynamic
limit. The general results explained in this paragraph will
be important in what follows.
Furthermore, the equation of state (EoS) between the

energy density (2.6) and the pressure (2.7) is not an
algebraic equation but depends on the Skyrme field via
the potential (off-shell)

ε ¼ Pþ 2ν2U ð2:8Þ
or, after inserting an exact solution, on the space coor-
dinates (on-shell)

ε ¼ εðP; ~xÞ; ð2:9Þ
where the particular dependence of the energy density on ~x
depends both on the form of the potential and on the
particular solution. This is a further peculiar property of the
BPS Skyrme model and a consequence of its perfect fluid
form: one can find an EoS (for Skyrmionic matter in
thermodynamical equilibrium) without any MF approxi-
mation, i.e., generically, with a nonflat energy density
distribution. In this sense, the BPS Skyrme model is a
unique field theoretical tool which goes far beyond the
usual effective field theory (EFT).
The fact that, generically, one deals with spatially non-

constant energy densities poses, at first glance, a problem if
one wants to compare the results of the BPS model with
typical EoS obtained for other EFT (in a MF approxima-
tion). However, it is possible to derive a MF equation of
state in the BPS Skyrme model, as well.
Obviously, one may define an algebraic EoS which

connects the total energy E and pressure: E ¼ EðPÞ,
or geometrical volume V and pressure: V ¼ VðPÞ.
Interestingly, by means of the Bogomol’nyi equation,

one can rewrite the total static energy and the geometric
soliton volume as target space integrals independently of
any particular solution and find

EðPÞ ¼ 2πλνjBj ~E; VðPÞ ¼ 2πjBj λ
ν
~V; ð2:10Þ

where

~E ¼
Z

π

0

dξsin2ξ
2U þ ~Pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p ;

~VðPÞ ¼
Z

π

0

dξsin2ξ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ~P
p ð2:11Þ

or

~E ¼ π

2

�
2U þ ~Pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
�
; ~V ¼ π

2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ~P
p

�
ð2:12Þ

and ~P ¼ P=ν2. Here, in (2.11) we used the usual Skyrme
field parametrization

U ¼ cos ξþ i sin ξ~n · ~τ;

~n≡ ðsinΘ cosΦ; sinΘ sinΦ; cosΘÞ; ð2:13Þ

where ~τ are Pauli matrices and ~n is a unit vector. Further we
assumed that the potential depends on the Skyrme field
only via the profile function ξ. It is sometimes useful to
consider the axially symmetric ansatz for a Skyrmion with
baryon number B, where

ξ ¼ ξðrÞ; Θ ¼ θ; Φ ¼ Bφ; ð2:14Þ

and ðr; θ;φÞ are spherical polar coordinates. Then the
Bogomol’nyi equation takes the form

jBjλ
2r2

sin2ξξr ¼ −ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
: ð2:15Þ

We want to emphasize, however, that all thermodynamic
functions and variables as well as the thermodynamic
relations between them are completely independent of
any ansatz. They follow directly from the BPS equations
(or, more generally, once integrated static field equations)
and are the same for all solutions. They represent, therefore,
properties of the model itself, and not of particular
solutions.
The bulk observables EðPÞ and VðPÞ are given by the

average values (on target space) of certain functions of the
potential “shifted” by the pressure. They obey the thermo-
dynamic relation

P ¼ −
dE
dV

ð2:16Þ
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and, therefore, coincide with the corresponding thermody-
namical functions, which means that for the BPS Skyrme
model the microscopic (field theoretical) description is
equivalent to the macroscopic approach (by thermodynam-
ical functions). Despite the fact that, generically, we do not
have an algebraic density-pressure EoS (which is an
important fact as it allows one to go beyond the MF
approximation), one can perform such a limit and define an
average energy density

ε̄ ¼ E
V
; ð2:17Þ

which obviously possesses an algebraic relation to the
pressure (or volume). The fact that in the model we can
compare MF with non-mean-field computations has been
used recently for neutron stars [29]. In particular, we
studied how their properties are modified by going beyond
MF and taking into account the spatial dependence of the
energy density of nuclear matter. In general, these two
formulations (MF and exact) allow one to investigate which
predictions stem from the model itself, and which are
related just to the MF approximation.
Another important quantity is the particle number

density which here is just the baryon charge density

ρB ¼ B0: ð2:18Þ

Again, usually it has a nonconstant (spatially dependent)
form. An obvious proposition for an average particle
(baryon) density is

ρ̄B ¼ B
V
; B≡

Z
d3xB0; ð2:19Þ

as the total number of particles (the baryon charge) in a
given volume V is B.
Although the energy density and pressure (or the particle

density and pressure) are not related by an algebraic
equation of state, there is an algebraic relation which
connects all three of these local quantities, namely,

εþ P ¼ 2λ2π4ρ2B: ð2:20Þ

This equation will play a prominent role in the
present work.

III. BARYON CHEMICAL POTENTIAL

A. Definition and properties

The standard thermodynamical definition of the chemi-
cal potential is provided by the following relation with
other thermodynamical functions:

εþ P ¼ μρB: ð3:1Þ

From (2.20) it follows that

μ ¼ 2λ2π4ρB: ð3:2Þ
Hence, the baryon chemical potential is proportional to the
baryon charge density and, similar to this quantity, it is a
spatially nontrivial function. Let us remark that this is an
off-shell, i.e., solution independent, result.
Again, as for the energy density and particle number

density, we may define a MF chemical potential. In general,
it reads μ̄ ¼ ð∂F=∂NÞ where F is the free energy, and N is
the particle number. In our zero temperature case we have
F ¼ E and, further, the particle number N is the baryon
number B. We, therefore, get

μ̄ ¼
�∂E
∂B

�
V
: ð3:3Þ

Of course, μ̄ must necessarily obey the same thermody-
namical relation (for the averaged quantities)

ε̄þ P ¼ μ̄ρ̄B: ð3:4Þ
This definition should be understood as follows. We

consider a Skyrmion in equilibrium, i.e., a solitonic
solution with a given baryon charge B0 which occupies
a volume V0 and has an energy E0. Such a solution is a
solution of the BPS equation and, therefore, corresponds to
zero pressure P ¼ 0. Now, we want to check how the
energy of a Skyrmion varies if we increase its topological
charge to B ¼ B0 þ n but keep the volume fixed. Of
course, this cannot be done in a smooth way, since the
baryon charge is a topological, conserved quantity.
Nonetheless, we may find a solution of the pressure
equation which has increased topological charge B and
occupies the same volume V0. The price we pay for that is
the appearance of a nonzero pressure, which depends on the
“additional” baryon charge, P ¼ PðnÞ. Then we get two
equations [here V0 does not change, i.e., V0ðn; PÞ ¼
V0ðn ¼ 0; P ¼ 0Þ]

EðnÞ ¼ 2πλνðB0 þ nÞ
Z

π

0

dξsin2ξ
2U þ ~Pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p ; ð3:5Þ

V0 ¼ 2πðB0 þ nÞ λ
ν

Z
π

0

dξsin2ξ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ~P
p : ð3:6Þ

Using the definition (3.3) of μ̄ and the fact that the volume
remains constant we find

μ̄ ¼ 2πλν
π

2

��
2U þ ~Pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
�
þ ~P

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ~P
p

��
: ð3:7Þ

This can be simplified to the following formula which
expresses the chemical potential as a function of the
pressure:
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μ̄ ¼ 4πλν
π

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ P

ν2

r �
: ð3:8Þ

On the other hand, Eq. (3.7) leads to the proper thermo-
dynamical relation

P ¼ μ̄ρ̄B − ε̄; ð3:9Þ

which proves the consistency of our definition of the
baryon chemical potential with standard thermodynamics.
It is instructive to compare this formula with (2.20). If we
integrate (2.20) over the soliton domain we get

PV þ E ¼ 2π4λ2
Z

d3xρ2B: ð3:10Þ

Hence, the MF baryon chemical potential can be found in
the following, alternative form:

μ̄ ¼ 1

B

Z
d3xρBμ ¼ 1

B
2π4λ2

Z
d3xρ2B ≡ 2π4λ2

R
d3xρ2BR
d3xρB

:

ð3:11Þ
So, in contrast to the MF energy density and baryon
density, which are defined as volume averages, the MF
chemical potential is defined as a particle number (baryon
number) average. After applying the Bogomol’nyi equa-
tion, this expression agrees with the target space average
derived above. Obviously, μ̄ ≠ 2λ2π4ρ̄B, except for a very
special case, that is, the step-function potential, for
which all local quantities coincide with the corresponding
average (MF) ones.
Furthermore, as

ρ̄B ¼ B
V0

¼ 1

2π

ν

λ

2

π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ P=ν2
p

�
−1

ð3:12Þ

we get

ε̄ ¼ μ̄
1

2π

ν

λ

2

π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ P=ν2
p

�
−1

− P; ð3:13Þ

which allows one to express the energy density as a
function of the chemical potential. Comparing now for-
mulas (3.8) and (3.13) we rederive the well-known relation

�∂μ̄
∂P

�
V
¼ 1

ρ̄B
: ð3:14Þ

B. High pressure limit

In general, the baryon chemical potential—both the
exact one and its MF counterpart—is a complicated
function of the particle number (baryon density), whose
detailed form is governed by the used potential. The same is

true for other thermodynamical quantities as well as the
equation of state, which, too, depend on the potential.
However, one can observe that at high pressure (equiv-
alently energy or particle density) the model reveals a
universal behavior. Namely, it tends to the BPS Skyrme
theory with the step-function potential. Indeed, for P ≫ ν2

we get at leading order

E ¼ π2λB
ffiffiffiffi
P

p
; ð3:15Þ

V ¼ π2B
λffiffiffiffi
P

p : ð3:16Þ

Hence,

ε̄ ¼ Pþ B∞; ρ̄B ¼
ffiffiffiffi
P

p

π2λ
; ð3:17Þ

and

μ̄ ¼ 2π4λ2ρ̄B; ð3:18Þ

where B∞ is a bag constant at infinite pressure; see [29].
The fact that, asymptotically, the baryon chemical potential
grows linearly with the baryon charge density (particle
density) is generic for the BPS model and is not affected by
a particular form of the potential.

C. Low pressure limit

At vanishing pressure the MF chemical potential is
always equal to the equilibrium energy E0 divided by
the topological charge

μ̄0 ¼
E0

B
; ð3:19Þ

while the exact chemical potential is, up to a multiplicative
constant, the baryon density at equilibrium. This happens
even in the noncompacton case i.e., when solitons are
infinitely extended and the geometrical volume is
infinite, which leads to zero average energy and particle
density.
For compact Skyrmions, the model realizes a liquid-gas

phase transition. Indeed, at zero pressure and in the given
(equilibrium) volume V0, we may have solutions with a
smaller amount of topological charge by just removing
some compactons from the given volume V0. All these
solutions are stable and form a collection of compact
solitons, surrounded by empty space. As they are BPS
solutions (P ¼ 0), their total energy is exactly proportional
to the topological charge and, therefore, μ̄ ¼ μ̄0. Obviously,
the corresponding MF energy density and MF charge
density will tend to 0 as the topological charge decreases.
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D. Thermodynamic relations for specific potentials

1. The step function potential: U ¼ Θ(Tr(1 − U))

We start with a very special case—the step-function
potential. This is a unique choice for the potential in the
BPS Skyrme model which results in a constant energy
density and particle number density (baryon charge density).
Therefore, all local quantities completely agree with their MF
(averaged) counterparts. The step-function potential reads

U ¼ ΘðTrð1 −UÞÞ: ð3:20Þ

The energy and pressure are constant

~Eð ~PÞ ¼ π

2

2þ ~Pffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~P

p ; ~Vð ~PÞ ¼ π

2

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~P

p ð3:21Þ

and

EðPÞ ¼ 2πλνjBj ~Eð ~PÞ; VðPÞ ¼ 2π
λ

ν
jBj ~Vð ~PÞ:

ð3:22Þ

Let us compute the baryon chemical potential from its
definition (3.3). As before, we assume that we start in the
equilibrium (where P ¼ 0) and then we add more particles
(increase the baryon charge) keeping the volume constant.
Let

E0 ¼ EðP ¼ 0Þ ¼ 2π2λνjB0j;

V0 ¼ VðP ¼ 0Þ ¼ π2
λ

ν
jB0j: ð3:23Þ

Then, after changing from B0 to B ¼ B0 þ n we get

V0 ¼ π2
λ

ν
B

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ PðBÞ

ν2

q ; ð3:24Þ

E ¼ π2λνB
2þ PðBÞ

ν2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ PðBÞ

ν2

q ; ð3:25Þ

where P is due to the higher, than at the equilibrium
ðB ¼ B0Þ, topological number. Both E and P are functions
of B. Simplifying this expression we find

EðPÞ ¼ ν2V0

�
2þ P

ν2

�
⇒

�∂E
∂B

�
V
¼ V0

�∂P
∂B

�
V
: ð3:26Þ

However, from the constant volume condition we get

�∂P
∂B

�
V
¼ 2π4λ2

V2
0

B ð3:27Þ

and

μ ¼ 2π4λ2
B
V0

¼ 2π4λ2ρ̄B: ð3:28Þ

Similarly one can find

P ¼ π4λ2ρ̄2B − ν2 ¼ 1

4π4λ2
μ2 − ν2; ð3:29Þ

ε̄ ¼ π4λ2ρ̄2B þ ν2 ¼ 1

4π4λ2
μ2 þ ν2 ð3:30Þ

(see Fig. 1). Obviously, the relation

Pþ ε̄ ¼ μρ̄B ð3:31Þ

holds. Moreover we get the usual EoS

ε̄ ¼ Pþ 2ν2: ð3:32Þ

As we see, the baryon chemical potential is always propor-
tional to the particle density, not only asymptotically as has
been proven in generality. Furthermore, the local and global
chemical potential equations are exactly the same and μ ¼ μ̄.

2. No potential: U ¼ 0

It is also possible to find the chemical potential for the
BPS Skyrme model without any potential. Of course, at the
equilibrium (no pressure) there are no stable soliton
solutions, but for any nonzero P Skyrmions do exist. Then,

EðBÞ ¼ π2λB
ffiffiffiffi
P

p
; V ¼ π2λB

1ffiffiffiffi
P

p ; ð3:33Þ

where we assume that we start with a given nonzero
pressure solution with a fixed topological charge B0 and
then increase B keeping the volume constant. Hence,

1 2 3 4

5

10

15

FIG. 1 (color online). Average energy density (continuous line)
and pressure (dashed line) as functions of the chemical potential
for the step function potential.
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EðBÞ ¼ π4λ2
B2

V
⇒ μ ¼ 2π4λ2

B
V

ð3:34Þ

and

μ ¼ 2π4λ2ρ̄B: ð3:35Þ

Moreover, as

P ¼ ε̄ ¼ π4λ2ρ̄2B ð3:36Þ

we get that

P ¼ ε̄ ¼ 1

4π4λ2
μ2: ð3:37Þ

This case is quite similar to the step-function potential as
the energy density and baryon density are again spatially
constant. All quantities can be obtained from the former
case by a simple ν → 0 limit.

3. Cubic potential: U ¼ 1
2 (ξ −

1
2 sin 2ξ)

Let us now consider a more nontrivial situation, that is,
a potential which leads to nonconstant energy density.
A simple example can be provided by the cubic (in the
sense of the approach to the vacuum) potential U ¼
1
2
ðξ − 1

2
sin 2ξÞ. This potential belongs to the so-called

BPS potentials and provides exact and particularly simple
solutions of the nonzero pressure integrals. Then,

~V ¼ 2

� ffiffiffiffiffiffiffiffiffiffiffiffi
π

2
þ ~P

r
−

ffiffiffiffi
~P

p �
;

~E ¼ 1

3

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
π

2
þ ~P

r
− ~P ~V

�
; ð3:38Þ

or explicitly

~E ¼ 2

3

�
− ~P

� ffiffiffiffiffiffiffiffiffiffiffiffi
~Pþ π

2

r
−

ffiffiffiffi
~P

p �
þ π

ffiffiffiffiffiffiffiffiffiffiffiffi
~Pþ π

2

r �
: ð3:39Þ

Hence

ε̄ ¼ ν2

3

0
B@π

ffiffiffiffiffiffiffiffiffiffiffi
π
2
þ P

ν2

q
ffiffiffiffiffiffiffiffiffiffiffi
π
2
þ P

ν2

q
−

ffiffiffiffi
P
ν2

q −
P
ν2

1
CA: ð3:40Þ

Then, performing similar computations as before, we find
how the energy and pressure vary if the baryon number is
changed

P ¼ ν2
π

8

B2

B2
0

�
1 −

B2
0

B2

�
2

¼ ν2
π

8

ρ̄2B
ρ̄20;B

�
1 −

ρ̄20;B
ρ̄2B

�2

; ð3:41Þ

E ¼ 2π5=2

3
ffiffiffi
2

p B0λν

�
1þ B2

B2
0

−
1

4

B2
0

B2

�
1 −

B2

B2
0

�
2
�
: ð3:42Þ

Here ρ̄0;B is the average baryon density at equilibrium.
Therefore,

μ̄ ¼ π5=2

3
ffiffiffi
2

p λν

�
3
B
B0

þ B3
0

B3

�
¼ π5=2

3
ffiffiffi
2

p λν

�
3
ρ̄B
ρ̄0;B

þ ρ̄30;B
ρ̄3B

�

ð3:43Þ

and

ε̄ ¼ π

6
ν2
�
1þ B2

B2
0

−
1

4

B2
0

B2

�
1þ B2

B2
0

�
2
�

¼ π

6
ν2
�
1þ ρ̄2B

ρ̄20;B
−
1

4

ρ̄20;B
ρ̄2B

�
1þ ρ̄2B

ρ̄20;B

�
2
�

ð3:44Þ

(see Figs. 2 and 3). Asymptotically, for sufficiently high
chemical potential we get
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0

50

100

150

16.50 16.55 16.60 16.65 16.70
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1.14

FIG. 2 (color online). Left: Average density as a function of the MF chemical potential for the cubic potential U ¼ 1
2
ðξ − 1

2
sin 2ξÞ.

Here ν2 ¼ λ ¼ 1. Right: Zoom-in view close to saturation density.
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μ̄ ¼ π5=2ffiffiffi
2

p λν
B
B0

ð3:45Þ

and

P ¼ π

8

�
B
B0

�
2

ν2; ε̄ ¼ π

8

�
B
B0

�
2

ν2 ð3:46Þ

or

P ¼ 1

4π4λ2
μ̄2; ε̄ ¼ 1

4π4λ2
μ̄2: ð3:47Þ

Hence, for a high value of the chemical potential we as
always obtain the linear EoS

P ¼ ε̄; ð3:48Þ

where the subleading constant B∞ has been omitted.

4. Noncompacton potential: U ¼ 1
4 (ξ −

1
2 sin 2ξ)2

Another potential we want to discuss is a potential with a
sextic approach to the vacuum. It means that BPS Skyrmions
are no longer compactons but usual, infinitely extended
solitons. It results in an infinite geometrical volume at the
equilibrium. Then, the average energy density goes to zero at
the equilibrium. Hence, similar to the nonpotential case, we
are forced to close the Skyrmionic medium in a given, finite
volume by the application of a nonzero external pressure.
Then, we find

V ¼ 2π
λ

ν
Barsinh

πν

2
ffiffiffiffi
P

p ; E ¼ π2λνB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

ν
þ π2

4

r
:

ð3:49Þ

Thus, in terms of the baryon number

P ¼ π2ν2

4

1

sinh2 ν
2πλ

V
B

; E ¼ π3

2
λνB coth

�
ν

2πλ

V
B

�

ð3:50Þ

or using the average particle density

P ¼ π2ν2

4

1

sinh2 ν
2πλρ̄B

; E ¼ π3

2
λνB coth

�
ν

2πλρ̄B

�
:

ð3:51Þ

Therefore, the MF chemical potential reads

μ̄ ¼ π3

2
λν

�
coth

�
ν

2πλρ̄B

�
þ ν

2πλρ̄B

1

sinh2 ν
2πλρ̄B

�
: ð3:52Þ

For high particle density we find the usual linear relation

μ̄ ¼ 2π4λ2ρ̄B; ρ̄B → ∞: ð3:53Þ

Here it is also possible to derive the MF chemical potential
for vanishing particle density

μ̄ ¼ π3

2
λνþ π2ν2

1

ρ̄B
e−

ν
πλ

1
ρ̄B ; ρ̄B → 0: ð3:54Þ

Since the average MF energy density goes to zero at the
equilibrium (P ¼ 0), this case, at least from the MF
perspective, does not look like a bag type model. The
saturation density is simply zero.

5. The Skyrme potential: Uπ ¼ 1
2Tr(1 − U)

Finally, we want to present the result for the usual (pion
mass) Skyrme potential

U ¼ Uπ ¼
1

2
Trð1 − UÞ ¼ 2sin2

ξ

2
: ð3:55Þ

Then, the MF baryon chemical potential as a function of the
average baryon density is implicitly given by the following
formulas:

μ̄ ¼ 4πλν
4

15ν4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ P

ν2

r �
ð4ν4 þ 2ν2Pþ P2ÞE

�
2ν2

2ν2 þ P

�

−Pðν2 þ PÞK
�

2ν2

2ν2 þ P

��
; ð3:56Þ

ρ̄B ¼ 3ν

8πλ

ν2ffiffiffiffiffiffiffiffiffiffiffiffi
2þ P

ν2

q
ððν2 þ PÞE½ 2ν2

2ν2þP� − PK½ 2ν2

2ν2þP�Þ
:

ð3:57Þ

20 25 30 35

0

5

10

15

20
P

FIG. 3 (color online). Pressure as a function of the MF chemical
potential for the cubic potential U ¼ 1

2
ðξ − 1

2
sin 2ξÞ. Here

ν2 ¼ λ ¼ 1.
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Here, E and K are the complete elliptic integrals of the first
and second kinds, respectively.

IV. IN-MEDIUM SKYRMIONS

Using the framework presented in this paper, it is also
possible to obtain energies (masses) of Skyrmions in the
Skyrmionic medium. This is of high importance, as it
allows one to find in-medium masses of baryons (nucle-
ons). In order to find how the energy of a Skyrmion with a
given topological charge B0 varies if it is immersed in the
Skyrmionic medium, we consider the following integral:

EB0
ðnÞ ¼ 2πλνB0

Z
π

0

dξsin2ξ
2U þ ~Pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p : ð4:1Þ

This is the energy of chargeB0 Skyrmion under the external
pressure P. This pressure is induced by the additional
baryon charge n injected into the equilibrium solution
(volume V0, pressure P ¼ 0) without changing the volume

V0 ¼ 2πðB0 þ nÞ λ
ν

Z
π

0

dξsin2ξ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ ~P
p : ð4:2Þ

If compared with Eq. (3.5), the energy differs only by the
change of the overall multiplicative factor B0 þ n into B0.
This corresponds to the fact that now we are interested in
the energy of the charge B0 baryon surrounded by a
Skyrmionic medium with the additional charge n, which
leads to a nonzero pressure. Of course, this pressure is the
same in the medium and in the original (now compressed)
Skyrmion. Therefore, the energy (4.1) is, in fact, the in-
medium energy of the charge B0 Skyrmion. Using these
formulas and the expression for the baryon chemical
potential, it is possible to express the energy of a
Skyrmion as a function of the MF chemical potential.
As an example, we consider the step function potential.

Then, one can show that

EB0
ðnÞ ¼ π2λνðB0 þ nÞ

�
1þ B2

0

ðB0 þ nÞ2
�
; ð4:3Þ

which, after taking into account the formula for the baryon
chemical potential, can be rewritten as

EB0
ðμÞ ¼ B0

2
μ

�
1þ 4π4λ2ν2

μ2

�
ð4:4Þ

(remember μ≡ μ̄ for the step-function potential). This is
valid for μ ≥ μ0, i.e., above equilibrium. For μ ¼ μ0, i.e.,
from the vacuum value until the equilibrium, the in-medium
mass is always the same and equal to the equilibrium mass.
To show this, let us assume that we start with a collection of
charge one Skyrmions with the total baryon charge B0,
which in equilibrium occupy the volume V0. Now, we take

away charge one Skyrmions one after the other. Obviously,
due to the contact form of the interaction and the BPS nature
of the solutions, each removed unit Skyrmion has the same
energy (mass). However, the density of the medium, which is
now a gas of BPS Skyrmions in the fixed volume V0,
decreases.
Repeating the computation from the previous section, we

can conclude that for any potential asymptotically the in-
medium energy of a Skyrmion (baryon) always behaves as

EB0
ðμÞ ¼ B0

2
μ at μ → ∞: ð4:5Þ

In general (arbitrary potential), the in-medium energy of
charge one baryon reads

EB¼1 ¼ μ̄ −
PV0

1þ n
¼ μ̄ −

P
ρ̄B

; ð4:6Þ

where the second part vanishes at the equilibrium ðP ¼ 0Þ
and tends to 1

2
μ̄ at asymptotically large densities. Let us

underline that this result is beyond the MF (constant energy
density) approximation.
In the full near-BPS Skyrme model or in the BPS Skyrme

model with semiclassical contributions included, it is
reasonable to expect a modification of the obtained in-
medium mass dependence. Indeed, due to nonzero binding
energies one may expect a Skyrmion mass which increases
with decreasing medium density at small densities. At a
sufficiently high density, the universal relation EB0

∼ B0

2
μ

should again be valid.
In an analogous manner, we may compute the in-

medium size of a BPS Skyrmion. In general, the volume
V0 occupied by the original charge B0 soliton at equilib-
rium is reduced by adding the additional topological charge
n, i.e., by increasing the medium density

VB0
¼ B0

B0 þ n
V0 ¼

B0

ρ̄B
→

2π4λ2

μ̄
B0 at μ̄ → ∞; ð4:7Þ

and the radius of the compacton reads

RB0
¼

�
3B0

4πρ̄B

�
1=3

→

�
3π3λ2

2

�
1=3

μ̄−1=3 at μ̄ → ∞:

ð4:8Þ
Observe that, due to the thermodynamical properties of the
BPS Skyrme model, the global quantities (the MF energy
density, the MF particle density, the MF chemical potential)
of a Skyrmion and the surrounding medium always
coincide. On the other hand, their local counterparts differ.

V. PHYSICAL IMPLICATIONS

So far, we have presented some thermodynamical
properties of the BPS Skyrme model from a more theo-
retical point of view. In this section, we want to study their
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effect on physical properties of baryons and nuclei if
described by BPS Skyrmions. Furthermore, we shall use
our results to relate the BPS Skyrme model to effective
theories including ω and σ mesons and show how their
properties are hidden in our Skyrmionic (pionic) action,
with an exact balance between attractive and repulsive
channels.

A. The Walecka model and BPS Skyrmions

The Walecka model of nuclear matter consists of
nucleons (neutron and proton spinors) which interact with
the scalar σ meson and the vector ω meson [30]

LW ¼ LN þ Lσ;ω þ Lint; ð5:1Þ

where

LN ¼ ψ̄ðiγμ∂μ −mN þ μγ0Þψ ; ð5:2Þ

Lσ;ω ¼ 1

2
ð∂μσÞ2 −

1

2
m2

σσ
2 −

1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ;

ð5:3Þ

Lint ¼ gσψ̄σψ þ gωψ̄γμωμψ : ð5:4Þ

Here ωμν ¼ ∂μων − ∂νωμ. A self-interaction term for the
scalar meson may also be included. The MF approximation
means that one computes the partition function (in the
thermodynamical limit)

Z ¼
Z

Dψ̄DψDσDωe
R

LW ð5:5Þ

in the limit where the bosonic fields are approximated by
their constant condensate values σ̄, ω̄0. Then all derivative
dependent terms disappear and the interactions are sim-
plified to a mesonic background field seen by the nucleons.
This means that we arrive at a free fermion model with
shifted parameters,

LW ¼ ψ̄ðiγμ∂μ −m�
N þ μ�γ0Þψ −

1

2
m2

σσ̄
2 þ 1

2
m2

ωω̄
2
0;

ð5:6Þ

where

m�
N ¼ mN − gσσ̄; μ� ¼ μ − gωω̄0: ð5:7Þ

One should remember that the baryon chemical potential
(which enters in all thermodynamical relations) is still μ.
However, the effective chemical potential μ� sets the Fermi
energy of the “effective” free fermions

E�
F ¼ μ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þ ðm�

NÞ2
q

: ð5:8Þ

Here we assume the zero temperature limit. The baryon
density reads [31]

ρB ¼ 2k3F
3π2

ð5:9Þ

and is related to the ω meson vacuum value by

ω̄0 ¼
gω
m2

ω
ρB: ð5:10Þ

An interesting observation is that in the limit of large
density, i.e., kF → ∞, the equation of state in the Walecka
model exactly coincides with the MF EoS derived for the
BPS Skyrme model at pressures P ≫ B∞ (which in
practice means P ≫ ν2). Namely,

P ¼ ε: ð5:11Þ
Moreover, in the Walecka model this limit reads as

ε ¼ 1

2

g2ω
m2

ω
ρ2B: ð5:12Þ

Comparing this with the universal relation between average
energy density and baryon density in the MF BPS Skyrme
model we find that

π4λ2 ¼ 1

2

g2ω
m2

ω
: ð5:13Þ

Another important observation can be made if we analyze
the large density limit for the effective chemical potential.
Then we find

kF → ∞ ⇒ μ� ¼ kF and μ� ∼ ρ1=3B : ð5:14Þ

Hence, at kF → ∞

μ ¼ μ� þ gωω̄0 ¼ μ� þ g2ω
m2

ω
ρB ∼

g2ω
m2

ω
ρB: ð5:15Þ

This formula has an exact counterpart in the BPS Skyrme
model in the MF approach and in the high density limit

μ̄ ¼ 2π4λ2ρ̄B: ð5:16Þ
Comparing the last two expression, we find independently
again the relation (5.13). It is a striking fact that in the exact
(non-mean-field) microscopic thermodynamics in the BPS
Skyrme model this formula is valid at any pressure
(density). Indeed, as we know,

μ ¼ 2π4λ2ρB: ð5:17Þ
The conclusion is that the BPS Skyrme model and the

Walecka model are equivalent in the high density regime, as
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far as thermodynamical properties are concerned and a MF
approximation is made. The obtained relation between the
BPS Skyrme and Walecka model parameters allows us to
read off the ω meson coupling constant in the BPS Skyrme
model. For mω ¼ 738 MeV and g2ω=4π ¼ 10 − 12, which
is the empirical value of the ω-nucleon coupling, we get the
acceptable values for the Skyrme model parameter
λ2 ¼ 9 − 11 MeV fm3. It may also be compared with an
upper bound for the coupling constant gω ¼ 25.4 [32].
Then, λ2 ≤ 47 MeV fm3. Let us remark that all previously
used potentials led to λ2 slightly bigger than the optimal
value, but significantly below the upper bound [16,26,29].
Undoubtedly, this bound on the BPS Skyrme model
parameter may help to constrain the potential part of the
action.
The reason why these two models possess the same

thermodynamical properties at the high density limit
originates from the fact that in this regime the Walecka
model is dominated by the vector meson sector. From the
interaction point of view, the vector meson couples to the
baryon current and effectively the dominating part of
the Lagrangian is the baryon current squared. But this is
exactly the derivative part of the BPS Skyrme model,
although the latter is expressed in a topological manner and
not by nucleon spinors. We comment that the same effect
shows up in a quark bag model with a vector interaction
[33]. In any case, it is a rather interesting observation that it
is possible to read off the ratio between the ω meson mass
and its coupling constant to the nucleon in the BPS Skyrme
model, even though there are no obvious ω meson degrees
of freedom in its action. Instead, we only have the usual
pionic fields. The ωmeson is hidden in the form of the BPS
action. We remark that the sextic term of the BPS Skyrme
model may also be obtained from a Skyrme type model
with the ω meson included explicitly [32], as the leading
contribution in a derivative expansion [20]. This leads to the
plausible conjecture that soliton solutions in a Skyrme model
with ω mesons should be quite similar to soliton solutions
in a Skyrme model with the sextic term (the baryon current
squared) included. That this is indeed the case has been
demonstrated recently numerically in the baby Skyrme
model in one lower dimension [34], where the baryon
current squared is identical to the Skyrme term.
At lower densities, the EoS of both models get much

more complicated, and the BPS Skyrme model EoS now
depends on the potential, such that a direct comparison is
no longer obvious. In addition, at low densities the field
theoretical picture of the BPS Skyrme model is probably
more adequate than the MF approximation. For example,
we know that the constant energy density approximation is
not the proper one if one wants to derive the compressibility
of Skyrmionic matter at equilibrium [17].
It is interesting to note that the local chemical potential is

exactly linear in the baryon density for the whole range of
the pressure, not just in the asymptotic regime, as happens

in the Walecka model. Besides, one may perhaps expect
that there is a relation between the equation of state in the
BPS model and a particular form of potential for the σ
meson field.

B. In-medium mass of nucleons

Now we want to identify nucleons with charge one
Skyrmions, in order to see what results we get from our in-
medium Skyrmion mass calculations for the corresponding
in-medium masses of nucleons. As we have shown, the
mass of a charge one Skyrmion is density independent as
long as the medium density does not exceed the saturation
density, i.e., the energy density at equilibrium. Above this
density, it starts to grow with an asymptotically linear
dependence M ∼ μ̄

2
. This behavior agrees with the in-

medium mass behavior recently found using a holographic
approach [35], where the mass of nucleons decreases from
its vacuum value until one reaches the saturation point,
where it begins to grow. If we want to compare with further
approaches, the following subtlety must be taken into
account. By construction, our in-medium nucleon masses
are always the total in-medium Skyrmion (rest) energies per
baryon number. This is not the case in several approaches
(e.g., in the Walecka model [see Eq. (5.7)] or in [36]), where
the in-medium mass of the nucleon is exclusively induced
by in-medium changes of certain coupling constants, which
may even lead to an in-medium reduction of the nucleon
mass above nuclear saturation. In these approaches, further
contributions to the total energy stem from in-medium
modified nucleon-nucleon interactions, which may give
significant contributions to the total in-medium energy per
baryon number. Obviously, our results must always be
compared with these total energies per baryon number.
Within our framework, the reduction of the nucleon mass

between the vacuum and saturation density expected on
general physical grounds may probably be obtained by an
extension of the model to its near-BPS generalization by
taking into account the perturbative part of the Skyrme
theory (pionic perturbative part) and/or by the semiclassical
corrections.
Let us also remark that the in-medium properties of

Skyrmions in the present work, in contrast to the in-
medium modified Skyrme Lagrangian [37], have been
obtained within the BPS Skyrme model without introduc-
ing any medium-dependent constants. Such a medium
modified BPS Skyrme model would have the following
form:

~LBPS ≡ −π4λ̄2ðμ; ~xÞBσBσ − ν̄2ðμ; ~xÞU: ð5:18Þ

Using our results one may try, however, to express the
coupling constants λ̄ and ν̄ as functions of the medium
density μ (and, probably, of the coordinates ~x) and fit to the
correct in-medium mass dependence. Then one may check
how good this approximation is by comparing with other
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thermodynamical properties. At this stage of research, we
shall just discuss the step-function potential case, leaving
other more interesting potentials for the future. For this
potential, all local densities are equal to their MF counter-
parts and, therefore, also the in-medium constants
λ̄ ¼ λ̄ðμÞ, ν̄ ¼ ν̄ðμÞ are expected to be spatially constant.
Indeed, using the equilibrium (no medium) expressions
V0≡VB0

ðμ0Þ¼ π2B0ðλ=νÞ and E0≡EB0
ðμ0Þ¼ 2π2λνB0≡

μ0B0 together with their in-medium values [see Eqs. (4.4)
and (4.7)]

EB0
ðμÞ ¼ EB0

ðμ0Þ
1

2

�
μ

μ0
þ μ0

μ

�
;

VB0
ðμÞ ¼ VB0

ðμ0Þ
μ0
μ
; ð5:19Þ

we find the in-medium coupling constants

λ̄2 ¼ λ2
1

2

�
μ20
μ2

þ 1

�
; ν̄2 ¼ ν2

1

2

�
μ2

μ20
þ 1

�
: ð5:20Þ

Here we consider the liquid phase, i.e., μ ≥ μ0. In the
gaseous phase, where the energy density as well as the
particle density approach 0, the chemical potential has
always the same value μ0. Similarly, the in-medium
Skyrmion mass and its volume remain unchanged.
It should also be noticed that typical situations where

such medium modified Skyrme Lagrangians are considered
are nucleons in atomic nuclei or in infinite nuclear matter at
equilibrium. As we commented before, in this regime the
BPS Skyrme model does not differ from its in-vacuum
version. To make predictions for this regime, we have to
include semiclassical corrections or extend the model to the
near-BPS one. On the other hand, usually the coupling
functions in the in-medium generalized Skyrme model are
assumed to be spatially constant for infinite nuclear matter
[37]. Here, the BPS Skyrme model can be of some help, at
least for sufficiently flat potentials, because the original
Skyrme model with its crystalline structure for large B
definitely does not lead to a flat energy density.

C. The BPS Skyrme model, σ and ω mesons,
and chiral symmetry

Usually, in the Walecka model (or other, more general
low energy effective models) the equilibrium at nuclear
saturation is the result of a precise balance between the
repulsive forces induced by the ω meson and the attractive
forces due to the σ mesons (plus some small contributions
of further mesons in more general models). It is part of the
elegance of the BPS Skyrme model that, as a result of the
BPS equation, it provides an exact cancellation between
these forces, without any need for a fine-tuning of coupling
constants, which leads to an exact equilibrium at the
nuclear saturation density, and to exactly zero classical

binding energies. Indeed, the static energy functional
E ¼ E6 þ E0 ¼

R
d3xðε6 þ ε0Þ, with ε6 ¼ π4λ2B2

0 and
ε0 ¼ ν2U, consists of two terms which scale oppositely
under Derrick scaling ~x → Λ~x. Concretely, E6 tends to
expand the field configuration, inducing a repulsive force
between different volume elements of the soliton, whereas
the potential part E0 tends to collapse the configuration,
corresponding to an attractive force. It is instructive to
consider the resulting BPS equation for general pressure
and for the axially symmetric ansatz (2.14) (relevant, e.g.,
for neutron stars), which has a simple physical interpreta-
tion. Indeed, the equation reads

ε6ðrÞ ¼ ε0ðrÞ þ P ð5:21Þ

or, in words, the repulsive radial force per area equals the
attractive radial force per area plus the pressure. For
P ¼ 0, it just expresses the exact balance between repulsive
and attractive forces at nuclear saturation, whereas in the
limit of large pressure it shows that the repulsive force
dominates, explaining the stiff character of the equation of
state in that limit.
As a result of the above, it is, therefore, reasonable to

relate the two terms to the ω and σ mesons, respectively.
Schematically we may write

LBPS ¼ −π4λ2BμBμ − ν2U ¼ LωðUÞ þ LσðUÞ: ð5:22Þ

Here, only the pionic degrees of freedom [chiral SUð2Þ
fields] are present explicitly, whereas the (or at least some)
effects of the ω and σ mesons are related to specific terms in
the action. In other words, theω and σ mesons are hidden in
the (nonlinear) Skyrme model action, and their effects are
unraveled by studying the properties of particular solutions,
similar to the baryons themselves, which, too, are absent
in the action and become visible only on the level of
(solitonic) solutions as coherent superpositions of pion
fields. In other words, both baryons (and atomic nuclei) and
the ω and σ mesons are realized in the model as emergent
objects in a nonlinear pionic fluid.
Let us remark that the exact balance between attractive

and repulsive forces in the BPS Skyrme model will be
destroyed if we add the perturbative part to the action, that
is, extend the model to the near-BPS Skyrme model (or
include the semiclassical corrections). However, one can
control this transition using the small ϵ parameter in the full
action.
As shown already, the sextic term leading to repulsion is

responsible for the equivalence of the BPS Skyrme model
and the Walecka model at high density (pressure), which
allowed us to establish a precise relation between the
Skyrme model parameters and parameters of the ω meson.
This quantitative relation is possible because the sextic term
and the omega meson give the leading contribution at large
density in the two models. For the potential term, though, a
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quantitative relation to the σ meson is not so obvious,
because their contribution is subleading at large densities,
whereas at lower densities the σ meson contributions
in the Walecka model mix with other contributions (e.g.,
in-medium fermion contributions).
Finally, let us recall that the potential term explicitly

breaks chiral symmetry in the Skyrme model EFT; there-
fore it should also be related to the (spontaneous or
dynamical) chiral symmetry breaking in the underlying
fundamental theory, i.e., QCD, and should, therefore,
depend on the corresponding order parameter (the quark
condensate hq̄qi; we remark that in the Walecka model
there exists a linear relation between the nucleon con-
densate hψ̄ψi and the σ meson vacuum expectation value).
The BPS Skyrme model without potential, on the other
hand, which should correspond to the case without chiral
symmetry breaking, behaves completely differently at low
densities (e.g., there is no nuclear saturation), and only in
the limit of infinite density (infinite pressure) does the BPS
Skyrme model approach the behavior of the pure sextic
model without potential. This implies that for finite density
(finite baryon chemical potential) chiral symmetry remains
broken, and no phase transition to a chirally symmetric
phase occurs.
Let us also notice that other types of phase transitions are

absent, too, in the BPS Skyrme model. There is, e.g., no
phase transition of a topological type—Skyrmions always
remain Skyrmions, and no fractional topological state, for
example, half-Skyrmion state, is created when the pressure
is increased [36,38,39]. The creation of such phases
probably requires the inclusion of the perturbative (i.e.,
the non-BPS) part of the full near-BPS action. The details
of the transition to these new topological phases should,
then, be related to the mutual strength of BPS and non-BPS
parts of the full effective theory. It is interesting to note,
however, that the introduction of an external magnetic field
may lead to topological phase transitions, at least in 2þ 1
dimensions [40]. Also a phase transition to, e.g., quark
matter cannot be described within the BPS Skyrme model
alone. In other words, matter described by the BPS Skyrme
model is always in a hadronic phase, and the only phase
transition is the one between a gaseous hadronic phase
below nuclear saturation and a liquid hadronic phase at and
above nuclear saturation. It is interesting to note that this is
precisely equivalent to the liquid-gas phase transition of
nuclear matter, thus exactly reproducing the conjectured
phase diagram of QCD at zero temperature for not too high
values of the baryon chemical potential (close to nuclear
saturation); see, e.g., [41].

VI. BPS SKYRME MODEL AS A PERFECT FLUID

A crucial property of the BPS Skyrme model was the fact
that it has the energy momentum tensor of a perfect fluid,
and that the static energy functional is invariant under SDiff
transformations on physical space. Here we want to show

briefly that the relation goes much further and that, at least
formally, the action of the BPS Skyrme model is equivalent
to the action of a field theoretic description of perfect fluids
in an Eulerian formulation [42]. There exist two main
formulations of fluid mechanics, namely the Lagrangian
formulation, where the dynamical variables are given by the
particle trajectories (for finitely many particles) or by the
fluid element trajectories (continuum limit), and the Eulerian
formulation, where the dynamical variables have a more
collective character and are provided by the (particle or
mass) density ρ and by the fluid velocity ~v (see, e.g., [43]).
For finitely many particles, the degree of freedom in the

Lagrangian formulation are the N particle trajectories ~XnðtÞ,
ðn ¼ 1;…; NÞ, and the corresponding mass density in the

Eulerian formulation is ρðt; ~xÞ ¼ m
P

nδ
ð3Þð~XnðtÞ − ~xÞ. In

the continuum limit, the discrete particle label n is replaced
by three continuous labels ya, a ¼ 1; 2; 3 required to label
all fluid elements in three-dimensional space, and the

corresponding dynamical variables are ~Xðt; ~yÞ in the
Lagrangian formulation and

ρðt; ~xÞ ¼ ρ0

Z
d3yδð3Þð~Xðt; ~yÞ − ~xÞ;

~vðt; ~xÞ ¼ ρ−1~j where ~j ¼ ρ0

Z
d3y

_~Xδð3Þð~Xðt; ~yÞ − ~xÞ

ð6:1Þ
in the Eulerian formulation. Here, the fluid element labels ya

may be identified with the comoving coordinates of the fluid.
For later convenience, we prefer to interpret ρ as a particle
number density (not a mass density). In addition, we prefer
to include the dimensions of the ya into ρ0, such that the ya

are dimensionless, which makes ρ0 dimensionless, too. We
further remark that actions in the Lagrangian formulation,
based on the Xiðt; yaÞ require integrations over ya, i.e., not
over physical space. Actions for the Eulerian formulation, on
the other hand, include integrals over physical space xi. The
disadvantage of an action principle in the Eulerian formu-
lation based on the dynamical fields ρ and ~v is that the
constraints required by hydrodynamics (particle number
conservation, etc.) require the introduction of Lagrange
multipliers, which complicates the analysis. Recently, how-
ever, a field theoretic version of the Eulerian formulation of
fluid dynamics gained support [42] (see also [44] in a string
theory context), where the constraints are satisfied identi-
cally, evading thereby the necessity of Lagrange multipliers.
In this field theoretic version, the comoving coordinates ya

are promoted to the dynamical variables of the theory.
Indeed, for a regularly flowing fluid the flow function xi ¼
Xiðt; yaÞ has an inverse ya ¼ ϕaðt; xiÞ which allows one to
express the density as

ρðt; ~xÞ ¼ ρ0D where D≡ det

�∂ϕa

∂xi
�
: ð6:2Þ
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Here we assumed a Euclidean target space and Cartesian
coordinates with a volume form equal to one, but it is
convenient to allow for non-Cartesian coordinates (and,
eventually, for a curved target space) with volume form
ΩðϕaÞdϕ1dϕ2dϕ3, leading to

D ¼ ΩðϕaÞ det
�∂ϕa

∂xi
�
: ð6:3Þ

The determinant D has the further expression D2 ¼
Ω2 detð∂iϕ

a∂iϕbÞ which is useful, because it immediately
allows for the relativistic generalization

D2 ¼ Ω2 det

�∂ϕa

∂xμ
∂ϕb

∂xμ
�
: ð6:4Þ

Finally, there exists a third expression forD, 6D2 ¼ N μN μ,
in terms of the particle number current

N μ ¼ Ωϵμνρσϵabc∂νϕ
a∂ρϕ

b∂σϕ
c: ð6:5Þ

It is now easy to find the relativistic generalizations of ~v and
ρ. The velocity is replaced by the four-velocity uμ. The ϕa

are the comoving coordinates which do not change along the
flow, which implies uμ∂μϕ

a ¼ 0. uμ must, therefore, be
proportional to the particle number currentN μ, the condition
uμuμ ¼ 1 leads to

uμ ¼ N μffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N νN ν

p ¼ 1ffiffiffi
6

p
D
Ωϵμνρσϵabc∂νϕ

a∂ρϕ
b∂σϕ

c; ð6:6Þ

and the particle number density is defined by

N μ ¼ ρuμ ⇒ ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N μN μ

q
¼

ffiffiffi
6

p
D

¼
ffiffiffi
6

p
Ω
�
det

�∂ϕa

∂xμ
∂ϕb

∂xμ
��1

2

: ð6:7Þ

Observe that particle number conservation ∂μN μ ¼ 0

(covariant conservation∇μN μ ¼ 0 in the general-relativistic
case) is now an identity and does not require Lagrange
multipliers.
In this setting, a perfect fluid action is defined by

choosing a Lagrange density F depending on ϕa; ∂μϕ
a,

etc. The simplest choice assumes that F depends on the
target space variables only via the scalar ρ, but more general
perfect fluids may depend on further thermodynamic
variables hAðϕaÞ. Here we shall permit at most one further
thermodynamical variable hðϕaÞ, i.e., F ¼ Fðρ; hðϕaÞÞ.
The action just reads (we momentarily assume a general
metric, for convenience)

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
Fðρ; hÞ ð6:8Þ

and leads to the energy-momentum tensor of a perfect
fluid [42],

Tρσ ≡ −2jgj−1
2

δ

δgρσ
S ¼ ðpþ εÞuρuσ − pgρσ; ð6:9Þ

where

ε ¼ −Fðρ; hÞ; p ¼ ρ
∂ε
∂ρ − ε: ð6:10Þ

A particularly simple case occurs for F ¼ FðρÞ. Then, both
ϵ ¼ ϵðρÞ and p ¼ pðρÞ are functions of the particle density
ρ only, and, upon eliminating ρ, an equation of state
ϵ ¼ ϵðpÞmay be found. Such fluids are called “barotropic.”
In the general case F ¼ Fðρ; hÞ, both ϵ and p are functions
of the two thermodynamic variables ρ and h. A natural
choice is h ¼ sðϕaÞ, where s is the entropy per particle.
Observe that the entropy current Sμ ≡ sN μ is conserved
identically (∂μSμ ¼ 0 or ∇μSμ ¼ 0, respectively).
It is now quite obvious how to relate the perfect fluid

field theory sketched above to the BPS Skyrme model. We
just have to identify the Skyrme field U [the fields ξ;Θ;Φ,
see (2.13)] with the three scalar functions ϕa of the fluid.
This identification is formal (only possible locally),
because the ϕa take values in R3 (or a subspace thereof),
whereas the Skyrme field takes values in SU(2) (or,
equivalently, in S3). If we further assume that the volume
form Ω is—at least locally—the volume form on S3,
Ω ¼ sin2 ξ sinΘdξdΘdΦ, then the baryon density ρB of
the Skyrme model formally coincides with the particle
number density ρ of the perfect fluid, and the baryon
current Bμ coincides with the particle number current N μ.
Globally, the two currents are, of course, different. The
topology of S3 guarantees, e.g., that the resulting baryon
number B is always an integer, which is not true for the
particle number current. If we accept this formal analogy,
then the Lagrangian of the BPS Skyrme model is related to
the fluid Lagrangian

F ¼ −λ2π4ρ2 − ν2UðϕaÞ; ð6:11Þ

where ρ is the particle density and the potential U
corresponds to a further “thermodynamical variable.”
While the identification of ρ with the baryon density ρB
is obvious, it is not so clear what thermodynamical variable
should correspond to the potential. The identification of U
with the entropy per particle is not plausible, because the
nuclear matter which the BPS Skyrme model is supposed to
describe is essentially at zero temperature. Finally, the two
cases of the BPS Skyrme model with the step-function
potential and without potential lead to Lagrangians FðρÞ
which only depend on ρ, and, therefore, correspond to
barotropic fluids. BPS Skyrme models with genuine,
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U-dependent potentials, on the other hand, correspond to
nonbarotropic (i.e., baroclinic) fluids.

VII. CONCLUSIONS

The main result of the present paper is the introduction
and analytical description of the baryon chemical potential
for the BPS Skyrme model, which is one necessary
ingredient for a full understanding of the thermodynamical
properties of Skyrmions as nuclear matter at zero temper-
ature. We found the especially simple result that the baryon
chemical potential is just the baryon charge density
multiplied by a constant. As for other global quantities
in the BPS Skyrme model (the total energy and volume),
also the MF baryon chemical potential can be analytically
obtained (as a function of the pressure P) by a certain
integral (average) over the target space. In other words, the
BPS Skyrme model realizes to the very extreme the concept
of a geometric model of matter. Indeed, all global quantities
(energy, volume, MF energy density, MF chemical poten-
tial) can be computed without the knowledge of particular
solutions. We also confirmed that the baryon chemical
potential obeys all required thermodynamical relations.
The complete analysis of the thermodynamics of the

BPS Skyrme model at T ¼ 0 also allowed us to conclude
that the model is equivalent to the Walecka model (as well
as a vector interaction enhanced bag model) in the high
density regime. At densities close to the saturation point,
however, the behavior of the BPS Skyrme model is more
involved. Depending on the form of the potential or, more
precisely, on how it approaches the vacuum, one may have
a kind of bag model (with hadronic degrees of freedom)
behavior with a nonzero energy density at zero pressure or,
instead, a zero energy density onset. The first case occurs
for potentials whose near-vacuum dependence is U ∼ ξα,
α < 6. This case is still qualitatively similar to the Walecka
model in that both models show nuclear saturation at the
saturation density. The main difference is that in the
Walecka model there is a region of negative pressure
(long-range attractive forces) below but close to nuclear
saturation density, whereas pressure is exactly zero below
nuclear saturation in the BPS Skyrme model, based on its
classical soliton solutions. This behavior should, however,
change once further terms of the near-BPS Skyrme model
are included. It is, for instance, known that the standard
nonlinear sigma model term L2 ¼ λ2LσLσ induces attrac-
tive long-range forces between Skyrmions in some
(attractive) spin-isospin channels [45]. Also the inclusion
of binding energies due to quantum corrections
(semiclassical quantization) of the Skyrmion energies
should change this behavior in a similar fashion.
It is important to notice that the equivalence with the

Walecka and related models is obtained in the MF limit.
The BPS Skyrme model, on the other hand, also provides in
a natural way a description beyond MF theory, that is, on
the level of local, field theoretical quantities (energy

density, baryon number density). In the asymptotic large
density regime, where the exact equivalence is established,
the local field theoretical computations agree with their MF
approximations. In a lower density regime, however, where
μ and μ̄ are different, we think that the full field-theoretic
non-mean-field quantities (baryon chemical potential,
energy density, etc.) should be used for a more precise
description.
Furthermore, we found some evidence that the BPS

Skyrme model can be interpreted as an ω-meson dominated
model of nucleons, where the ω mesons are hidden in the
form of the action (or, more precisely, in the derivative term
used in the action-baryon current squared) rather than
included as an effective low energy field. We remind the
reader that, due to the absence of the quadratic term
L2 ¼ λ2LμLμ, there are no propagating pions and, there-
fore, no forces mediated by pions in the BPS Skyrme
model. This simply means that, as stated repeatedly, the
BPS Skyrme model by itself cannot be considered a
complete low energy effective theory for nuclear physics
or strong interactions. A good candidate for such a low
energy effective theory is, in our opinion, the near-BPS
Skyrme model

L ¼ LBPS þ ϵðL2 þ L4 þ ~L0Þ ð7:1Þ

(here L4 ¼ λ4½Lμ; Lν�2 is the Skyrme term, and ~L0 is a
further potential), where ϵ is assumed to be small in the
sense that LBPS provides the main contributions to soliton
masses and is dominant in regions of sufficiently large
baryon density, such that the unique properties of the BPS
submodel are essentially preserved in this regime. Close to
the vacuum, on the other hand, L2 always dominates over
L6, and long-range forces mediated by pions are, therefore,
present in the near-BPS extension. It is of some interest to
note that the BPS Skyrme model does reproduce the forces
related to the ω and σ mesons—whose fields do not appear
in the action—while it does not include the pionic forces,
although its action is expressed entirely in terms of pion
fields.
As already mentioned, there are not many results

concerning the baryon chemical potential in the Skyrme
theory. One comparison, however, may be made with
results found by means of the AdS=CFT correspondence
and the Sakai-Sugimoto model [46], which is a holographic
(large Nc relevant) version of a Skyrme type model. It has
been found that for the two flavor case asymptotically the
baryon density behaves as for a free fermion gas ρB ∝ μ3

[47], which strongly differs from our result. In spite of that,
there is a qualitative similarity between this holographic
computation and our approach. In both models, the baryon
density is always a function of the space coordinates at any
finite value of the chemical potential. Such an inhomo-
geneous configuration tends to a homogeneous one only in
the infinite density (chemical potential) limit [47]. On the
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other hand, it is possible to get an asymptotically linear
relation between the chemical potential and the baryon
density in a holographic setup. For this, one needs the usual
Maxwell action instead of the Born-Infeld one [48]. Adding
more scalar fields may, however, change this linear relation.
There are several obvious directions in which the current

investigations should be continued. First of all, the knowl-
edge of the baryon chemical potential for the BPS Skyrme
model is essential if one wants to apply the model for a
complete description of neutron stars. In principle, the core
of neutron stars, described by the BPS Skyrme model, may
be surrounded by a skin with more usual matter with a
known equation of state. The obvious condition for a
transition from the dense hadronic phase (BPS Skyrme
action) to the skin phase is the equivalence of the chemical
potentials. This should lead to a modification of the mass-
radius relation for the low massive stars with perhaps an
appearance of a minimal neutron star mass [49]. This,
however, will be modified already by the inclusion of the
non-BPS part of the full near BPS Skyrme action. Indeed,
as one approaches the outer region of a neutron star in the
BPS Skyrme model, the matter Skyrme field tends to its
vacuum value. But close to the vacuum, the perturbative
terms in the chiral Lagrangian dominate over the BPS part.
Hence, in this regime they cannot be omitted. This points
toward another important issue which should be under-
stood, namely, the generalization of the thermodynamical
description of the BPS Skyrme theory to its near-BPS
extension, as well as its application to nuclear

phenomenology. Let us notice that, except for the step-
function potential case, one should use the baryon chemical
potential rather than its MF approximation. In fact, for
nonflat potentials it is known that local quantities, espe-
cially for heavy neutron stars, change a lot if computed in
the MF limit (compare pressures and energy densities
inside neutron stars in [29]).
Another important quantity which has to be understood

is the isospin chemical potential (there already exist some
proposals on how to treat this issue in the Skyrme
framework [50]). This would allow for a complete descrip-
tion of Skyrmionic nuclear matter at zero temperature.
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