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We present a variational principle for relativistic hydrodynamics with gauge-anomaly terms for a fluid
coupled to an Abelian background gauge field. For this we utilize the Clebsch parametrization of the
velocity field. We also set up the Hamiltonian formulation and the canonical framework for the theory.
While the equations of motion only involve the density and velocity fields, i.e., the Clebsch potentials only
appear in the combination which is the velocity field, the generators of symmetry transformations
(including the Hamiltonian) depend explicitly on one of the Clebsch potentials, if the background field is
time-dependent. For the special case of time-independent background fields, this feature is absent.
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I. INTRODUCTION

Hydrodynamics is a long-wavelength effective descrip-
tion of interacting systems based on the assumption of local
equilibrium. Hydrodynamic equations are essentially local
conservation laws supplemented by the constitutive rela-
tions between conserved densities. These conservation laws
are macroscopic manifestations of symmetries of the
system. Constitutive relations are often written phenom-
enologically and involve unknown “equations of state,”
which in principle should be obtainable from the under-
lying “microscopic” theory such as kinetic theory, many
body models or quantum field theory [1].
If the underlying theory is a quantum field theory (QFT)

with quantum anomalies, the conservation laws correspond-
ing to anomalous symmetries are broken. However, the
anomalous symmetry breaking is rather subtle and one might
hope for an applicability of a universal hydrodynamic
description with additional hydrodynamic terms taking
anomalies into account. This possibility was noticed initially
in AdS/CFT systems [2,3], and then in genuine relativistic
hydrodynamic formulation by Son and Surowka for a
particular case of Abelian gauge anomaly [4].
The goal of this work is to find variational and

Hamiltonian formulations of the hydrodynamics with gauge
anomaly [4]. Variational and Hamiltonian approaches to
hydrodynamics have a long history and we refer the reader to
Refs. [5,6] for reviews. The Hamiltonian formalism is
appropriate to study wavelike excitations and instabilities
near the fixed point—through the linear analysis of the
eigenmodes—and provides the most appropriate framework
to study perturbation theory and symmetries of the system.
We aim to understand how the quantum anomaly affects the
canonical generators of gauge transformations and diffeo-
morphisms as well as their semidirect product algebra. Our
approach will be entirely 3þ 1 dimensional, providing a

minimal generalization of the standard action principle for

fluid dynamics to accommodate anomalies.
Let us start with equations of anomalous hydrodynamics

of [4]. The current and energy-momentum conservation
laws for anomalous QFT in the background gauge field can
be written as:

∂λjλ ¼ −C
8
ϵλνστFλνFστ; ð1Þ

∂λTλν ¼ Fνσjσ: ð2Þ
The right-hand side of Eq. (2) is the Lorentz force, while
the right-hand side of (1) is the gauge anomaly term, fully
characterized by a single dimensionless constant C. Here
and in the following we drop the angular brackets denoting
expectation values, e.g., hji → j, so that jλ and Tλν are
classical fields representing the current and the energy-
momentum tensor.
Assuming local equilibrium and imposing the local form

of the second law of thermodynamics, Son and Surowka
were able to constrain the form of constitutive relations. In
this paper we are interested in the case of zero temperature
and absence of dissipation. Thus, we will use a particular
form of the constitutive relations found in [4], which is
given by:

jλ ¼ nuλ þ C
12

ϵλνστμuνð2μ∂σuτ þ 3FστÞ; ð3Þ

Tλν ¼ nμuλuν þ PðμÞgλν: ð4Þ
Here we have introduced the equation of state of the fluid

PðμÞ which gives the fluid pressure P as a function of the
chemical potential μ. The charge density in the fluid rest
frame is given by n ¼ P0ðμÞ. The fluid 4-velocity uλ

satisfies uλuλ ¼ −1 and, therefore, has only three inde-
pendent components. In this case, the zeroth component of
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Eq. (2)—the energy conservation—is not independent, but
can be viewed as a consequence of the other four
equations (1), (2). The latter four independent equations
fully determine the evolution of n and three independent
components of 4-velocity uλ.
We notice that Eqs. (1)–(4) constitute the first-order hydro-

dynamics equations written in Landau frame. Namely, the
constitutive relations (3), (4) are first order in derivatives and
the ambiguity in the definition of 4-velocity is resolved by
defining it as an eigenvector of the energy-momentum tensor.
Landau frame was used in [1] and was adopted in [4] to
construct the hydrodynamics with gauge anomaly.
The variational problem for hydrodynamics with gauge

anomaly in 1þ 1 dimensions was successfully developed in
[7], however it cannot be trivially generalized to 3þ 1
dimensions. The most successful attempt so far in finding
an effective action for Eqs. (1)–(4) was given in [8], but the
obtained action contained unphysical hydrodynamic excita-
tions propagating in a fourth auxiliary spatial dimension.
All these approaches rely on an effective action for the
Lagrangian specification of fluid variables [9,10]. On the
other hand, the action principle for non-Abelian hydrody-
namicswas presented in [6], where the authors introduced the
idea of coarse graining the coadjoint orbit action. A similar
approach to fluid dynamics for spinning particles has been
recently developed in [11]. An action that includes anomalies
in the standard model of particle physics within the frame-
work of the coadjoint orbit method was given in [12]. The
anomaly structure in the standardmodel is different fromwhat
is given in (1)–(4) and so the effective action for anomalies in
[12] is not immediately applicable to the present problem.
In this work, we will use the so-called Clebsch potentials

to parametrize the Eulerian variables [13] and to write down
a variational principle that produces the Son-Surowka
equations at zero temperature. We restrict ourselves to
the flat Minkowski spacetime, though the generalization to
more general geometric backgrounds is straightforward.
Unless otherwise specified, we use the Cartesian ortho-
normal frame, where the pseudometric can be chosen
as gλν ¼ diagð−1; 1; 1; 1Þ.
The variational principle and the symmetries are ana-

lyzed in Secs. II and III. Using the obtained action, we then
derive the corresponding Hamiltonian formulation speci-
fying the form of the relativistic Hamiltonian and the
Poisson brackets. We emphasize the symmetries of the
system and their manifestations in Hamiltonian formalism,
pointing out the special feature of one of the Clebsch
potentials appearing separately and not via the combination
in the dynamic velocity field. This feature is commented on
in Sec. VII and we conclude with the discussion of the
obtained results and their possible generalizations.

II. HYDRODYNAMIC ACTION

The variational principle for perfect relativistic fluid
dynamics is well known and goes back to [14–16]. The

key point in finding a hydrodynamic action is the introduc-
tion of a set of variables appropriate to the canonical
framework, the so-called Clebsch potentials. The use of
the Clebsch parametrization enlarges the phase space and
removes the degeneracy of the Poisson algebra between
hydrodynamic variables. The latter degeneracy of the
Poisson’s bracket makes the writing a symplectic form only
in terms of hydrodynamic quantities impossible. The Clebsch
potentials are scalar fields which parametrize the hydro-
dynamic variables, such as momentum and charge densities.
Namely, we write the velocity one-form in terms of 3 scalar
potentials ðθ; α; βÞ and the chemical potential μ, such that
u ¼ μ−1ðdθ þ αdβÞ, vide [15]. In the following we find an
additional term in the hydrodynamic action of [15,16]
reproducing the gauge anomaly in hydrodynamic equations.
The field content of the hydrodynamic action is given by

4 components of the 4-current Jλ and 3 scalar Clebsch
potentials ðθ;α; βÞ parametrizing dynamic velocity ξλ:

ξλ ¼ ∂λθ þ α∂λβ: ð5Þ

Then one of the main results of this work is that the
action generating Eqs. (1)–(4) is given by:

S ¼ −
Z

½Jλðξλ − AλÞ þ εðnÞ�d4x

þ C
6

Z
A ∧ ξ ∧ dðξþ AÞ: ð6Þ

Here εðnÞ is the proper energy density of the fluid which
is assumed to be a known function of the proper charge
density n. The latter is given by an absolute value of the
4-current Jλ as n≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gλνJλJν

p
. The second term on the

right-hand side of (6) describes the anomaly and is written
in the differential form language, that is, ξ ¼ dθ þ αdβ.
Taking C ¼ 0 in (6) we recover the action for a relativistic
perfect fluid without anomaly [15,16].
The full set of variational equations is obtained by

varying (6) over Jλ; θ; α; β. We start with:

δS
δJλ

¼ −ðξλ − AλÞ þ ε0ðnÞ Jλ
n
¼ 0: ð7Þ

It is convenient to introduce a complete parametrization
of the 4-current Jλ in terms of its absolute value n and its
direction given by 4-velocity uλ as:

Jλ ≡ nuλ; uλuλ ¼ −1: ð8Þ

Then Eq. (7) can be viewed as a relation between the
dynamic velocity, density and the 4-velocity1:

1For the case of irrotational flows, such as superfluids, the
dynamic velocity can be fully characterized by dθ and Eq, (9)
corresponds to the Josephson condition.
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ξλ − Aλ ¼ μuλ; ð9Þ

where the chemical potential μðnÞ is given by the derivative
of the energy density as:

μðnÞ≡ ε0ðnÞ: ð10Þ
The Clebsch potentials θ; α; β enter (6) only through ξ

given by (5). The corresponding variations give the
following equations of motion:

δS
δθ

¼ ∂λ

�
δS
δξλ

�
¼ 0; ð11Þ

δS
δα

¼ δS
δξλ

∂λβ ¼ 0; ð12Þ

δS
δβ

¼ ∂λ

�
α
δS
δξλ

�
¼ δS

δξλ
∂λα ¼ 0; ð13Þ

with

− δS
δξλ

¼ nuλ þ C
6
ϵλνησ½2Aν∂ηξσ − ðξν − AνÞ∂ηAσ�: ð14Þ

Introducing the charge current:

jλ ¼ − δS
δξλ

þ C
6
ϵλνησ½3∂νðAηξσÞ − 3Aν∂ηAσ þ ξν∂ηξσ�;

ð15Þ
we obtain (1) from (11) and (5). The relations (15), (14)
give the constitutive relation (3).
Defining the energy-momentum tensor by (4), one can

derive the conservation law (2) from (9) and (11)–(13) after
some tedious but straightforward manipulations.2 We do
not go through this derivation in more detail, since, in the
next section, Sec. III, we will derive Eqs, (1)–(4) more
straightforwardly from symmetries of the action (6).
In the absence of the gauge field background Aμ ¼ 0 the

action (6) becomes the conventional action for relativistic
perfect fluid dynamics [15,16]. The only manifestation of
the gauge anomaly in this case is the nonconventional
relation between current and 4-velocity. Namely, the
relation (3) becomes jλ ¼ nuλ þ C

3
μ2ωλ with relativistic

vorticity defined as ωλ ¼ 1
2
ϵλνστuν∂σuτ. This current is

conserved ∂λjλ ¼ 0 because both relations ∂λðnuλÞ ¼ 0

and ∂λðμ2ωλÞ ¼ 0 follow from (6) in the absence of the
gauge background3—this consequence can be observed
directly from [4] by setting the temperature and the external
fields to zero. Such “removal” of the anomaly responses by

current redefinition is not possible though when a nontrivial
gauge field background is present.

III. SYMMETRIES

In this section we show explicitly that Eqs. (1), (2) can be
obtained as consequences of (anomalous) gauge symmetry
and space-time translational symmetry of the action (6),
respectively.
We notice that the first line of (6) is symmetric

with respect to the gauge transformation with the gauge
parameter ΛðxÞ

δΛAλ ¼ ∂μΛ; δΛθ ¼ Λ: ð16Þ

Indeed, from (5), (16) we have δΛξλ ¼ ∂λΛ and see that the
combination ξλ − Aλ entering (6) is gauge invariant.
This gauge invariance, however, is broken by the

anomalous (second line) part of the action (6). It is easy
to verify that, up to boundary terms, the gauge trans-
formation of the action is given by

δΛS ¼
Z

∂λΛ

�
δS
δξλ

þ δS
δAλ

�
d4x ¼ C

6

Z
ΛdA ∧ dA: ð17Þ

Unlike the case of a general breaking of a symmetry, the
loss of symmetry due to anomalies is rather special. The
gauge variation of the action depends only on the back-
ground gauge field and has a very specific form, the latter
being determined by the densities of certain topological
invariants. It is easy to see that the action can be made fully
gauge invariant by supplementing it with the Chern-Simons
term − C

6

R
M5

A ∧ dA ∧ dA. The integral in this term is
taken over an auxiliary 5-dimensional space M5 which
boundary coincides with the physical space-time. This
gives an elegant interpretation of the anomaly of the
4-dimensional theory as being due to the inflow of charge
from the fifth dimension, a setup known as anomaly inflow;
this is standard and well known in QFT with quantum
anomalies [17]. With the variation with respect to the
Clebsch potential θ satisfying Eq. (11), the variation of (17)
over Λ gives the charge conservation law modulo the
anomaly as

∂λ

�
δS
δAλ

�
¼ − C

24
ϵλνστFλνFστ: ð18Þ

The quantity δS=δAλ is known as the consistent current
versus the covariant current jλ defined in (3). A quick
calculation shows that

jλ ¼ δS
δAλ

− C
6
ϵλνστAνFστ: ð19Þ

Taking the divergence of (19), we obtain (1).

2Technical remark: it is convenient to start this derivation with
an obvious equation δS

δξλ
½∂λð δSδJνÞ − ∂νð δSδJλÞ� ¼ 0.

3One can think of the second relation as a consequence of (1),
(2). We notice that the second conserved quantity μ2ωλ can be
identified as a density of the Casimir (helicity) of the relativistic
perfect fluid dynamics.
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We now turn to the energy-momentum conservation (4).
The standard way of deriving this law is to gauge space-
time translational symmetries by introducing the back-
ground metric and study the invariance of the action under
diffeomorphisms xλ → xλ þ ζλðxÞ.
We consider (6) in an arbitrary background metric by

replacing the measure d4x by the invariant one
ffiffiffiffiffiffi−gp

d4x
and by introducing the metric into all scalar products.
Notice that ξλ is naturally a covariant vector, being
derivatives of the scalar Clebsch potentials, and thus
Jλξλ being an invariant scalar product does not require
additional metric factors. However, a scalar product like J2

will become JμJνgμν. The resulting action is invariant under
diffeomorphisms, i.e., δζS ¼ 0, and on equations of motion
we have

Z �
ðLζgÞνλ

δS
δgνλ

þ ðLζAÞλ
δS
δAλ

�
d4x ¼ 0; ð20Þ

since the terms corresponding to the variations of the fields
vanish by the equations of motion. Here Lζ denotes the Lie
derivative with respect to the vector field ζ. Explicitly

ðLζgÞνλ ¼ ∂νζλ þ ∂λζν; ð21Þ

ðLζAÞλ ¼ ζνFνλ þ ∂λðζνAνÞ: ð22Þ

Using these formulas and setting the coefficient of ζν

in (20) to zero we obtain4

∂λTλ
ν ¼ Fνλ

δS
δAλ

− C
6
Fνλϵ

ληστAηFστ; ð23Þ

with

Tλν ≡− 2ffiffiffiffiffiffi−gp δS
δgλν

: ð24Þ

A quick calculation shows that the energy-momentum
tensor (24) is the same as (4). This is expected as the last
term of (6) is the integral of a 4-form—which is metric-
independent—and gives no contribution to the energy-
momentum tensor. Therefore, (4) is identical in form to the
energy-momentum tensor for conventional perfect fluid
dynamics. We see that the metric independence of the
anomalous contribution to (6) is an essential feature of
the analysis in the hydrodynamic Landau frame where the
energy-momentum tensor is not modified by corrections
which are of the first order in gradients of the velocity.
Finally, it is easy to see that Eq. (23) with the relation

(19) is equivalent to (2). This completes the demonstration
that the action (6) does indeed reproduce Eqs. (1)–(4).

IV. HAMILTONIAN FORMALISM

In this section we set up the Hamiltonian formulation of
Eqs. (1)–(4) starting with the action (6).
We start by reducing the seven independent variational

fields of (6) to four given by J0 and by the Clebsch
parameters θ; α; β. The spatial components of (8), (9) give

Ji ¼
n
μ
ðξi − AiÞ ð25Þ

and we can eliminate the spatial components of the current
Ji using (25). Using this relation and the defining relation
(8) for n, namely, ðJ0Þ2 − ðJiÞ2 ¼ n2, we find

J0 ≡ ρ ¼ n
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðξi − AiÞ2

q
: ð26Þ

Here and in the following we use ρ to denote J0. We may
regard J0 ¼ ρ as the independent variable, with n given
implicitly as a function of ρ by (26).5

Substituting (25), (26) into (6) we obtain the action in a
form linear in the time-derivatives and depending only on
fields ρ; θ; α; β. After some integrations by parts, it can be
brought to the following form:

S ¼
Z

ðhπθ; _θi þ hπβ; _βi −HÞdt; ð27Þ

where hf; gi≡ R
fðxÞgðxÞd3x denotes the L2-inner product

in the space of real functions, H is the Hamiltonian, πθ and
πβ are the canonical field momenta conjugate to θ and β,
respectively. The explicit formulas for the canonical
momenta are

πθ ¼ −
�
ρþ C

6
ðAi þ α∂iβÞBi

�
; ð28Þ

πβ ¼ −α
�
ρþ C

6
ðAi − ∂iθÞBi

�
: ð29Þ

The Hamiltonian H in (27) is given by

H ¼
Z h

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðξi − AiÞ2

q
− PðμÞ − ρA0

i
d3x

−
C
6

Z
½ξiBiA0 þ ϵijkð∂iθ − AiÞξjEk�d3x: ð30Þ

The pressure PðμÞ is related to the energy density by the
Legendre transform εðnÞ ¼ nμ − PðμÞ, with P0ðμÞ ¼ n and
we have also introduced the magnetic and electric fields
Bi ¼ εijk∂jAk and Ei ¼ ∂iA0 − ∂0Ai with ϵijk ≡ ϵ0ijk.

4The identity Aνϵ
ληστFληFστ ¼ −4Fνλϵ

ληστAηFστ can be useful.

5As μðnÞ is assumed to be a known function of n (10) Eq. (26)
can in principle be solved to obtain nðρ; ξiÞ, μðρ; ξiÞ, etc.
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Once again, we may note that if the anomaly vanishes,
that is, for C ¼ 0, the Hamiltonian formulation (28)–(30)
reduces to the known Hamiltonian formulation for the
perfect relativistic fluid [15,16,18,19]. We notice that in
this case the Hamiltonian depends on Clebsch potentials
only through ξi. This feature is lost in the presence of the
anomaly, i.e., when C ≠ 0, although the equations of motion
(1)–(4) still do not contain the Clebsch potentials explicitly.
We shall comment on the meaning of this explicit

dependence on θ in the following sections. Here we just
point out that the coefficient of Ek in the last term of (30)
may be interpreted as an intrinsic electric dipole moment
of the fluid. It is worth recalling that one of the main
predictions of the anomaly for fluids is the chiral magnetic
effect which leads to charge separation in a magnetic field.
An electric dipole moment obviously suggests a charge
separation and we may regard the last term of Eq. (30) as a
reflection of this feature in the Hamiltonian framework.
So far we have considered the background gauge field as

space- and time-dependent. An interesting special case is
when the magnetic field is time-independent. It is then
possible to choose a vector potential Ai which is indepen-
dent of time as well. Then the last term of (30) can be
integrated by parts and the Hamiltonian takes the form

H ¼
Z h

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðξi − AiÞ2

q
− PðμÞ − A0ρ

i
d3x

−
C
6

Z
A0½2ξiBi þ ϵijkðξi − AiÞ∂jξk�d3x: ð31Þ

In this case, the explicit dependence on θ has disap-
peared and the Clebsch potentials only appear in the
combination ξi. It is straightforward to observe that, for
a time-independent gauge field, the potential term is simplyR
A0j0d3x, as one should expect.
In the next section we discuss the effect of the anomaly

on the Poisson structure of the Hamiltonian formulation
derived in this section.

V. POISSON BRACKETS

The variational principle (27) which is linear in time-
derivatives immediately provides us with the canonically
conjugate pairs θ; πθ and β; πβ. The Poisson brackets of all
fields follow then from the canonical ones for the above
fields

fθ; π0θg ¼ fβ; π0βg ¼ δðx − x0Þ; ð32Þ

where we have listed only the nonvanishing Poisson
brackets. Here and below we use a concise notation
omitting the spatial arguments of the fields so that, e.g.,
β means βðxÞ, π0θ means πθðx0Þ, etc.
The hydrodynamic equations of motion (1)–(4) can be

formulated as equations written entirely in terms of ρ and ξi

without an explicit dependence on the Clebsch parameters.
Therefore, we shall look for the possible Hamiltonian
reduction of (30), (32). The reduction consists of the dynamic
reduction, i.e., the Hamiltonian should be expressible only in
terms of the density ρ and dynamic velocity ξi, and the
kinematic reduction, i.e., the closure of Poisson brackets of ρ
and ξi without the use of the Clebsch parameters [20].
As we remarked before, with the inclusion of the

anomaly, the dynamic reduction is only partially success-
ful. Namely, the Hamiltonian (30) does depend on ∂iθ in
the case of general time-dependent gauge field background.
In the case of time-independent background the dynamic
reduction is complete and the Hamiltonian (31) depends on
the Clebsch parameters only through ξi.
Remarkably, the Poisson algebra of ρ and ξi is closed for

any gauge field background so that the kinematic reduction
is achieved. Indeed, after some straightforward calcula-
tions, we derive from (32) and the definition (5) the
following set of Poisson brackets closed with respect to
the fields ρ and ξi,

fρþ; ρ0þg ¼ C
3
Bi∂iδðx − x0Þ; ð33Þ

f~ξi; ρ0þg ¼ ∂iδðx − x0Þ; ð34Þ

f~ξi; ~ξj0g ¼ −
∂i
~ξj − ∂j

~ξi − ϵjikBk

ρ−
δðx − x0Þ: ð35Þ

Here, for the sake of brevity, we introduced the following
compact notation,

~ξi ≡ ξi − Ai; ð36Þ

ρ� ≡ ρ� C
6
~ξiBi: ð37Þ

A comment on the first of these equations, namely, (33),
is appropriate at this point. It is well known that the ½j0; j00�
commutator will be modified by a Schwinger term in the
presence of an anomaly for the corresponding symmetry
[21]. This can be shown by explicit computation of the
corrections to commutators via Feynman diagrams, the
triangle diagram leading to the specific form given.6 It can
also be seen from a 2-cocycle constructed in terms of the
descent equations which lead to the anomalies [22]. Our
action effectively reproduces this in the Poisson brackets.
We may also note that an expression analogous to (33) has
appeared in [23].
We remark here that the dynamic velocity ~ξi and

the modified densities ρ� are invariant under the

6The computation of modified commutators follows a pro-
cedure known as the Bjorken-Johnson-Low method where
correlators of currents at slightly unequal times are calculated
and a suitable equal-time limit is taken.

HYDRODYNAMICS WITH GAUGE ANOMALY: VARIATIONAL … PHYSICAL REVIEW D 91, 125033 (2015)

125033-5



transformations (16), therefore, the Poisson algebra
(33)–(35) is written in terms of explicitly gauge-invariant
quantities. However, as it is well known [22] that the
generator of gauge transformations cannot be realized
canonically in the presence of anomaly (see Sec. VI).
The algebra (33)–(35) is obtained as a result of

Hamiltonian reduction and is degenerate. It admits two
Casimirs—the quantities having vanishing Poisson brack-
ets with fields entering Poisson algebra. They are given by

C1 ¼
Z

ρþd3x; ð38Þ

C2 ¼
Z

ϵijk ~ξi∂jð~ξk þ 2AkÞd3x: ð39Þ

The charge density j0 defined in (3) is given by

j0 ¼ ρþ þ C
6
ϵijk ~ξi∂jð~ξk þ 2AkÞ: ð40Þ

It is a combination of densities of two Casimirs of the
algebra. It is worthwhile to point out that when the gauge
field is time-independent the anomaly term can be written
as a total derivative, i.e., EiBi ¼ ∂iðA0BiÞ, what automati-
cally implies that the total charge is indeed conserved.
In the absence of anomaly C ¼ 0, all expressions (30),

(33)–(40) become the known formulas for perfect fluid
dynamics [5,6]. Even when the anomaly is present, i.e.,
C ≠ 0, if we consider the case of the background gauge
field being absent, we obtain again the formulas of
anomaly-free hydrodynamics with a single exception.
Namely, the definition of the charge density (40) still
differs from ρ by the density of Casimir (39). The latter is
known as the helicity of the hydrodynamic flow.
Having Hamiltonian and Poisson brackets one can

obtain equations of motion for any quantity Q as _Q ¼
∂Q=∂tþ fH;Qg, where ∂Q=∂t denotes the “explicit”
time-derivative. In our case this explicit derivative acts
only on the time varying external gauge field. The
dynamical fields ξi and ρ do not depend on time explicitly.
For example, the equation of motion for ξi will read
_~ξi ¼ −∂tAi þ fH; ~ξig, etc.
While the Clebsch variables appear in the algebra

(33)–(35) only via ξi, we should note that, in the presence
of the time-dependent gauge field background, the
Hamiltonian (30) contains ∂iθ in addition to the density
and the dynamic velocity fields. Thus the algebra (33)–(35)
is not adequate for a complete Hamiltonian description, and
it should be supplemented by Poisson brackets involving
the θ field. We list those brackets here for completeness

fρþ; ∂kθ
0g ¼ ∂kδðx − x0Þ; ð41Þ

f~ξi; ∂kθ
0g ¼

~ξi þ Ai − ∂iθ

ρ−
∂kδðx − x0Þ: ð42Þ

VI. SYMMETRY GENERATORS

The Poisson algebra (33)–(35) is closed and, in the case
of the time-independent background, produces the hydro-
dynamic equations with the use of the Hamiltonian (31).
However, the brackets (33)–(35) are nonlinear and there-
fore do not have the Lie-Poisson form. For the symmetry
analysis it is preferable to find an equivalent set of Poisson
brackets corresponding to the algebra of symmetry gen-
erators of the system.
It is easy to see from (27) that the momentum densities

can be defined as:

Θ0i ¼ −πθ∂iθ − πβ∂iβ: ð43Þ

The momentum densities Θ0i satisfy the diffeomorphism
algebra and act as local translations in the absence of
background field. However, one cannot express (43) only in
terms of the density ρ and the dynamic velocity in the
background of nonvanishing magnetic field. More pre-
cisely, the canonical energy-momentum tensor acquires an
explicit θ dependence:

Θ0i ¼
�
ρþ C

6
AkBk

�
ξi þ

C
6
Bkðξk∂iθ − ξi∂kθÞ: ð44Þ

Let us now turn to gauge transformations which can be
viewed as shifts in the field θ. The naive canonical gauge
generator for this symmetry is −πθ. Using (28), (5) we can
write it as

−πθ ¼ ρþ C
6
ðAi þ ξi − ∂iθÞBi ð45Þ

and notice that it also depends explicitly on ∂iθ.
It is straightforward to check that the Poisson structure

(33)–(35) can be put in a semidirect product Lie-Poisson
algebra [18,19] in terms of (44), (45).
A gauge transformation of an arbitrary functional F of

basic fields generated by −πθ is given by:

δΛF≡
Z �

−Λðx0Þfπ0θ; Fg þ δF
δAiðx0Þ

∂ 0
iΛ

�
d3x0; ð46Þ

where the transformation of the gauge potential has also
been added.
However, it is easy to see that (46) gives δΛα ≠ 0, as well

as δΛρ ≠ 0 in apparent contradiction with gauge invariance
of α and ρ. In fact, one can show that the gauge symmetry
(16) is not canonically realizable.
Let us now consider ρþ given by (37) as a generator of

gauge transformations instead of −πθ. We easily check that
δΛα ¼ δΛβ≡ 0 and δΛθ≡ Λ. Moreover, under the modi-
fied gauge transformations generated by ρþ the density ρ
transforms as:
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δΛρ ¼ −C
6
Bi∂iΛ; ð47Þ

and there exists the gauge invariant quantity ρþ C
6
BiAi.

While ρþ can be considered as a modified generator of
gauge transformations two subsequent gauge transforma-
tions generated by ρþ do not commute and the commu-
tative algebra of gauge transformations has acquired a
central extension (33). This is, of course, a classical
manifestation of a well-known phenomenon in studies of
quantum anomalies [22]. At this point it is not clear
whether similar modifications can be made for diffeo-
morphism generators (43).7

VII. CONCLUSION AND DISCUSSION

We have presented a variational principle for hydro-
dynamic equations with gauge anomaly at zero temper-
ature. From the obtained action, we derived the Poisson
structure and the Hamiltonian for the system. The most
noteworthy feature of the obtained Hamiltonian formu-
lation is that in the presence of gauge anomaly, the
Hamiltonian reduction to the density and velocity fields
is not complete and one of the Clebsch potentials becomes
physical and is present in the Hamiltonian in the presence
of the time-dependent gauge field background.
The case of the time-independent external gauge fields is

more natural for the Hamiltonian formulation. In this case
one has a complete Hamiltonian reduction with both
Hamiltonian and Poisson brackets expressed purely in
terms of the charge density ρ and dynamic velocity ξi.

It turns out, however, that the generators of gauge
transformations ρþ (37) cease to commute and that the
generators of spatial translations (44) can be written only
with the explicit use the Clebsch potential θ. The origin of
the explicit appearance of θ in the Hamiltonian and in (45)
and (43) can be traced to the term A ∧ ξ ∧ dξ ¼ A ∧
dθ ∧ dα ∧ dβ in the action. This term is needed in the
hydrodynamic action to make sure that the anomalous
nonconservation of the charge corresponds to the one of
the underlying QFT and following from the computation
of the triangle diagram. In our variational approach the
presence of A ∧ ξ ∧ dξ term does not lead to any entropy
production and is in agreement with the requirement of
positive semidefinite entropy production which was
central in Son and Surowka analysis [4]. A connection
of the anomalous term with the entropy arguments might
become more explicit if the variational principle could
be generalized to finite temperature hydrodynamics. A
possibility of such a generalization is worthy of further
investigation.
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