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In this work, we consider the Casimir effect due to massless fermionic fields in the presence of long
cylinders. More precisely, we consider the interaction between a cylinder parallel to a plate, between two
parallel cylinders outside each other, and between a cylinder lying parallel inside another cylinder. We
derive the explicit formulas for the Casimir interaction energies and compute the leading and the next-to-
leading order terms of the small separation asymptotic expansions. As expected, the leading order terms
coincide with the proximity force approximations. We compare the results of the next-to-leading order
terms of different quantum fields, and show that our results support the ansatz of derivative expansions.
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I. INTRODUCTION

Casimir effect is one of the most interesting predictions
of quantum field theory that has been verified experimen-
tally. In [1], Casimir proposed that there exists a force
between two parallel perfectly conducting plates due to the
vacuum fluctuations of the electromagnetic field confined
between the plates. The idea of Casimir energy is natural. In
quantum theory, the ground state energy of a simple
harmonic oscillator is not zero, but is equal to Aw/2,
where @ is the angular frequency of the associated
oscillator. A quantum field can be considered as the
superposition of infinitely many simple harmonic oscilla-
tors with different frequencies. This led Casimir to define
the Casimir energy to be

Ecy = 7 , (1)
the sum of the ground state energies of the quantum field.
This is an infinite sum that needs regularization. However,
without the presence of boundaries or external conditions,
the Casimir effect would not be manifested. The Casimir
effect is most interesting in the presence of two objects, such
as parallel plates. In principle, after subtracting the self-
energies, there should be some finite amount of energy left,
which would create interaction between the two objects.

The first experiment that successfully verified the pres-
ence of the Casimir effect appeared near the end of the 20th
century [2]. This has stimulated another surge in the
research activities in the Casimir effect, especially in
conjunction with the development of nanotechnology.
Under the same reasoning, the definition of Casimir energy
(1) works not only for electromagnetic fields as originally
proposed by Casimir, but for any quantum fields. However,
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for fermionic fields, one should add a minus sign in front of
the formula due to the different spin and statistical behavior
of fermionic fields. In fact, such definitions of Casimir
energies have been used to compute the Casimir effect of
two parallel plates, and the Casimir self-energies of
spheres, cylinders, etc., in the second half of the 20th
century. From the point of view of statistical physics, such a
definition is natural since the Casimir energy so defined
appears as the zero temperature part of the free energy.

Even though there is intensive research in the Casimir
effect since 1980s, for a long time, it is not clear how to
compute the Casimir interaction between two objects,
except by using approximations. Around 2006, various
groups of researchers simultaneously tackled this problem
for some particular geometries using quantum field theory
methods such as Green’s functions, path integrals, wave
expansions, etc., that can be more or less categorized as
multiple scattering approach [3—-16] or mode summation
approach [17-19]. The general method for arbitrary objects
has been synthesized in [20] for scalar fields and in [21] for
electromagnetic fields. Both of these papers approach the
problem using multiple scattering formalism. In [22], we
used mode summation approach to interpret the formulas
derived in [20,21]. An advantage of our formalism is that it
is not restricted to scalar fields or electromagnetic fields,
and it is also not restricted to (3 + 1)-dimensional
Minkowski spacetime. For example, we have used the
formalism in [22] to compute the sphere-plate and sphere-
sphere  Casimir interaction in (D + 1)-dimensional
Minkowski spacetime in [23] and [24].

The studies of Casimir effect of fermionic fields can be
dated back to 1980s. Before the end of the 20th century,
there are a few works that considered the Casimir effect of
massless [25-27] and massive [28] fermionic fields.
However, this is a relatively small number compared to
the research works in the Casimir effect of scalar fields and
electromagnetic fields. One of the possible reasons is that
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fermionic fields are relatively harder to deal with. After
entering the 21st century, the Casimir effect of fermionic
fields has started to attract attention and there are a number
of works in this area [29-48], with some applications to
carbon nanotubes. One of the most popular models that
describes the quantum interaction of graphene sheets is
called the Dirac model, which involves a coupling of an
electromagnetic field and a fermionic field. The Casimir
interaction of graphene sheets has been studied in [49-52]
using the Dirac model. The fact that the transport of
electrons in a graphene sheet can be described using
massless Dirac fermions [53] gives a strong motivation
to study Casimir interaction of massless fermionic fields.

In [54], we considered the fermionic Casimir interaction
between two spheres and derived the small separation
asymptotic behaviors. For application to carbon nanotubes,
it is natural to consider the cylindrical geometries. In this
work, we consider the fermionic Casimir effect between a
cylinder and a plate, and between two parallel cylinders.
For parallel cylinders, we consider both possible cases: one
is where the two cylinders are outside each other, and one
is where one cylinder is inside the other. We derive the
explicit formulas for the Casimir interaction energies and
compute the small separation asymptotic behaviors. The
results are compared to the results of other quantum fields.
We also use our results to stipulate the ansatz of derivative
expansions proposed in [55]. This gives a formula for the
small separation asymptotic expansion of the Casimir
interaction between two nontrivial objects subject to
vacuum fluctuations of a massless fermionic field, up to
the next-to-leading order term.

For wider applications to quantum field theory and
nanotechnology, we will consider in a future work the
Casimir interaction of massive interacting fermionic fields,
which is much more complicated. However, when the
fermion mass is very small, the massless limit obtained in
this work gives a good enough approximation.

II. THE CASIMIR INTERACTION ENERGY

A. Plane waves and cylindrical waves

In this work, we consider the Casimir interaction
between a cylinder and a plate, and between two cylinders
due to the vacuum fluctuations of a massless Dirac field y
which satisfies the equation

iy'V,p = 0. (2)

Here V, =0, +T,, and I, is the spin connection.
On the boundaries of the cylinders or plate, we impose
the MIT bag boundary conditions:

(1 + i}/ﬂnu)l//|b0undary =0. (3)

To derive the Casimir interaction energy, we use the
formalism we developed in [22].
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First we need to solve the equation of motion (3) in
rectangular and cylindrical coordinates.

For cylinders, we align them so that their axes of
symmetry are parallel to the z-direction. Then using the
cylindrical coordinates

X = pcoso, y = psing, =2, (4)
a cylinder of radius R can be described as p = R if its axis
of symmetry is the z-axis.

When considering the cylinder-plate interaction, we will
assume that the plate is given by x = L, where L > R, so
that the cylinder is parallel to the plate. The plane waves are
then parametrized by (k,, k). The fermionic waves can be
divided into positive energy modes and negative energy
modes, as well as regular waves and outgoing waves, each
has two families: They can be written as

(F)x _ p(F)x —isgn, k,x+ik,y+ik zFiwt
Vik..j = A k€T . (5)
where
1 0
0 1
£).x ().
A< = A — .
kyk,1 :t% P kyk..2 T sgn*k;g-Hky
—sgn, k,+ik, k,
=7 Fi

Here k =%, x =reg or out, sgn,, = 1, sgn,,, = —1 and

ky = \/I2 =2 — K2

In cylindrical coordinates, the fermionic waves are
parametrized by m and k,, where m = i%,i%,i%,

)% * 1) ik zFiw
wink)z.j = CmBEnki.je i [’ (7)
with

[ (ko p)eitn=e
2

Bﬁnik)j = :i:%f* l(l?lp)ei(m_é)‘/’ ,
m=
£ 58 £,y (kip)eitm e
0
—if;%(klﬂ)e"(m%)"’
Binik); | %fl_%(klﬂ)e“m%)'p ’ (8)
=5 fr, (kip)eltrthe
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Here
o=\ -k @) =1, S =)
J,(z) and H"(z) are Bessel functions [56] and

—mal T .l
izg i m+2’ C%lt — E lm+2 (9)

are normalization constants introduced to facilitate the
change to imaginary frequencies.

B. The Casimir interaction energy between
a cylinder and a plate

Assume that the cylinder has radius R, length A and its
axis of symmetry is the z-axis. Let the plate be described by
x =1L, with center at O’ = (L,0,0) and dimensions
HxH.Letx =x—-L,L = Le,.

In the region between the cylinder and the plate, the
Dirac fields can be represented in two ways: one is in terms
of the cylindrical coordinate system centered at O:

) (x,1)
ZH/OO da)/oo%
o _oo 2m
<3 (Sl

m=—c0 \j=

+ 3 By L, a))) (10)

j=1.2

and one is in terms of the rectangular coordinate system
centered at O":

[ [

(i)’k.vkr (£).reg /s
X ( C; Vik..j (X ,w)
j=1

3o w)>. (11)

These two representations are related by translation matri-
ces V and W:
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1), +).11 +).21
VLT (X, ) B i Vit vy
+ B +),12 +),22
U/l(cvk) rgg(xl’ Cl)) n=-c an.lzy Vin 12‘
+),
T (x, @)
+), k)
ll/fnk)z.r;g(x’ a))
(£).11 (£).21
l/’i,,k) (;Ut(x w) —H /00 dky kam ka.m
t - o +),12 )22
Yo 5 (%, @) o 2\ W Wy
+),
v (@)
X (i) out ’ (12)
Yk, 2 (x'. )
so that
+).11 +),12
<a§:ﬁ:)~,n’lk;> B H/oo dky meky meky >
Hmk, | | ox )21 )22
a5 w20 \ v v

b(lﬂ:),mkz (1 3)
X .
bgi—).mkZ
The boundary conditions on the cylinder give a relation of
the form
(£),mk, (£),mk,
b a
(li) mk = _-n—fl;i) zi) mk, |’ (14)
by \a, T

i, y = \/K* + k2,

In imaginary frequency, w = i&, k =

(+) - 1
'I]'m =+
& kR(K}_,(rR) + K},,,(7R))
-1FiA %
X ,k , (15)
& 1FiA
14
where
A = KkR(K,,_1(yR),,_1(yR) = K, 1 (YR, 1 (YR)).
(16)

Here K, (z) and I,,(z) are modified Bessel functions [56].
The boundary conditions on the plate gives a relation of
the form
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+) kyk, +).kk,
(c(l M > :_ﬁfk) <d$ % ) (17)
cg:t),k).kz N3 déi).k).kl
where
2 12
_ i [ YTk tk ik,
Tol =%, (18)

—ik, 7k =k

For the translation matrices V and W defined by (12), using
techniques introduced in [22], we find that

m—t
1 0 VPR +E T
_ /7KL
Vok, = 0 w/yz-;k%-&-ky T, e VITRE,
(19)
L
(1 0 N R R A
Wk),.mzﬁ 0 _w/yz-:k%—kk). D
e—\/yZJrka
X ——. (20)

R

As discussed in [22], the Casimir interaction energy is then
given by

hH [ o dk
Ecpo = —— d =N Trin(1—M&E) (G
=g 4 [ 5 S - ),

(21)

m+m'
/oo dk, (/7 K +k
X —_— e —

o0 27 y

e~/ PPHKL
X (22)
r+k

The integral can be computed explicitly to give

s —ik
Mi(nir)n’ =t i—l]—mk’ ( y Z ) Konm (ZJ/L) (23)
' K T\ =ik -y

Z
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C. The Casimir interaction energy between
two cylinders

Consider two cylinders of length H and radii R4 and Rp,
respectively. The axis of symmetry of the cylinders are
given respectively by x =y =0 and x = L,y = 0, both
parallel to the z axis.

We consider two scenarios:

(1) The two cylinders are outside each other. In this
case, L >R, + Ry and d =L — R4, — Ry is the
distance between the two cylinders.

(i1) The cylinder of radius R, is inside the cylinder of
radius Rp. In this case, L < Rz — R, and d = R —
R, — L is the distance between the two cylinders.

In the region between the two cylinders, the Dirac fields
can be represented in two ways: one is in terms of the
cylindrical coordinate system centered at O:

“)(x, 1) —H/oodw

(v

m=—o0o \j=

3 bk, ) 3“‘<x,w>); (24)

j=1.2

and one is in terms of the cylindrical coordinate system
centered at O":

) (x, 1) :H/‘”dw

= (£).m'k,
,m ,Ie,
<3 (S

m=—co “\j=1,2

+),m'k, ,ou
D B R ) MY

j=12

The two representations are related by translation matrices.
In case that the two cylinders are outside each other,

T (U U
e T\ oo
o (X )
@ :
Yk, 2 (x, ®)

NN
(4).out - Z S()12 0 ()22

l//mkl,2 (X’ a)) m'=—co Um’.m Um’,m
+),
Vi (X @)
x (i):reg / ’ (26)
l//m/k:,z (X ,0))
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In case one cylinder is inside the other,

() reg £).11 +),21
(l//mk 1 (x’,w)) B i (Vin,r)n’ V;(n,r)n’ )
ll/’(n ]z r; (X/’ a)) E— V(i‘)l2 V i)22

+),
Wink);,rleg(x’ w)
R ’
l//mk 2 (X’w)

Vo (o) e (Wi Wi
(4).out - Z £).12 (+).22

V/mkz,Z (X,CU) m'=—o00 an/,m W !m
(£).out,_,
Vi1 (X, @)
() @
l//m'k;,z (X/’ w)
Using the method in [22], one finds that
U, = (=1)" 3K, (7L,
[Uini’)m = (_l)ml_%Km'—m(yL)l]’
\/;(nj.:r)n’ = (_l)ml_mlm—m’(}/L)l]v
WS = (=1 L, (yL)L. (28)

As in the case of electromagnetic fields, we find that the
translation matrices are all equal to a scalar times the
identity matrix.

When the two cylinders are outside each other,
solving the boundary conditions on the two cylinders give

the 'I]',(i) matrix as in (15). The Casimir interaction energy is
given by

hH [ © dk
Ecj=—75-| d 5= Trin (1 - ME)(ig)),
Cas 2”/0 é/_oo o L r 1’1( (16))
(29)
with
M =T § U Rp)0
m,m k mm” ”k ) m" .m’

= —l]—mk: (RA)sz”—m (]/L)—ﬂ—( ”)k (RB)Km” —m’ (YL)

m'

(30)

When the cylinder with radius R, is inside the cylinder
with radius Rp, the boundary condition on the cylinder

with radius R, still give the same T]'Ef? as given by (15).

However, the boundary conditions on the cylinder with
radius Rp gives
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(£).m'k, (&).m'k,
c ~ d

;i) m'k - _—l]—f”jl:lz zi) m'k ’ (31)
Cz 5 z z d2 5 z

where
T = i 1
kRp (Ifn_%WRB) + 12m+%(7RB))
-1 FiA %
(7. ) (32)
’7Z 1FiA

with A given by (16). The Casimir interaction energy is
then given by the same expression (29) but with

M), = T (R@Z\/fji,ﬂ?fj&z (RpWS) |

= —H—Eniki(RA)Zlm” m(}’L)—l]— 'k, (RB)Im”—m’(VL)-

(33)

III. SMALL SEPARATION ASYMPTOTIC
BEHAVIOR

The Casimir effect will be most significant when the
separation between the objects is small, especially for
application to nanotechnology. However, the computation
of the small separation asymptotics of the Casimir inter-
action energy is often a tedious problem. Nonetheless, a
systematic method has been developed in a series of papers
[10,11,23,24,57-64]. Making the substitution

K=usina

k, =ucosa,

in (21) and (29), we find that

hcH [ n
Ec,. = — d daTry In(1-M®F). (34
=~ e TS (1=, (34)

Expanding the logarithm and trace, we have

ECas:hCHZZs+1/ udu/ da
SN (MG M M), (35)

my  my mg

Here the trace tr is the trace over 2 x 2 matrices.
In the following, we are going to discuss the different
cases separately.
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A. The cylinder-plate case

In the cylinder-plate case, let

d L
® = Ru, e=—=——1
R R
Then
M, = !
i cosm%t([(2 ( )+ K2 ( ))
<—1:FzBl-sma icosa >
X
icosa 1 F iB;sina
1 —icosa
<(, VKm0t 4 6)
—icosa -1
- 1
a)SinZa(Kfnl (@) + Kﬁl +2( ®))
<—sin2a F iB;sina  F B;sinacosa )
X
F B;sinacosa  —sin’a £ iBB;sina
X Km,-+m,v+1 (2(0(1 + 8))’ (36)
where
Bi = w(Km,-—%(a))Im,-—%(w) - KmiJr%(w)Imﬂ»%(w))'
Let
mv1—1?
my = m, m; =m+n;, 0=—".
T

Then the main contribution to the Casimir interaction
energy comes from m ~ &', n; ~ &2

Using the Debye asymptotic expansions of modified
Bessel functions [65]:

1 evts) w(1(z))
L) \/2%(1+z2)%<1+ v )

K62) ~ 2 <1+;)) (1- )

where

Z
= V142 +log——ro,
1+V1+22

1
W=
t 58
uy (1) =8 24" (38)
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one can check that the term 13; has order ¢, and hence would
not contribute to the small separation asymptotic expansion
up to the next-to-leading order term. Hence,

() 1
Mmi’mi+l ~ T 2 2
(K2 (@) + K2 (@)
X Ko, (20(1 + €))L (39)
This is independent of @ and +, —. Moreover, ignoring

terms with order higher than e, Mﬁnii,)mm = M(_i,,,)[,_m[+l.
Hence, after replacing summation by corresponding
integrations,

hcH & ldr
Ecy ~ d d
Cus TR Zs+ 1% / e / e

[ s M M), (40)
Now
(+) ~ 1 Kmi+mi+1 (260(1 + 8))
Mm,’vaI Kﬁz +l<w) K2 l(w) l (41)
co(l + 2(@)) mi—3

mi=3

Using the Debye asymptotic expansions, one can find the
asymptotic expansions for

Ko im,., 2w(l +¢))

Ki._L(C‘))
i™2
and
1
Kili+%(a))
I+ K> (o)

mi—5

separately, up to terms of order e. These give an expansion
of the form

() 1/t 2em  t(n; —n;,)?
MG~ ==y | ——exp [~ T -
r 2 exp < T 4m

Tm

X (14 Ay 4+ Aip)l, (42)

where A; | and A, , are respectively terms of order /¢ and
e.A;; is an odd function in n; and n;;; and hence
integrating it over an even function of n; gives 0. As a
result, the next-to-leading order term in the small separation
asymptotic expansion of the Casimir interaction energy is
of order € smaller than the leading order term. We have
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2hcH & (—1)5H! ;
Ecys ~ Z s—l—l o] m/ drrz/ dmm™%

x/ dnl.../ dng

2e(s + Dm  C~olng —nigy)?
xexp( oy e

(1+ZZA,1A,1+ZA,2> (43)

i=0 j=i+1

The integration over n; are standard Gaussian integrations
and the integration over m and 7 can also be performed
explicitly. We find that

3ncH
s 16\/§ﬂ8%R2

S 10 (3 ;w)d)

s=0
Tm3hcH/R 7 20 | d
~— L\/: 1+ (44)
3840\ 24> 36 21722
One can easily check that the leading term
Tm3hcHVR
Cas ™~ — == (45)
384024

coincides with the proximity force approximation.

The corresponding results for Dirichlet (D), Neumann
(N), and perfectly conducting (C) boundary conditions
have been obtained in [10]:

3
ED ~ _”4hCH‘/I§ <1 +lﬁ>’
1920v2d 36R
N w3 hcHVR (1 [7 40} g)

s " 920024 36 372 R
3hcHVR 201 d

EG, ~ -~ VR f(w[ } ) (46)
960V 2d> 36 3n

B. The case of two cylinders outside each other

In the case that two parallel cylinders of radii R4 and Rp
are outside each other, let

Cl):(RA"-RB)M,

d L
e=——=——1,
R,+Ry; R

Ry
Ri+ Ry’

_ R
" Ry+Ry’

a =
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Then
MG, = — !
e acosinaz(K2 (aa)) +Km +1( w))
ZKm L m; ((1 + 8) )Km’-&-mﬁl ((1 =+ E)a))
~— bosina(K?, ; 1(bco) + K2 ,+1(b w))
<—1 F iB;sina icosa )
X
icosa 1 FiB;sina
—1£iC;sina icosa
X ) , (47)
icosa 1 £iC;sina
where
B, = aw(K,,,_y(aw)l,, i(aw) - K,, 1(aw)l,, .4(a0)).
Ci = bo(K,, 1 (bw)l,,_1(bw) = K1 1 (bo)],1,1(bw)).
(48)
Let
mgy =m, m; = m—+ n;,
m) :ﬁ(m-—i—m )+ q
i 2a i i+1 i
Pt 2 (4 m) +
=—-m+—(n;+n; i
a 2a i i+1 qi
mv1 —7?
0w=—"".
ar

_ _1
As before, m has order e7!, n; and ¢; has order £7.

Now,
<—1:|:i15’,»sina icosa >
icosa 1 FiB;sina
(—1 +iC;sina icosa )
X
icosa 1 +iC;sina

(sinza +i(B;—C;)sina

+(B; —C;)sinacosa )
+(B; —C;)sinacosa

sina F i(B; — C;) sina
(49)

In the same way, we find that the 13; and C; terms would not

contribute to the leading and next-to-leading order terms of

the Casimir interaction energy.
Hence,

hcH ldt
Cas nRzzs+1A /dmm/ dn..

x / dnytr (M, M), (50)
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where

1
J(aw)+ K7 (aw))

i m (L +E)@)K i, (1 +€)0)
ba)(K31<_%(bw) + Kil{+%(ba)))

~—
mg,miy

aw (K>
mi—3

x/mdq,-

Using the Debye asymptotic expansions (37) again, we can
find the small ¢ expansions for

(51)

Ko im (1 + )0) Ky (1 + €)@)

2 2 ’
Kmi_%(aa))Kmi__%(ba))

1
K*, | (bw)

I+ Kzi 2(17(1))

/_1
)

and

up to terms of order . These give

ar
d
" 2m / 4

2 br(nj—ni)* a®
exp (2 e @
art 4m bm

~
mi,miy

X (1 + Bi,l + Bi,z)l]. (52)

After the Gaussian integration over ¢;, we have

B Vbt ex _28m_br(ni—ni+1)2
Miotitl 2\/mm P ar 4m
X (1 +Ci.1 +Ci,2)|]' (53)
Hence,
1 s+1 ‘“

ZhCH _s=3
. z; - zs+1 / dor® / dmm=3

S

R}
x/ dnl.../oodns

2e(s + 1)m  S~br(n; —n;yy)?
exp ( ar Z 4m

i=0

<1+ZZC,1C 1+ZC,2> (54)

i=0 j=i+1
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As before, integrations over n;, m and 7 give

3tha2\/_Z( 1)st1
16V2763R2 = (s +1)*

7 d 7 (s+1)2[/d d
x(1-— + |- —+—
12R,+Rz |36 9 R, Ry

Cas ™

Tn3hcH /R, Rg
3840v2d3\ /R, + Rg

« (1 7 d i 7 20 d + d

12RA -+ RB 36 2177,' RB
(55)

The leading term
Tn’hcH/R,Rg
ECas ~ 5 (56)
3840v2d>\/R, + Ry

also coincides with the proximity force approximation.

The corresponding results for Dirichlet, Neumann, and
perfectly conducting boundary conditions were obtained in
[62]. They are given by

b mhcH\/R Ry
ECas ~ 5
1920V2&3/R, + Rp

w114 [ T(d 4d
12R,+ Rz 36 \R, ' Rz))’

BN o m’hcH\/R Ry
s 1920v2d3/R, T R

< (1 l d n 7 40 d+d
12RA+RB 36 37[ RB

C 7T3hCH\/RARB
ECas ~ 5
960v2d3\/R, + Ry

(17 _d [1_20)/d d
12Ry+Rz |36 32*|\R, Rz/))’

(57)

Notice that for all different boundary conditions, the ratio
of the next-to-leading order term to the leading order term
contains the universal terms

7 d
12R, + Ry

7 a’+d
36 Ry

C. The case of one cylinder inside another

and

In the case that the cylinder of radius R, is inside the
cylinder of radius Rp, let
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1-7° d L
o Ry =" 4L
art RB_RA R
R R
a= 4, b=——"—. m; =m+n,
Rp =Ry Rp =Ry
b b b
mi:Z(ni+ni+l>+%:Zm+z<ni+ni+l>+%-

Then as in the case of two cylinders outside each other,
we find that

1

M),
(aw) + K2, (aw)

i1 _aw(Kil

1
iT2

% /°° d llmﬁ—)ni((l - E)w)lmg—mi+| ((1 - g)a)) I

o T b2, (bw) + I2, (b))
i 2 i

1
2

(58)

In the same way, we have

Cas

3ficHa\/b i (—=1)5+!
16\27e2R%: = (s + 1)*

7 d 7 (s+1)?/d d
x| 1+— + |5z — ———
12R; — R, |36 9 R, Ry
B Tn3hcH\/R, Ry
3840v2d3\/Rz — R,

X 1+l d + l ﬂ i i
12RB_RA 36 2171'2 RA RB ’

(59)

As computed in [62], the corresponding results for
Dirichlet, Neumann, and perfectly conducting boundary
conditions are given by

D m3hcH\/R Ry
ECas ~ T 5
1920V2d3\/Ry — R,

X 1+1L+l i i
12Rz—R, 36\R, Ry))’

N 7T3hCH\/RARB
ECas ~ = 5
192012d3\/Ry — R,

X 1+l d + l ﬂ i i
12Rz — R4 |36 372°|\R, Rz))’

o mhcH/R,Rp
S 960v2d3\/Ry — R4

X 1+1L+ l E i i
12RB_RA 36 37T2 RA RB )

(60)

PHYSICAL REVIEW D 91, 125030 (2015)

Again, we notice that for all different boundary conditions,
the ratio of the next-to-leading order term to the leading
order term contains the universal terms

7_4
12Rz — R,

T(d_4d
36 \R, Ry)

IV. DISCUSSIONS

and

In the previous section, we have seen that the leading
order terms of the Casimir interaction energies are indeed
equal to those derived using proximity force approxima-
tion. The asymptotic expansion of the Casimir interaction
energy up to the next-to-leading order term has been a
subject of much interest. In [66—68], Fosco et al. performed
derivative expansion to the path integral representation of
the Casimir energy and obtained an integral expression for
the expansion of the Casimir energy up to the next-to-
leading order which is not completely convergent.
However, it is good enough for computing the next-to-
leading order term. Their method works successfully for
the scalar field but only partially for the electromagnetic
field. No results have been derived so far for fermionic
fields.

Inspired by the work [66], Bimonte et al. proposed in
[55] that the Casimir interaction energy has a derivative
expansion of the form

EQL = /2 dzxé‘gas(H) (1 +p1(H)VH, - VH,
+ p,(H)VH, -VH, + p,(H)VH, - VH,

+p_(H)z-(VH, xVH2)+-~~>, (61)

where Sgas is the Casimir energy density between two
parallel plates, ¥ can be taken to be the z =0 plane
parametrized by x = (x,y), z = H{(x) and z = H,(x) are
the height profiles of the two objects with respect to %, and
H = H, — H, is the height difference. The leading term

[ xelu
z

is precisely the proximity force approximation. Using the
invariance of the Casimir interaction energy with respect to
tilting the reference plane X, it was found that

p-(H) =0,
ﬁx(H) = 2—/31(H) —ﬁz(H)~
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For Dirichlet, Neumann, and perfectly conducting boun-
dary conditions, = f; = 3, is found to be a pure number
that only depends on the boundary conditions, which is
given by

=2
p=3(1-%).
ﬁC:§(1—;—§>. (62)
Since
Ebu(H) = 5. (63)

VH,-VH
Clz_/dzx}{7327 (64)
z

then the ansatz (61) says that
Egy ~afco+ flei + e —2¢1p) +2¢12}. (65)
For cylinder-plate configuration, one finds that

3n\/EH<1 d +)

chn = ———— -
' aad 4R

3zv/RH 2d
Cn=——==XzpT "

424 3R
Cyp = C1p = O (66)

Therefore, the ansatz (61) says that

3nvRH 2 1\d
EPE ~ 1 Zh—— )=+, 67
Cas 4\/§d% a{ + <3ﬂ 4>R+ } ( )

PHYSICAL REVIEW D 91, 125030 (2015)

As observed in [55], the results from exact computation
(46) do indeed satisfy (67) with the various f given in (62).
Our new result (44) satisfies (67) if the value of g for
fermionic fields with MIT bag boundary conditions is
given by

(68)

For two cylinders outside each other,

3rH VRARB
Cn =
VN PN T

o ]+3 d 1/d n d n
4R, + Ry 4\R, Rp ’
3rH VRARB

2
C11_4\/§d5/2\/M( 3
stH JRR; (_g d +%i+._.>
3 :
2
(-3

C =
27 4\2d5 >R, T Ry
3JTH 1/ RARB
C =
2T 42852 /Ry T R

Hence, (65) gives

ooe __3n/RaRsH { 1 _d
" 42d Ry T Ry 12R, + Ry

+E/J’F—ﬂ (%+%>+"'}‘ (70)

One can check immediately that our new result (55)
satisfies (70) with ¥ given by (68).

A similar computation for two spheres also shows that
our results in [54] satisfies (65) with g5 given by (68).
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