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We give a fermionic Fock space description of embedded entangled qubits. Within this framework the
problem of classification of pure state entanglement boils down to the problem of classifying spinors. The
usual notion of separable states turns out to be just a special case of the one of pure spinors. By using
the notion of single, double and mixed occupancy representation with intertwiners relating them a natural
physical interpretation of embedded qubits is found. As an application of these ideas one can make a
physical sound meaning of some of the direct sum structures showing up in the context of the so-called
black-hole/qubit correspondence. We discuss how the usual invariants for qubits serving as measures of
entanglement can be obtained from invariants for spinors in an elegant manner. In particular a detailed case
study for recovering the invariants for four-qubits within a spinorial framework is presented. We also
observe that reality conditions on complex spinors defining Majorana spinors for embedded qubits boil
down to self-conjugate states under the Wootters spin flip operation. Finally we conduct a study on the
explicit structure of Spinð16;CÞ invariant polynomials related to the structure of possible measures of
entanglement for fermionic systems with eight modes. Here we find an algebraically independent
generating set of the generalized stochastic local operations and classical communication invariants and
calculate their restriction to the dense orbit. We point out the special role the largest exceptional group E8 is
playing in these considerations.
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I. INTRODUCTION

It is well known that a system of n distinguishable qubits
can naturally be embedded into a system of n fermions with
2nmodes. This idea has been widely used with applications
in quantum chemistry [1,2], in studies concerning the
relationship between spin systems and fermionic ones
[3], the quantum Merlin–Arthur completeness of the N-
representability problem [4], entanglement classification
and canonical forms [5–8], ground state properties of
fermionic systems [9] and the so-called black-hole/qubit
correspondence (BHQC) [10].
In a recent study it has been shown [11] that in order to

gain further insight into the structure of such entangled
systems it is rewarding to regard them as embedded ones
into the full fermionic Fock space. Physically this means
that apart from the usual protocols of preserving the
number of fermions we should also allow ones for
manipulating such systems via changing the fermion
number. This idea leads us to the notion of generalized
Bogoliubov transformations [11]. Though the physical
significance of this idea is yet to be explored even at this
stage it makes it possible to regard the classification
problem of entanglement types under stochastic local
operations and classical communication (SLOCC) [12]
as a special case of a problem well known to

mathematicians as the problem of classifying spinors
[13–17]. This observation makes a step towards establish-
ing a unified framework for understanding entanglement
properties of quantum systems consisting of subsystems
with both distinguishable and indistinguishable constitu-
ents. The aim of the present paper is to take a further step in
this direction and present a systematic study of n-qubit
systems as ones living inside the full fermionic Fock space
with particular emphasis put on four-qubit systems.
The motivation for embarking in this investigation is

twofold. The first is to provide further clues for under-
standing the structure of pure state multipartite entangle-
ment measures as the ones arising from invariants for
spinors. These are homogeneous polynomials in the com-
plex amplitudes of the pure fermionic states, capable of
identifying certain types of entanglement in Fock space. It
has been observed [11] that when considering in the
broader fermionic context some of the multiqubit poly-
nomial invariants have a more transparent geometric and
algebraic structure than in the original multiqubit one.
Making use of the full Fock space these structures are easy
to identify and straightforward to do calculations with.
With our investigations we would like to shed some further
light on such issues by working out explicitly the
embedded four-qubit case. Our treatise can also be regarded
as an elaboration on some of the ideas presented in Ref. [7]
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in connection with four-qubit states regarded as fer-
mionic ones.
The second source of motivation is coming from the

BHQC [10]. In this context it was observed [18,19] that it is
useful to reinterpret some of the irreducible representation
spaces of groups like E7ðCÞ and SOð12;CÞ and many
others [20] (whose real forms are showing up in black hole
entropy formulas of certain supergravity theories) as ones
composed of a certain number of qubits. Since the
invariants associated to these representation spaces have
the physical meaning as the black hole entropy this qubit
picture lends itself naturally to an interpretation of black
hole entropy as a manifestation of some sort of entangle-
ment. In simple special cases this interpretation has turned
out to be a useful one for obtaining further insight into the
structure of black hole solutions in supergravity [10].
However, for the more complicated cases no conventional
entanglement based reinterpretation have been found.
In order to illustrate this problem arising in BHQC let us

consider the so-called R-R subsector of N ¼ 8 supergravity
[10]. In this case we have 32 charges describing the
winding configurations of certain extended objects like
membranes and strings on noncontractible cycles of extra
dimensions. These charges are transforming according to
the spinor representation of the group SOð6; 6Þ a real form
of the group SOð12;CÞ. Then the representation space is
H ¼ R32. Naively one would think that since 32 ¼ 25 this
representation space is amenable to a 5 real qubit (or rebit)
interpretation, i.e., H ¼ VA ⊗ VB ⊗ VC ⊗ VD ⊗ VE,
where VA;B;C;D;E are five copies of R2s. Of course this
interpretation is wrong since it cannot accommodate the
SOð6; 6Þ action. However, one can accommodate this
action via employing six real qubits1 to build up the spinor
representation space H in the form [18,19]

H ¼ VACF ⊕ VADE ⊕ VBCE ⊕ VBDF;

VACF ≡ VA ⊗ VC ⊗ VF etc: ð1Þ

However, the problem with this structure is that at first sight
it is not amenable to any conventional quantum information
theoretic interpretation as an entangled system. The reason
for this is simple: the presence of the direct sums. In the
language of representation theory this problem can be
rephrased as the decomposition of SOð6; 6Þ under the
subgroup SLð2ÞA×SLð2ÞB×SLð2ÞC×SLð2ÞD×SLð2ÞE×
SLð2ÞF, namely,

32 → ð2; 1; 2; 1; 1; 2Þ ⊕ ð2; 1; 1; 2; 2; 1Þ
⊕ ð1; 2; 2; 1; 2; 1Þ ⊕ ð1; 2; 1; 2; 1; 2Þ: ð2Þ

In this language the problem is that unlike the doublets
(qubits) in the conventional theory of quantum entangle-
ment we cannot make sense of the singlets. In Appendix C
of the review paper of Borsten et al. [20] many more
examples of that kind have been discussed. Some of them
are related to representation spaces of exceptional groups,
and having direct relevance to string theory and super-
gravity. According to Ref. [20] the unusual “tripartite
entanglement of six qubits” of Eq. (1) can be given the
conventional quantum information theoretic interpretation
by regarding it as a subspace of six entangled qutrits. The
weak point of this suggestion is that there is no physically
sound reason why we should restrict our attention to this
particular 32-dimensional subspace inside the 36 dimen-
sional space rather than to any other one. For this proposal
to make sense one should somehow specify the physical
protocols which are represented by those transformations of
this qutrit space that leave this 32-dimensional subspace
invariant. Similar criticism should be applied to the
remaining systems of Appendix C of Ref. [20]. In this
paper we show that at least in the special case of systems
amenable to a fermionic Fock space description structures
like the one of Eq. (1) can be made a natural interpretation
as embedded qubit systems which avoids the problem
posed above.
The plan of this paper is as follows. In Sec. II we

summarize the basic material on fermionic Fock space
and identify the generalized SLOCC group as C× ×
Spinð2N;CÞ. Here Spinð2N;CÞ is accommodating gener-
alized Bogoliubov transformations. In Sec. III we recon-
sider some of the ideas of Ref. [11] on entanglement in
fermionic Fock space. We show how ordinary SLOCC
transformations [12] are accommodated within the formal-
ism and how the SLOCC classification problem is recov-
ered within the framework of a more general mathematical
problem, namely the classification of spinors. Here we also
comment on the special role of pure spinors giving a natural
generalization of the notion of separable states. In Sec. IV
we begin our investigation of embedded n-qubit systems by
studying the single occupancy representation. We observe
that the largest subgroup of the fermionic SLOCC group
GLð2n;CÞ leaving invariant the single occupancy subspace
is the group ~G ¼ Sn ⋉ G where G ¼ GLð2;CÞ×n and Sn is
the symmetric group. We will make use of this in our
analysis of four-qubit states when searching for permuta-
tion invariant combinations of the usual SLOCC invariants
within a spinorial formalism. In Sec. V we embark on an
elementary discussion on different ways for embedding
qubits. We go through in detail the basic structures we
come across up to four qubits. Here we introduce inter-
twiners relating the double, single and mixed occupancy
representations occurring in these descriptions of qubits.
An interesting observation on the role of these intertwiners
as maps related to the mirror map of string theory relating
the IIA and IIB duality frames is presented. These

1Clearly one can permute the labels A; B; C;D; E; F for
convenience provided we leave the incidence structure of
Eq. (1) intact. This incidence structure is that of a terahedron.
For alternative labeling of these qubits see Refs. [18,19].
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investigations make it clear how one should make sense of
some of the direct sum structures (the occurrence of
singlets) in the BHQC. Section VI is devoted to a detailed
study of invariants and covariants paying special attention
to the spinorial case yielding embedded four-qubit states.
For the four-qubit case the structure of the basic spinorial
covariant is of block diagonal form of the blocks related to
the two-partite reduced density matrices via a conjugation
operation. This is the spinorial generalization [21] of the
well-known Wootters spin flip operation [22]. We point out
that the notion of Wootters self-conjugate spinor is just the
notion of a Majorana spinor. In closing this section we
recover the basic four-qubit ~G invariants in a spinorial
framework. In Sec. VII we conduct a study on the explicit
structure of spinð16;CÞ invariant polynomials, i.e., on the
structure of generalized SLOCC invariants for fermionic
systems with eight modes. We point out the special role the
largest exceptional group E8 is playing in this respect. We
introduce a fermionic state which is a representative of the
semisimple orbit, depending on eight complex parameters.
Then in terms of these parameters for this particular state
we calculate the values of eight polynomial invariants,
which form a basis of generators of the ring of Spinð16;CÞ
invariant polynomials. We show that the resulting poly-
nomials in eight variables can neatly be expressed in terms
of eight algebraically independent polynomials which are
invariant under the Weyl group of E8. Our conclusion and
comments are left for Sec. VIII.

II. FERMIONIC FOCK SPACE

In this section we summarize results concerning spinors
in a fermionic Fock space language [11,13–16]. Let V be an
N-dimensional complex vector space and V� its dual. We
regard V ≃ CN with feig; i ¼ 1; 2;…N the canonical basis
and feig is the dual basis. Elements of V will be called
one particle states. We tacitly assume that V is a finite
dimensional Hilbert space also equipped with a Hermitian
inner product, but at first we will not make use of this extra
structure until Sec. VI F. We also introduce the 2N dimen-
sional vector space

V ≡ V ⊕ V� ð3Þ

with basis feIg≡ fei; ejg; I ¼ 1;…N;N þ 1;…2N. An
element of V is of the form x ¼ vþ α where v is a vector
and α is a linear form with v ¼ viei and α ¼ αjej.
According to the method of second quantization to any
element x≡ xIeI ∈ V one can associate a linear operator x̂
acting on a 2N dimensional complex vector space F called
the fermionic Fock space F as follows. Take the exterior
(Grassmann) algebra ∧• V� where

∧• V� ¼ C ⊕ V� ⊕∧2 V� ⊕ � � � ⊕∧N V�: ð4Þ
Then the Fock space is defined as

F≡ ∧• V� ⊗ ð∧N VÞ−1=2: ð5Þ

The origin of the last factor will be explained later [see
Eq. (31)]. Temporarily the reader should regard F merely
as the Grassmann algebra (4) based on V�. Now the
operator x̂ ¼ xIêI ¼ viêi þ αjêj acting on F is obtained
by the assignment

ei ↦ êi ≡ ei ∧; ei ↦ êi ≡ ιei ð6Þ

i.e., the basis vectors are mapped to the operators of exterior
and interior multiplication. Defining fx̂; ŷg≡ x̂ ŷþŷ x̂ we
have

fêi; êjg ¼ δij1̂; fêi; êjg ¼ fêi; êjg ¼ 0 ð7Þ

which are the usual fermionic anticommutation relations.
The one-dimensional subspace ∧0 V� ¼ C corresponds

to the ray of the vacuum state denoted by j0i. The operators
êi and êj are the creation and annihilation operators. For
later convenience we redefine these as

êi ≡ p̂i; êj ≡ n̂j ð8Þ

with

fp̂i; n̂jg ¼ δij1̂; fp̂i; p̂jg ¼ fn̂i; n̂jg ¼ 0: ð9Þ

The algebra above will be called the canonical anticom-
mutation relations (CAR) algebra (the algebra of canonical
anticommutation relations). This algebra can compactly be
expressed as

fêI; êJg ¼ gIJ1̂; gIJ ¼
�
0 I

I 0

�
; ð10Þ

where gIJ is a 2N × 2N matrix with N × N blocks and I is
the N × N identity matrix.
Clearly

n̂jj0i ¼ 0 ð11Þ
encapsulates the defining property of the vacuum, namely
that it contains no “particles” or “excitations” at all. On the
other hand the state

p̂ij0i ð12Þ

represents a single “particle” which is in the ith “mode.”
Similarly states of the form

p̂ip̂jj0i; p̂ip̂jp̂kj0i; …;

p̂1p̂2 � � � p̂N j0i; i < j < k etc: ð13Þ

are the two, three …N particle states. Generally the ðNkÞ-
dimensional k-particle subspace is spanned by the basis
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vectors p̂i1p̂i2 � � � p̂ik j0i with 1 ≤ i1 < i2 � � � < ik ≤ N. It
then follows that an arbitrary state of F can be written in
the form

jψi≡ Ψ̂j0i; Ψ̂≡XN
k¼0

XN
i1i2���ik¼1

1

k!
ψ ðkÞ
i1i2���ik p̂

i1 p̂i2 � � � p̂ik :

ð14Þ

Here the kth order totally antisymmetric tensors ψ ðkÞ
i1i2���ik

encapsulate the complex amplitudes of the k-particle sub-
space. An element jψi ∈ F is called a spinor.
One can alternatively define the linear combinations

Γ̂i ¼ p̂i þ n̂i; Γ̂iþN ¼ p̂i − n̂i; i ¼ 1; 2;…; N

ð15Þ
satisfying

fΓ̂I; Γ̂Jg ¼ 2ηIJ1̂; ηIJ ¼
�
δij 0

0 −δij

�
;

I; J ¼ 1;…; 2N; i; j ¼ 1;…; N: ð16Þ

The matrix representatives of the Γ̂I operators correspond
to the usual gamma matrices in physics. Let us now define
the operator

Γ̂≡ ½n̂1; p̂1�½n̂2; p̂2�½n̂3; p̂3� � � � ½n̂N; p̂N �
¼ ð−1ÞNðN−1Þ=2Γ̂1Γ̂2Γ̂3 � � � Γ̂2N: ð17Þ

It is easy to check that Γ̂2 ¼ 1̂ hence the eigenvalues of this
operator are �1. Spinors jψ�i which are eigenvectors of Γ̂
corresponding to the eigenvalues �1 are called Weyl
spinors of positive and negative helicity or chirality. One
can check that in Eq. (14) spinors of positive chirality have
terms with an even, and negative chirality have terms with
an odd number of creation operators. Hence we have the
decomposition

F ¼ Fþ ⊕ F−: ð18Þ
Let us now take the operators x̂ ¼ xIêI ¼ αip̂i þ vjn̂j

and ŷ ¼ yJêJ ¼ βip̂i þ wjn̂j answering the corresponding
vectors x and y having the same expansions with hats
removed. Then

fx̂; ŷg ¼ gðx; yÞ1̂ ¼ gIJxIyJ1̂ ¼ ðαiwi þ vjβjÞ1̂: ð19Þ

Here g∶V × V → C is a nondegenerate symmetric bilinear
form with matrix gIJ known from Eq. (10). The group of
transformations which leave this form invariant is the
orthogonal group OðV; gÞ≡Oð2N;CÞ. We take its con-
nected component to the identity which is SOð2N;CÞ. We
have

gðSðxÞ;SðyÞÞ ¼ gðx; yÞ; S ∈ SOð2N;CÞ: ð20Þ

Using matrices this equation yields

StgS ¼ g: ð21Þ

Writing S ¼ es where s ∈ soð2NÞ and using Eq. (20) by
taking the infinitesimal version of Eq. (21) one can see that
s can be parametrized as

s ¼
�
A B

C −At

�
; Ct ¼ −C; Bt ¼ −B; ð22Þ

where A;B; C are N × N matrices with Bt refers to the
transposed matrix of B. One can also regard an S as a
transformation acting on the operators x̂. Then com-
bining Eqs. (19) and (20) one can see that elements of
SOð2N;CÞ also leave the CAR algebra invariant. These
transformations will be called generalized Bogoliubov
transformations.
We would also like to have an action of these generalized

Bogoliubov transformations on our Fock space F . The
usual way to define this action is via introducing operators
Ŝ that are mapped to the transformations S via the relation

Ŝ x̂ Ŝ−1 ¼ Sðx̂Þ; x ∈ V; S ∈ SOð2N;CÞ: ð23Þ

Here Sðx̂Þ ¼ xISðêIÞ ¼ xIêJSJ
I where the matrix SJ

I is
the exponential of the matrix given by Eq. (22). It is well
known that the set of such transformations Ŝ gives the
double cover of SOð2N;CÞ which is the group
Spinð2N;CÞ. Let us write the infinitesimal version of
Eq. (23) in the form

½ŝ; x̂� ¼ sðx̂Þ; ŝ ∈ spinð2NÞ; s ∈ spinð2NÞ≃ soð2NÞ:
ð24Þ

Now a calculation shows that

ŝ ¼ 1

2
Ai

j½p̂i; n̂j� þ
1

2
Bijp̂ip̂j þ 1

2
Cijn̂in̂j: ð25Þ

Clearly for the action Ŝ ¼ eŝ the subspaces F� are
invariant ones. In the following transformations of the form

jψ�i ↦ λeŝjψ�i; ðλ; eŝÞ ∈ C× × Spinð2N;CÞ;
jψ�i ∈ F� ð26Þ

will be called generalized SLOCC transformations. The
rationale for also including the group C× of nonzero
complex numbers will be given in Eq. (39). Notice that
the set of generalized SLOCC transformations is respecting
the chirality of Weyl spinors.
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III. ENTANGLEMENT

In this section we summarize results on entanglement in
fermionic Fock space [11].
The main advantage of the subspaces F� is that we can

embed into them the state spaces of a large variety of
multipartite entangled systems taken together with the
action of their respective SLOCC groups. In order to see
this one just has to realize that the particle number
conserving subgroup of the generalized SLOCC group is
obtained by setting B ¼ C ¼ 0 in Eq. (25). Now we have

ŝ ¼ 1

2
Ai

j½p̂i; n̂j� ¼ Ai
jp̂in̂j −

1

2
TrðAÞ1̂: ð27Þ

The exponential of this is

Ŝ ¼ eŝ ¼ e−TrA=2eAi
jp̂in̂j : ð28Þ

Let us now consider the action of Ŝ on a k-particle subspace

Ŝjψ ðkÞi¼ 1

k!
ψ ðkÞ

i1i2…ikðŜp̂i1 Ŝ−1ÞðŜp̂i2 Ŝ−1Þ���ðŜp̂ik Ŝ−1ÞŜj0i:
ð29Þ

According to Eq. (23) we have

Ŝp̂iŜ−1 ¼ p̂jSj
i; S ¼ eA ∈ GLðN;CÞ ð30Þ

hence

Ŝjψ ðkÞi ¼ 1

k!
ψ 0ðkÞ
j1…jk

p̂j1 � � � p̂jk j0i;

ψ 0ðkÞ
j1���jk ¼ ðDetSÞ−1=2Sj1

i1 � � �Sjk
ikψ ðkÞ

i1���ik : ð31Þ

Here we have used the identity eTrA ¼ DetS where S ¼ eA.
Equation (31) shows that apart from the extra term

ðDetSÞ−1=2 the totally antisymmetric tensor ψ ðkÞ
i1i2���ik incor-

porating the ðNkÞ complex amplitudes transforms via N
identical copies of the usual fermionic SLOCC group i.e.,
GLðN;CÞ well known from the theory of fermionic
entanglement. Notice also that the presence of the extra
term clearly shows that the fermionic Fock space should be
the one of Eq. (5) we started our considerations with.
Let us fix a spinor jψi ∈ F and define its annihilator

subspace Mψ of V as the set of vectors x ∈ V such that
their corresponding operators x̂ annihilate jψi:

Mψ ≡ fx ∈ Vjx̂jψi ¼ 0g: ð32Þ

From Eq. (19) it follows that if x; y ∈ Mψ then gðx; yÞ ¼ 0.
HenceMψ is a totally isotropic subspace of V. Clearly due
to the structure of our bilinear form g the maximal
dimension of a totally isotropic subspace is N. A spinor
jψi such thatMψ is amaximal totally isotropic subspace of

V is called a pure spinor. (Cartan calls them simple spinors,
Chevalley calls them pure spinors. Here we follow the
conventions based on the English literature and will call
them pure spinors.)
First of all notice that all of the spinors showing up in the

sequence of Eqs. (11)–(13) are pure. Indeed, take for
instance jψi ¼ p̂kþ1p̂kþ2 � � � p̂N j0i where k ¼ 0; 1;…N.
Then

Mψ ¼ spanfn1; n2;…nk; pkþ1; pkþ2;…pNg: ð33Þ

Since any pair of operators corresponding to vectors taken
from this set is pairwise anticommuting, according to
Eq. (19) this is a totally isotropic subspace, with maximal
dimension N. From this it follows that all the pure spinors
of the form

p̂i1 p̂i2 � � � p̂ik j0i ↔ ei1 ∧ ei2 ∧ � � � ∧ eik ð34Þ

are Slater determinants. Since in the usual theory of
fermionic entanglement (with fixed particle number) the
states corresponding to the rays of Slater determinants are
called separable we conclude that in the realm of
generalized SLOCC transformations the separable states
should be identified with the pure spinors. It is important
to note that pure spinors are Weyl and there is a one-to-
one correspondence between the rays of pure spinors and
the set of maximally totally isotropic subspaces [15]. An
arbitrary pure spinor can always be represented in the
form

jψpurei ¼ λeB̂p̂i1 p̂i2 � � � p̂ik j0i; B̂ ¼ 1

2
Bijp̂ip̂j;

Bij ¼ −Bji ð35Þ

for some k ¼ 0; 1;…N and λ ∈ C×. We will refer to the
content of this equation as the fact that a pure spinor is
the so-called B-transform of a Slater determinant. Spinors
that are not pure will be called entangled.
Classification of entanglement types in fermionic Fock

space amounts to finding the generalized SLOCC classes,
i.e., finding the orbit structure under the group action of
Eq. (26). Since the nontrivial subgroup of this group is
Spinð2N;CÞ and this group respects the chirality of the
spinors one can obtain generalized SLOCC orbits for
Weyl spinors of either type i.e., Fþ or F−. In the
mathematics literature finding the generalized SLOCC
classes via determining a representative state from each
orbit and its stabilizer is called the classification problem
of spinors. It is known that for N ¼ 1; 2; 3 every spinor is
pure [16,17]. It means that the action of the group
Spinð2N;CÞ on the space of Weyl spinors of say positive
chirality is transitive. From the physical point of view it
means that there are no entangled states in the fermionic
Fock space for 1, 2, or 3 single particle states. The
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classification problem of spinors was solved by Igusa
[17] for N ¼ 4; 5; 6, by Popov [23] for N ¼ 7, and by
Antonyan and Elashvili [24] for N ¼ 8. These results
give the full orbit structure of entangled states. For N > 8
coarse classification schemes have been proposed based
on the notion of the nullity of a spinor [16]. The nullity is
just the dimension of the subspace of V characterized by
vectors giving rise to operators annihilating an entangled
state jψi.

IV. EMBEDDED QUBITS

We have seen that the generalized SLOCC group
contains naturally the ordinary fermionic SLOCC group.
These groups are acting on state spaces which are repre-
senting quantum systems with indistinguishable constitu-
ents. One can however, relax this restriction. Our formalism
based on fermionic Fock spaces is also capable of incor-
porating systems with distinguishable constituents. In this
paper we consider the possibility of incorporating n-qubit
systems with particular emphasis put on the four-
qubit case.
Let N ¼ 2n, hence our Hilbert space of one-particle

states is now even dimensional. In this case it is convenient
to introduce a new labeling for the single particle basis
states:

fe1; e2;…en; enþ1; enþ2;…e2ng
¼ fe1; e2;…en; e1; e2;…eng: ð36Þ

Let us now consider F ðnÞ, the ð2nn Þ dimensional n-particle
subspace of F . An n-fermion state with 2n one-particles
states can be written in the form

jZi ¼ 1

n!
Zi1i2���in p̂

i1p̂i2 � � � p̂in j0i: ð37Þ

Under the SLOCC subgroup of Eq. (28) the amplitudes of
this state transform as

Zi1���in ↦ ðDetSÞ−1=2Sj1
i1 � � �Sjn

inZi1���in
≡ Sj1

i1 � � � Sjn inZi1���in ; ð38Þ

where

Sji ≡ ðDetSÞ− 1
2nSj

i ∈ SLð2n;CÞ: ð39Þ

Hence in this special case the (28) subgroup of trans-
formations coming from the group Ŝ ∈ Spinð4n;CÞ with
Bij ¼ Cij ¼ 0 will not produce the full SLOCC group
GLð2n;CÞ only an SLð2n;CÞ subgroup. Luckily, in
Eq. (26) we defined the generalized SLOCC group as
C× × Spinð4n;CÞ. Thanks to this extra C× even in this
special case our generalized SLOCC group will contain the
ordinary SLOCC one, namely GLð2n;CÞ. Notice however,

that for k-fermion states with k ≠ n this subtlety for
obtaining the full SLOCC group is not needed.2

From the set of basis vectors of F ðnÞ we choose a special
subset containing merely 2n elements as follows:

p̂1p̂2 � � � p̂nj0i; p̂1p̂2 � � � p̂nj0i; …;

p̂1p̂2 � � � p̂nj0i; p̂1p̂2 � � � p̂nj0i: ð40Þ

These basis vectors will be spanning the state space of
embedded n-qubit states. Indeed, let

jψi ¼
X

μ1;…;μn¼0;1

ψμ1���μn jμ1…μni ð41Þ

be an n-qubit state, i.e., an element of C2n . Let us now
define a map

f∶ C2n →∧n C2n ≃ F ðnÞ ð42Þ

as follows:

jψi ↦ jZψi ¼ ðψ00���0p̂1p̂2 � � � p̂n þ ψ00���1p̂1p̂2 � � � p̂n

þ � � � þ ψ11���1p̂1p̂2 � � � p̂nÞj0i: ð43Þ

In this way we have embedded an n-qubit state to F ðnÞ.
Now we consider the fermionic SLOCC transformations

of Eqs. (28) and (31). These are transformations, charac-
terized by a 2n × 2n matrix S ¼ eA, which leave the n-
particle subspace of the Fock space invariant. Our aim is to
restrict S in such a way that the resulting matrix also leaves
the n-qubit subspace, spanned by the basis vectors of
Eq. (40), invariant and at the same time this new matrix also
gives rise to the usual SLð2;CÞ×n part of the SLOCC action
on jZψi.
Looking at Eq. (38) it is easy to see that such trans-

formations can be organized to a matrix of the form

S ¼
�
a b

c d

�
∈ SLð2n;CÞ; ð44Þ

where a ¼ diagða1;…anÞ, b ¼ diagðb1;…bnÞ, c ¼
diagðc1;…cnÞ, diagðd1;…dnÞ, i.e., the n × n blocks of S
are diagonal matrices. One can also place these complex
numbers into an n element set of 2 × 2 matrices

2This factor of C× is also needed to be in accord with the
classification of spinors for N ¼ 6, i.e., n ¼ 3. As it is well
known from the classification theory of prehomogeneous vector
spaces in this case we have a dense orbit of the groupGLð6;CÞ≃
C× × SLð6;CÞ on the 3-fermion state space ∧3 C6. This orbit is
just the fermionic generalization of the GHZ orbit known for
three-qubits.
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SðlÞ ≡
�
al bl
cl dl

�
∈ SLð2;CÞ; l ¼ 1; 2;…n: ð45Þ

Taken together with the extra factor C× known from
Eq. (26) the transformation jZψ i ↦ λŜjZψi gives rise to
the one

ψμ1…μn ↦ Að1Þ
μ1

ν1 � � �AðnÞ
μn

νnψν1…νn ;

AðlÞ ∈ GLð2;CÞ; l ¼ 1; 2…n ð46Þ

which is just the usual SLOCC action for n-qubits.
In the case of SLOCC classification one generally

obtains different families of entangled states. The families
can contain inequivalent orbits under the SLOCC group. It
can also happen that under permutations of the qubits one
particular orbit in a family is mapped to another orbit in
another family. Then in the case of qubits it is rewarding to
explore the orbits of the group ~G ¼ Sn ⋉ G where G ¼
GLð2;CÞ×n and Sn is the symmetric group. One can then
ask what is the relationship between the largest subgroup
G0 of the fermionic SLOCC groupGLð2n;CÞ which leaves
invariant the n-qubit subspace spanned by the vectors of
Eq. (40), and ~G. Surprisingly according to Lemma III.8 of
Ref. [25] the answer to this question is G0 ¼ ~G. For this to
make sense one should embed Sn into GLð2n;CÞ such that
for an element σ ∈ Sn we have

ð1; 2;…; n; 1; 2;…; nÞ
↦ ðσð1Þ; σð2Þ;…; σðnÞ; σð1Þ; σð2Þ;…; σðnÞÞ; ð47Þ

meaning that the basis vectors of Eq. (36) should be
transformed accordingly. The group ~G will be used in
Sec. VI G when studying four-qubit invariants.
For illustrative purposes it is useful to invoke the

following physical interpretation [7]. Our Hilbert space
of one-particle states is H ¼ C2n ≃ Cn ⊗ C2 ≡Hsite ⊗
Hspin. In this picture the fermions can be localized to n
sites (boxes), and each site (box) can be filled with a spin
which is either up or down. This way of representing the 2n

basis states of Eq. (40) will be called single occupancy
representation. The remaining ð2nn Þ − 2n basis states contain
double and mixed occupancy states as well. In this case
some of the boxes can also be empty or filled with two
spins, one is up the other is down. The single and double
occupancy representations of qubits are illustrated in
Figs. 1 and 2.

V. WAYS OF EMBEDDING QUBITS

A. Embedding one qubit

Apart from the “canonical” way discussed in the
previous section, there exist actually many more ways
for obtaining embedded n-qubit systems. Since these
different types of embedding will be of importance for
us, here we start to clarify the technique of embedding. We
start with the elementary case of a single qubit.
In the case of a single qubit we have n ¼ 1 and V ¼ C2.

We have states from the even chirality sector such as

jψþi ¼ ðη1̂þ ξp̂1p̂1Þj0i ∈ Fþ; η; ξ ∈ C ð48Þ

and for the odd chirality sector such as

jψ−i ¼ ðZ1p̂1 þ Z1p̂
1Þj0i ∈ F−; Z1; Z1 ∈ C: ð49Þ

The nontrivial part of the generalized SLOCC group
comprises the group Spinð4;CÞ. According to Eq. (25)
an element of this group can be written in the form Ŝ ¼ eŝ,
where

ŝ ¼ A1
1p̂1n̂1 þ A1

1p̂1n̂1 þ A1
1p̂1n̂1 þ A1

1p̂1n̂1

þ B11p̂
1p̂1 þ C11n̂1n̂1 −

1

2
ðA1

1 þ A1
1Þ1̂: ð50Þ

Under jψi ↦ ŝjψi where jψi ¼ jψþi þ jψ−i we have
ðη; ξÞ ↦ ðη0; ξ0Þ and ðZ1; Z1Þ ↦ ðZ0

1; Z
0
1
Þ where

�
η0

ξ0

�
¼
 
− 1

2
ðA1

1 þ A1
1Þ −C11

B11
1
2
ðA1

1 þ A1
1Þ

!�
η

ξ

�
; ð51Þ

FIG. 1. Single occupancy embedding of the n-qubit Hilbert
space (2n basis vectors) inside Fþ (for n ¼ 2k boxes and N ¼ 2n
single particle states) or F− (for n ¼ 2kþ 1 boxes and N ¼ 2n
single particle states).

FIG. 2. Double occupancy embedding of the n-qubit Hilbert
space (2n basis vectors) inside Fþ (n boxes and N ¼ 2n single
particle states).
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�Z0
1

Z0
1

�
¼
 

1
2
ðA1

1 − A1
1Þ A1

1

A1̄
1 − 1

2
ðA1

1 − A1
1Þ

!�
Z1

Z1

�
:

ð52Þ

It is obvious that the state jψ−i is an embedded qubit. Its
embedding is described by the usual process based on
Eq. (43). Looking at (52) we see that in this case the one
parameter subgroups of SLð2;CÞ are
�
α 0

0 1
α

�
;

�
1 0

β 0

�
;

�
1 γ

0 1

�
;

logα≡ 1

2
ðA1

1 − A1
1Þ; β≡ A1

1; γ ≡ A1
1: ð53Þ

On the other hand due to its transformation properties
under SLð2;CÞ the state jψþi is also a qubit. However, it is
an unusual one. Its state space is a subspace of F where the
particle number is not conserved. Indeed, according to
Eq. (25) the SLOCC transformations also contain the
transformations eB̂, the so-called B-transforms that are
creating two particles from the vacuum. Similarly, we have
eĈ, the C-transforms that are annihilating two particles
from a two particle state. The corresponding one parameter
subgroups are

�
a 0

0 1
a

�
;

�
1 0

b 0

�
;

�
1 c

0 1

�
;

loga≡−
1

2
ðA1

1þA1
1Þ; b≡B11; c≡−C11: ð54Þ

The four-dimensional space F is a direct sum: F ¼
Fþ ⊕ F−. Let us call the restriction of ŝ of Eq. (50) with

A1
1 ¼ −A1

1 and B11 ¼ C11 ¼ 0 the operator ŝ−:

ŝ− ¼ logαðp̂1n̂1 − p̂1n̂1Þ þ βp̂1n1 þ γp̂1n̂1: ð55Þ

Similarly the restriction with A1
1 ¼ A1

1 and A1
1 ¼ A1

1 ¼
0 will be called ŝþ:

ŝþ ¼ log aðn̂1p̂1 − p̂1n̂1Þ þ bp̂1p̂1 − cn̂1n̂1: ð56Þ

Then ŝ ¼ ŝþ þ ŝ−. This corresponds to the well-known fact
that spinð4Þ≡ slð2Þ ⊕ slð2Þ. Notice that due to
ŝ�jψ∓i ¼ 0 we have ŝjψi ¼ ŝþjψþi þ ŝ−jψ−i.
Let us relate the two different realizations of qubits onF .

Recall the operators of Eq. (15). Clearly

Γ̂1j0i ¼ p̂1j0i; Γ̂1p̂1p̂1j0i ¼ p̂1j0i: ð57Þ

Since Γ̂2
1 ¼ 1̂ one can move between the basis vectors of the

realizations of Eqs. (48) and (49) back and forth. Moreover,
if ðα; β; γÞ ↦ ða; b; cÞ then

Γ̂1ŝ−Γ̂1 ¼ ŝþ: ð58Þ

B. Embedding two qubits

Though it was useful for setting the stage, the previous
case was physically uninteresting. This case was lacking
the phenomenon of entanglement our main concern. Now
for the problem of embedding entangled qubits in different
ways we consider our first nontrivial example, the case of
two qubits. We have n ¼ 2 and N ¼ 4 hence the gener-
alized SLOCC group is C× × Spinð8;CÞ. In this case we
have the range of indices i; j ¼ 1; 2; 1; 2 and the para-
metrizations

jψþi ¼
�
η1̂þ 1

2!
Zijp̂ip̂j þ ξp̂1p̂1p̂2p̂2

�
j0i;

Zij ¼ −Zji; ð59Þ

jψ−i ¼
�
Xip̂i þ 1

3!
ϵijklYip̂jp̂kp̂l

�
j0i: ð60Þ

Our aim is to identify two-qubit systems inside the eight-
dimensional Fock spacesF�. On each spaceF� four copies
of SLð2;CÞ act. Their 3 × 4 ¼ 12 complex parameters can
be accommodated in a generator of the form Eq. (25) with
parameters placed inside the matrices A;B;C as

Ai
j ¼

0
BBB@

log α1 − log a1 0 γ1 0

0 log α2 − log a2 0 γ2

β1 0 − logα1 − log a1 0

0 β2 0 − log α2 − loga2

1
CCCA; ð61Þ

Bij ¼

0
BBB@

0 0 b1 0

0 0 0 b2
−b1 0 0 0

0 −b2 0 0

1
CCCA; Cij ¼

0
BBB@

0 0 −c1 0

0 0 0 −c2
c1 0 0 0

0 c2 0 0

1
CCCA: ð62Þ
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Clearly inside Fþ we have a subsystem arising from the
mapping of Eq. (43). This is the subsystem of single
occupancy states. States of this subsystem are of the form

jψ single
þ i≡ ðZ12p̂1p̂2 þ Z12p̂

1p̂2 þ Z12p̂
1p̂2 þ Z12p̂

1p̂2Þj0i
∈ Fþ: ð63Þ

On this state two copies of SLð2;CÞs act nontrivially. Call
them SLð2;CÞA and SLð2;CÞC. The generators of these
groups are of the same form as the right-hand side of
Eq. (55), where the range of indices is either 1; 1 or 2; 2.
The parameters are ðα1; β1; γ1Þ and ðα2; β2; γ2Þ respectively.
We will call the four-dimensional subspace that the state of
Eq. (63) belongs to as VAC. It is easy to check that the
remaining two copies of SLð2;CÞs, to be called SLð2;CÞB
and SLð2;CÞD having the same form as the right-hand side
of Eq. (56) and characterized by the parameters ða1; b1; c1Þ
and ða2; b2; c2Þ, act on VAC trivially. This means that the
corresponding generators with the (56) form annihilate
jψ single

þ i. The single occupancy embedding of two qubits is
illustrated in Fig. 3.
Due to the product nature of the action of SLð2;CÞA ×

SLð2;CÞC one can regard the space VAC as one having a
tensor product structure corresponding to two qubits, i.e.,
VAC ¼ VA ⊗ VC. Similar reasoning shows that the double
occupancy subspace VBD with the representative

jψdoubleþ i ¼ ðη1̂þ Z11p̂
1p̂1 þ Z22p̂

2p̂2 þ ξp̂1p̂1p̂2p̂2Þj0i
ð64Þ

is annihilated by SLð2;CÞA × SLð2;CÞC, but having a
usual SLð2;CÞB × SLð2;CÞD action. Hence one can write
VBD ¼ VB ⊗ VD. The double occupancy embedding of
two qubits is illustrated in Fig. 4.
The result of these considerations is that one can write

Fþ ¼ ðVA ⊗ VCÞ ⊕ ðVB ⊗ VDÞ: ð65Þ

Of course this is just the well-known fact that the spinor
representation 8s of Spinð8;CÞ under the subgroup
SLð2ÞA × SLð2ÞB × SLð2ÞC × SLð2ÞD decomposes as

8s ¼ ð2; 1; 2; 1Þ ⊕ ð1; 2; 1; 2Þ: ð66Þ

It is important to realize at this point that the (65)
structure of Fþ is induced by our choice of the physically
relevant subset of SLOCC transformations. In particular the
tensor product structures VA ⊗ VC and VB ⊗ VD are
induced by the input coming from physics, namely our
identification of a subset of transformations playing a
special role. Under this process we distinguished the four
generators ŝA; ŝB; ŝC and ŝD as the ones representing a
special set of physical protocols to be performed on the
physical states represented by elements of our fermionic
Fock space Fþ. In order to shed some light on what we
mean by a “special set of physical protocols” let us write
out explicitly ŝA; ŝB; ŝC and ŝD:

ŝA ¼ log α1ðp̂1n̂1 − p̂1n̂1Þ þ β1p̂1n1 þ γ1p̂1n̂1; ð67Þ

ŝB ¼ log a1ðn̂1p̂1 − p̂1n̂1Þ þ b1p̂1p̂1 − c1n̂1n̂1; ð68Þ

ŝC ¼ log α2ðp̂2n̂2 − p̂2n̂2Þ þ β2p̂2n2 þ γ2p̂2n̂2; ð69Þ

ŝD ¼ loga2ðn̂2p̂2 − p̂2n̂2Þ þ b2p̂2p̂2 − c2n̂2n̂2: ð70Þ

From these expressions it is clear that transformations ŝA;B
act on the modes f1; 1g, and ŝC;D act on the ones f2; 2g of
the Hilbert space of single-particle states. In the box picture
these operations act on the states of the first and second box
respectively. Moreover, the difference between ŝA;C and
ŝB;D is the one of single or double occupancy of the
corresponding box.When we think of the boxes as sites of a
lattice with two state systems (e.g., 1=2 spins) attached to
them, the physical protocols are just the ones of addressing
only one of the sites and at the same time also deciding on
the (single or double occupancy) type of manipulations to
be performed on their spins. Clearly these types of
manipulations will provide different types of access to
the resources available in this simple lattice system char-
acterized by the spinor jψþi.
Notice also that apart from the tensor product structures

Eq. (65) is also featuring a direct sum. The two parts of this
direct sum correspond to the physical sectors of single or
double occupancy. These sectors are reminiscent of some

FIG. 3. Single occupancy embedding of the two-qubit Hilbert
space inside Fþ.

FIG. 4. Double occupancy embedding of the two-qubit Hilbert
space inside Fþ.
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superselection sectors used in quantum theory. Namely, if
for some physical reason we have no access to physical
manipulations represented by generalized SLOCC trans-
formations intertwining between these sectors, then we say
that a superselection rule forbids us to go from single to
double occupancy or vice versa.
A comment here is in order. It is important to realize that

had we immediately started with four qubits and the
corresponding spaces VA, VB, VC and VD, physically we
would have had no a priori reason for using amathematical
construct such as VAC ⊕ VBD for quantum information
processing. The reason is that in this case this construct is
not representing any physically sound entangled system.
Now thanks to our constructions based on fermionic

Fock space the status of certain3 direct sums combined with
tensor products has changed. Indeed, for fermionic systems
we have a sound generalization of the notion of SLOCC
transformations hence in this special case it is easy to make
physical sense of their embedded subsystems.
Closing this section let us also comment on a dual

construction based on the odd chirality sector F−. Let us
write Eq. (60) in the form

jψ−i ¼ jψ sd
− i þ jψds

− i; ð71Þ

where

jψ sd
− i ¼ ðX1p̂1 þ X1p̂

1 þ Y1p̂1p̂22 − Y1p̂1p̂22Þj0i; ð72Þ

jψds
− i ¼ ðX2p̂2 þ X2p̂

2 þ Y2p̂11p̂2 − Y2p̂11p̂2Þj0i: ð73Þ

Here we have employed the shorthand notation p̂11 ≡ p̂1p̂1

etc., moreover we have used the combinations of letters sd
and ds to indicate the hybrid nature of these states, i.e., they
are combinations like “single-double” or “double-single.” It
means that jψ sd

− i and jψds
− i represent two-qubit systems

when one of the qubits is taken in single and the other in
double occupancy representation. The mixed occupancy
embedding of two qubits corresponding to jψ sd

− i is illus-
trated in Fig. 5.
Now we have a decomposition

F− ¼ ðVA ⊗ VDÞ ⊕ ðVB ⊗ VCÞ ð74Þ

which corresponds to the decomposition of the conjugate
spinor representation 8c of Spinð8;CÞ as

8c ¼ ð2; 1; 1; 2Þ ⊕ ð1; 2; 2; 1Þ: ð75Þ
Let us write

F ¼ Fþ ⊕ F− ¼ ðF 00 ⊕ F 11Þ ⊕ ðF 01 ⊕ F 10Þ
¼ ðVAC ⊕ VBDÞ ⊕ ðVAD ⊕ VBCÞ: ð76Þ

This way of decomposing F displays that qubits A and C
are in the single occupancy (0) and qubits B and D are in
the double occupancy (1) representation. Notice that
between the basis states of VAC and VBD (i.e., F 00 and
F 11) and the action of the corresponding SLOCC groups
SLð2;CÞA × SLð2;CÞC and SLð2;CÞB × SLð2;CÞD the
operator Γ̂1Γ̂2 intertwine. Using similar intertwining prop-
erties one can write

F 00 ¼ 1̂F 00; F 10 ¼ Γ̂1F 00;

F 01 ¼ Γ̂2F 00; F 11 ¼ Γ̂1Γ̂2F 00: ð77Þ

Hence the state spaces of the embedded two-qubit systems
are generated from the one of the canonical two-qubit
system of Eq. (63) via the action of suitable intertwining
operators.

C. Embedding three qubits

Many aspects of the three-qubit case have already been
addressed within a fermionic Fock space context [11].
However, related to the system of Eq. (1) mentioned in the
Introduction it is important to revisit this case from
the viewpoint of embedded systems. Here we have n¼3
and N ¼ 6 with the generalized SLOCC group C××
Spinð12;CÞ. Let us parametrize in this case the Weyl
spinors of positive and negative chirality as

jψ−i ¼
�
Uip̂i þ 1

3!
Zijkp̂ijk þ 1

5!
Wiεijklmnp̂ijklm

�
j0i;

ð78Þ
jψþi

¼
�
η1̂þ 1

2!
Yijp̂ij þ 1

2!4!
Xijεijklmnp̂klmn þ ξp̂123456

�
j0i;

ð79Þ
where p̂ijk ¼ p̂ip̂jp̂k etc.

FIG. 5. Mixed occupancy embedding of the two-qubit Hilbert
space inside F−.

3Of course we are not expecting that any direct sum structure
can be embedded into some fermionic Fock space. For example in
the conclusions we will see that though the 56-dimensional
fundamental representation space of the exceptional group E7ðCÞ
is arising as a special direct sum of seven three-qubit sectors
however, this structure cannot be embedded into a single
fermionic Fock space.
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Now we have ð1; 2; 3; 4; 5; 6Þ≡ ð1; 2; 3; 1; 2; 3Þ. As
usual in the box picture we have three boxes or sites with
two possible spin projections: up or down. Now on each
space F� six copies of SLð2;CÞ act. Their 3 × 6 ¼ 18
parameters are placed inside the 6 × 6 matrices A;B;C
similar to the pattern we already know from Eqs. (61)
and (62).
In the case of fermions with six single particle states the

canonical three-qubit system connected to single occu-
pancy is living inside F−. It is related to the general pattern
of embedding known from Eq. (43). Using the notation
familiar from the end of the previous subsection we denote
this subspace as F 000. Hence we have

jψ sss
− i≡ ðZ123p̂123 þ Z123p̂

123 þ � � � þ Z123p̂
123Þj0i

∈ F 000: ð80Þ

The notation “sss” or 000 refers to the three SLð2;CÞ
generators that act nontrivially on this state. They are all in
the single occupancy representation. This means that we
have to use three copies of generators of the form of
Eqs. (67), (69) and a third one with labels featuring 3 and 3.
The remaining three copies of SLð2;CÞs with generators
having the form of Eqs. (68), (70) and again a third one act
trivially on F 000. The result of these considerations is that
now we have the decomposition of F to the 32 and 320
representations corresponding to F� as follows:

F ¼ Fþ ⊕ F− ¼ ðF 001 ⊕ F 010 ⊕ F 100 ⊕ F 111Þ
⊕ ðF 000 ⊕ F 011 ⊕ F 101 ⊕ F 110Þ: ð81Þ

Clearly one can identify eight copies of three-qubit systems
living inside F . Unlike in the two-qubit case, now the
single and double occupancy subspaces, namely F 000 and
F 111 are living inside subspaces of different chirality. The
double occupancy state is of the form

jψdddþ i ¼ ðη1̂þ Y11p̂
11 þ � � � − X11p̂2233 − � � �

− ξp̂112233Þj0i ∈ F 111: ð82Þ

The subspaces like F 001 are in a mixed representation,
meaning that two of the qubits are in the single and one of
the qubits is in the double occupancy representation of the
SLð2;CÞ×6 subgroup.
As in the two-qubit case one can see that

F 000 ¼ 1̂F 000; F 100 ¼ Γ̂1F 000; …

F 110 ¼ Γ̂1Γ̂2F 000; F 111 ¼ Γ̂1Γ̂2Γ̂3F 000: ð83Þ

Hence the state spaces of the embedded three-qubit
systems are again generated from the one of the canonical

three-qubit subspaces via the action of suitable intertwining
operators.
Let us associate to the first box (site) qubits A, and B.

Qubit A is in single and qubit B in double occupancy.
Similarly to the second box we associate C and D, for the
third box E and F. Then the decomposition of Eq. (81) takes
the form

F ¼ ðVACF ⊕ VADE ⊕ VBCE ⊕ VBDFÞ
⊕ ðVACE ⊕ VADF ⊕ VBCF ⊕ VBDEÞ: ð84Þ

Notice the structure of either Fþ or F−. One can arrange
the four summands to the vertices of the tetrahedron. Then
the six edges will correspond to the six common qubits.
Alternatively one can consider an incidence geometry
consisting of four points labeled by triples like
ACF; ADE;BCE;BDF and the lines by A; B;C;D; E; F.
Then e.g., points ACF and ADE are connected by line A,
etc. This incidence structure coincides with the one of the
complement of a line of the Fano plane. We also note that
the decomposition of Eq. (76) is precisely the one of Eq. (1)
familiar from the Introduction mentioned in connection
with the BHQC. However, unlike in previous attempts now
to such constructs a quantum information theoretic mean-
ing was given.
It is instructive to calculate j ~ψþi ¼ Γ̂1Γ̂2Γ̂3jψ−i. This

gives the 32 complex amplitudes of the positive chirality
part parametrized by the 32 complex amplitudes of the
negative chirality one. The result is

~Xij ¼

0
BBBBBBBBBB@

0 U3 −U2 Z123 Z131 Z112

−U3 0 U1 Z223 Z231 Z212

U2 −U1 0 Z323 Z331 Z312

−Z123 −Z223 −Z323 0 W3 −W2

−Z131 −Z231 −Z331 −W3 0 W1

−Z112 −Z212 −Z312 W2 −W1 0

1
CCCCCCCCCCA
;

~ξ ¼ Z123; ð85Þ

~Yij ¼

0
BBBBBBBBBB@

0 −W3 W2 −Z123 −Z223 −Z323

W3 0 −W1 −Z131 −Z231 −Z331

−W2 W1 0 −Z112 −Z212 −Z312

Z123 Z131 Z112 0 −U3 U2

Z223 Z231 Z212 U3 0 −U1

Z323 Z331 Z312 −U2 U1 0

1
CCCCCCCCCCA
;

~η ¼ −Z123: ð86Þ

This dictionary provides an explicit form for j ~ψdddþ i ¼
Γ̂1Γ̂2Γ̂3jψ sss

− i hence for the intertwining map between F 000
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and F 111, i.e., the map between the single and double
occupancy representation of three-qubits. Note that the
intertwiner above has a special significance in string
theory. It is related to the so-called mirror map which
for toroidal compactifications is relating via T-duality the
IIA and IIB duality frames of the relevant string theories.
Restricting attention to the subset of the eight amplitudes
ðZ123; Z123;…; Z123Þ describing three-qubit states we
obtain a new labeling for three-qubits. Originally this
unusual representation of three-qubits equivalent to our
double occupancy representation was the first to appear
within the context of the BHQC [10].

D. Embedding four qubits

We have n ¼ 4 and N ¼ 8 and the generalized SLOCC
group is C× × Spinð16;CÞ. A Weyl spinor of positive
chirality is now of the form

jψþi ¼
�
η1̂þ 1

2!
Xijp̂ij þ 1

4!
Zijklp̂ijkl

þ 1

6!
εijklmnrsYijp̂klmnrs þ ξp̂12345678

�
j0i: ð87Þ

As usual the most natural way of embedding four qubits
into Fþ is via single occupancy

jψ ssssþ i ¼ ðZ1234p̂1234 þ Z1234p̂
1234 þ � � � þ Z1234p

1234

þ Z1234p̂
1234Þj0i ∈ F 0000: ð88Þ

There are eight different embedded four-qubit subspaces in
Fþ. These are

F μ1μ2μ3μ4 ≡ Γ̂μ1
1 Γ̂

μ2
2 Γ̂

μ3
3 Γ̂μ4

4 F 0000;

μ1 þ μ2 þ μ3 þ μ4 ≡ 0;

μ1; μ2; μ3; μ4 ∈ Z2: ð89Þ

Similarly, we have eight further embeddings into F− with
μ1 þ μ2 þ μ3 þ μ4 ¼ 1. Hence one can write

F ¼ ⨁
ðμ1μ2μ3μ4Þ∈ðZ2Þ4

F μ1μ2μ3μ4 : ð90Þ

VI. INVARIANTS AND COVARIANTS

A. The invariant bilinear form

We start by recapitulating some of the results of
Ref. [11]. Let us consider a collection of k elements
fx1; x2;…; xkg of the vector space V. These give rise to
a set fx̂1; x̂2;…; x̂kg of operators. We multiply these
operators and define a map, called the transposed map
as follows:

ðx̂1x̂2…x̂kÞT ¼ x̂k…x̂2x̂1: ð91Þ

Consider now the operator n̂1n̂2…n̂N. This operator anni-
hilates all the terms from the expansion of Eq. (14) except
the term from the one-dimensional subspace of F corre-
sponding to the ∧N V� part of the (4) Grassmann algebra. It
is just the subspace spanned by the basis vector

jtopi≡ p̂1p̂2…p̂N j0i: ð92Þ

For this vector we have

n̂1n̂2…n̂N jtopi ¼ ð−1ÞNðN−1Þ
2 n̂N…n̂2n̂1p̂1p̂2…p̂N j0i

¼ ð−1ÞNðN−1Þ
2 j0i: ð93Þ

Let us now consider two elements of the fermionic Fock
space

jψi ¼ Ψ̂j0i ∈ F ; jϕi ¼ Φ̂j0i ∈ F : ð94Þ

Our aim is to define a nondegenerate bilinear form

ð·; ·Þ∶ F × F → C ð95Þ

invariant under the nontrivial subgroup of the generalized
SLOCC group i.e., Spinð2N;CÞ. We define

ðψ ;ϕÞj0i≡ ð−1ÞNðN−1Þ
2 ðn̂1n̂2…n̂NÞΨ̂TΦ̂j0i: ð96Þ

By virtue of Eq. (93) the meaning of the bilinear form is
clear: it picks out the complex coefficient of the “top” part
of the state Ψ̂TΦ̂j0i. From the definition it is obvious that
for any operator Ô we have

ðψ ; ÔϕÞ ¼ ðÔTψ ;ϕÞ: ð97Þ

One can also check that

ðψ ;ϕÞ ¼ ð−1ÞNðN−1Þ
2 ðϕ;ψÞ: ð98Þ

Hence this bilinear form is symmetric for N ¼ 0; 1 ðmod 4Þ
and antisymmetric for N ¼ 2; 3 ðmod 4Þ.
Now a look at Eq. (25) shows that the generators of

Spinð2N;CÞ satisfy ŝT ¼ −ŝ. Combining this with Eq. (97)
shows that

ðψ ; ŝϕÞ þ ðŝψ ;ϕÞ ¼ 0 ð99Þ

which demonstrates the invariance of our bilinear form
under the generalized SLOCC transformations of the
form Ŝ ¼ eŝ.
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B. Invariants and covariants for N ¼ 4;6

For N ¼ 2n we have embedded n-qubit systems. Our
aim is to construct the basic covariants and invariants of
fermionic systems and relate these quantities to the corre-
sponding ones of qubits.
Let us construct covariants using our bilinear form. The

simplest choices are

KI ≡ ðψ ; êIψÞ; KI ¼ gIJKJ ¼ ðψ ; êIψÞ: ð100Þ

Using Eqs. (97), (23) and ŝT ¼ −ŝ we see that under the
generalized SLOCC group KI transforms as

ðψ ; êIψÞ ↦ ðŜψ ; êIŜψÞ ¼ ðψ ; Ŝ−1êIŜψÞ
¼ ðψ ; êJψÞðS−1ÞJI . ð101Þ

As a result of this and Eq. (21) one has

KI ↦ KJðS−1ÞJI; KI ↦ SI
JKJ: ð102Þ

In order to build invariants one can try to experiment
with further covariants. A natural choice is a covariant

KI
J ≡ ðψ ; êI êJψÞ: ð103Þ

Since it transforms as K ↦ SKS−1 one can form the
invariants

I2n ≡ TrðKnÞ: ð104Þ

In order to explore the structure of these invariants we write
K as

KI
J ¼

1

2
gILðψ ; ½êL; êJ�ψÞ þ

1

2
gILðψ ; fêL; êJgψÞ

¼ 1

2
gILðψ ; ½êL; êJ�ψÞ þ

1

2
δIJðψ ;ψÞ; ð105Þ

where we have used fêI; êJg ¼ gIJ1̂.
For N ¼ 0; 1 ðmod4Þ the bilinear form is symmetric. In

this case by virtue of the fact that the ½êI; êJ� are just the
generators of Spinð2N;CÞ and Eqs. (98) the first term gives
zero. Hence in this case

KI
J ¼

1

2
δIJðψ ;ψÞ: ð106Þ

Using (104) we get

I2r ¼ 21−rNðψ ;ψÞr: ð107Þ

Hence in this case apart from the quadratic invariant ðψ ;ψÞ
no new invariant of this kind is obtained. We note that for
the r ¼ 1, N ¼ 4 case a restriction of Eq. (59) to two
fermions with four modes gives for I2 four times a

quadratic form which corresponds to the usual Plücker
relations. Its square is just the determinant of the 4 × 4
antisymmetric matrix Zij. The magnitude of this quadratic
form up to constant factors is just the usual measure of
entanglement introduced in [26], which for embedded two
qubits boils down to the well-known concurrence.
On the other hand for N ¼ 2; 3 ðmod 4Þ the bilinear form

is antisymmetric hence the last term of (105) vanishes
giving the result

KI
J ¼

1

2
gILðψ ; ½êL; êJ�ψÞ: ð108Þ

Clearly since gIJ is symmetric and the commutator is
antisymmetric in this case I2 ¼ 0. So the first new non-
trivial nonzero invariant should be a quartic one, I4. Indeed,
a calculation in the special case N ¼ 6 shows [11,27] that
when restricted to the subspace of positive chirality this
invariant is just the quartic invariant introduced by Igusa
[17] for his classification of spinors up to N ¼ 6. This
invariant is also related to the so-called generalized Hitchin
functional [28].
Notice also that in the case N ¼ 4mþ 2 using the

matrices of Eqs. (10) and (22) one can form the new
matrix Λ≡ sg satisfying Λt ¼ −Λt. Then using Eq. (108)
one gets

1

2
TrðsKψÞ ¼ ðψ ; ŝψÞ; ŝ ¼ 1

2
ΛIJêIêJ ∈ spinð2NÞ;

s ∈ soð2NÞ; ð109Þ
where one can check that this expression for ŝ coincides
with the usual one of Eq. (25). Then we have a mapping
F� → soð2NÞ of the form jψi ↦ Kψ . Since in this case
the (96) bilinear form is antisymmetric, we can regard it as a
symplectic form on F�, hence we can think of the spaces
F� as phase spaces of a classical mechanical system with
the generalized SLOCC transformations defining a group
action on it. It can then be shown that in this case the
association jψi ↦ Kψ described by Eq. (109) is the so-
called moment map [11,28,29].

C. Invariants and covariants for N ¼ 8

Let us consider the case when N ≡ 0 ðmod 4Þ. Here an
important special case is theN ¼ 8 one which contains four
fermions with eight single particle states. This is the setting
where one can embed naturally four-qubit systems our
main concern here. The corresponding state is living inside
a Weyl spinor of the (87) form. As described in Eq. (90) this
case incorporates eight different classes of embedded four-
qubit states. The most natural embedding is the (88) one
based on single occupancy.
The basic covariant we should consider here is the one

KIJ
KL ≡ ðψ ; êI êJêKêLψÞ: ð110Þ
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Writing êI êJ ¼ 1
2
½êI; êJ� þ 1

2
fêI; êJg and noting that in the

N ≡ 0 ðmod 4Þ case ðψ ; ½êI; êJ�ψÞ ¼ 0 and ðψ ;ϕÞ ¼ ðϕ;ψÞ
we get

KIJ
KL ≡ gII

0
gJJ

0 ðψ ; êI0 êJ0 êKêLψÞ

¼ RIJ
KL þ 1

4
gIJgKLðψ ;ψÞ; ð111Þ

where

RIJ
KL ¼ 1

4
gII

0
gJJ

0 ðψ ; ½êI0 ; êJ0 �½êK; êL�ψÞ: ð112Þ

For fermionic systems described by Weyl spinors of the
form (87) the basic invariants under the generalized
SLOCC group Spinð16;CÞ are the ones

J 2p ¼ KI1J1
I2J2K

I2J2
I3J3…KIpJp

I1J1 : ð113Þ

However, due to Eq. (111) it is enough to consider the
invariants

I2p ¼ RI1J1
I2J2R

I2J2
I3J3…RIpJp

I1J1 : ð114Þ

D. Four fermions with eight modes

In the following we consider the positive chirality sector
of the N ¼ 8 case with jψi≡ jψþi [see Eq. (87)] with the
constraint

jψi ¼ 1

4!
Zijklp̂ijklj0i: ð115Þ

Now the quadratic SLOCC invariant is

ðψ ;ψÞ ¼ 1

4!4!
εijklmnrsZijklZmnrs: ð116Þ

Recall now that êI ¼ ðêi; êiþ8Þ ¼ ðn̂i; p̂iÞ to show that the
only nonzero independent components of RIJ

KL are
Rijþ8

kþ8l and Rij
kl. For example we have

Rij
kl ¼ ðψ ; p̂ijn̂klψÞ ¼ ðψ ; n̂klp̂ijψÞ ¼ Rkþ8lþ8

iþ8jþ8.

ð117Þ

Similarly we have

Rijþ8
kþ8l ¼

1

4
ðψ ; ½p̂i; n̂j�½p̂k; n̂l�ψÞ

¼ 1

4
ðψ ; ½p̂k; n̂l�½p̂i; n̂j�ψÞ ¼ Rklþ8

iþ8j: ð118Þ

For the explicit form of Rij
kl one gets

Rij
kl ¼

1

2!4!
εijabcdefZlkabZcdef: ð119Þ

On the other hand,

Rijþ8
kþ8l ¼ ðψ ; p̂in̂jp̂kn̂lψÞ þ

1

4
δijδ

k
l ðψ ;ψÞ

−
1

2
δkl ðψ ; p̂in̂jψÞ −

1

2
δijðψ ; p̂kn̂lψÞ: ð120Þ

Now

ðψ ; p̂in̂jψÞ ¼
1

2
ðψ ; ½p̂i; n̂j�ψÞ þ

1

2
ðψ ; fp̂i; n̂jgψÞ

¼ 0þ 1

2
δijðψ ;ψÞ; ð121Þ

hence

Rijþ8
kþ8l ¼ ðψ ; p̂in̂jp̂kn̂lψÞ −

1

4
δijδ

k
l ðψ ;ψÞ ð122Þ

yielding the result

Rijþ8
kþ8l ¼

�
1

2
δkjδ

i
l −

1

4
δijδ

k
l

�
ðψ ;ψÞ −Rik

jl: ð123Þ

Then according to Eq. (111) the net result is that all the
components of the covariant KIJ

KL can entirely be
expressed in terms of the invariant ðψ ;ψÞ and the quantity
Rij

kl:

Kij
kl ¼ Rij

kl; Kijþ8
kþ8l ¼

1

2
ðψ ;ψÞδilδkj −Rik

jl.

ð124Þ

Rij
kl with the (119) explicit form is a covariant with respect

to the ordinary SLOCC subgroup SLð8;CÞ of Spinð16;CÞ.
It is just the covariant introduced by Katanova [30]. Hence
for the construction of invariants for embedded four
fermionic systems with eight single particle states it is
enough to consider the invariants formed by the matrix
Rij

kl of Eq. (119). These invariants are of the form

I2p ¼ Ri1j1
i2j2R

i2j2
i3j3…Ripjp

i1j1 : ð125Þ

It is known [7,30] that

fI2; I6; I8; I10; I12; I14; I18g ð126Þ

gives an algebraically independent set of generators.

E. Embedded four-qubits, covariants
and density matrices

In this section via restricting the spinor of Eq. (115) we
start deriving the usual set of four-qubit invariants in a
spinorial language. Our starting point is the embedded four-
qubit state in the single occupancy representation
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jψi ¼ ðψ0000p̂1234 þ ψ0001p̂1234 þ…þ ψ1110p̂1234

þ ψ1111p̂1234Þj0i ∈ Fþ ð127Þ

hence ψ0000 ¼ Z1234, ψ0001 ¼ Z1234 ¼ Z1238 etc. This is
to be compared with the conventional way of writing this
state as

jψi ¼
X

μ1μ2μ3μ4∈0;1
ψμ1μ2μ3μ4 jμ1μ2μ3μ4i∈C2 ⊗C2 ⊗C2 ⊗C2:

ð128Þ

Using the 16 complex amplitudes of our state one can
define three basic 4 × 4 matrices containing four four-
component vectors U;V;W and Z:

L≡

0
BBB@

ψ0000 ψ0001 ψ0010 ψ0011

ψ0100 ψ0101 ψ0110 ψ0111

ψ1000 ψ1001 ψ1010 ψ1011

ψ1100 ψ1101 ψ1110 ψ1111

1
CCCA

≡

0
BBB@

U0 U1 U2 U3

V0 V1 V2 V3

W0 W1 W2 W3

Z0 Z1 Z2 Z3

1
CCCA; ð129Þ

M ¼

0
BBB@

U0 U1 V0 V1

W0 W1 Z0 Z1

U2 U3 V2 V3

W2 W3 Z2 Z3

1
CCCA;

N ¼

0
BBB@

U0 U2 V0 V2

U1 U3 V1 V3

W0 W2 Z0 Z2

W1 W3 Z1 Z3

1
CCCA: ð130Þ

Notice that the matrices M and N are obtained from the
matrix L via the permutations. The index structure of these
matrices is

L ↔ ψμ1μ2μ3μ4 M ↔ ψμ3μ1μ2μ4 N ↔ ψμ1μ4μ2μ3 :

ð131Þ
If we use the (128) representation these matrices appear in
the reduced density matrices

ϱ12 ¼ LL†; ϱ34 ¼ L†L; ð132Þ

ϱ13 ¼ MM†; ϱ24 ¼ M†M; ð133Þ

ϱ14 ¼ NN †; ϱ23 ¼ N †N ; ð134Þ

coming from the corresponding operators like ϱ̂12 ≡
Tr34jψihψ j.

We can embed these density matrices inside of a 28 × 28

one as follows. Write jψi¼ 1
4!
Zijklp̂ijklj0i with only the

relevant 16 nonzero complex amplitudes (ijkl ∈ f1;
2;…; 4g). Define the two-partite reduced density matrix as

ϱijkl ≡ 1

2
hψ jp̂ijn̂klψi: ð135Þ

Explicitly one has

ϱijkl ¼
1

4
ZijmnZlkmn: ð136Þ

By virtue of this it can be checked that if hψ jψi ¼ 1 then
ϱijij ¼ 6, i.e., ϱijkl satisfies the usual Löwdin normalization
adopted by quantum chemists [31]. From the 28 indepen-
dent index pairs ij only 24 give nonzero contribution (pairs
like 11; 22; 33; 44 give zero), and similarly for the index
pairs kl one only has to take into consideration 24 ones. It
is easy to see that using for this 24 × 24 block the
somewhat unusual labeling for the rows and columns as
ð12; 12; 12; 12;…; 34; 34; 34; 34Þ we are left with a block
diagonal matrix consisting of six 4 × 4 blocks. These are
precisely the six reduced density matrices of Eqs. (132)–
(134). Since these are all having trace equals to one, the
trace of ϱijkl ¼ 6 as it has to be.
Consider now one-half of the covariant Rij

kl of
Eq. (117) i.e.,

1

2
Rij

kl ¼
1

2
ðψ ; p̂ijn̂klψÞ ð137Þ

with explicit form given by Eq. (119) i.e.,

1

2
Rij

kl ¼
1

4
� ZijmnZlkmn; ð138Þ

where �ψ denotes the Hodge dual of the four-form ψ .

F. Majorana fermions

Comparing Eqs. (135) and (137) we see that our covariant
and the two-partite reduced density matrix is of the same
structure up to the important difference that the former
features the bilinear pairing and the latter the usual Hermitian
scalar product. Now it is known that this structural similarity
is related to the generalization [21] of the usualWootters spin
flip operation [22] as follows. For a spinor ψ define its
spined flipped spinor ~ψ via the formula

h ~ψ jϕi≡ ðψ ;ϕÞ: ð139Þ

Then writing jψi and jϕi as in Eq. (94) we obtain the result

j ~ψi ¼ ðΨ̂TÞ†jtopi; ð140Þ

where jtopi is defined in Eq. (92) and clearly n̂†i ¼ p̂i. In our
special case
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j ~ψi ¼ 1

4!
~Zijklp̂ijklj0i ¼ 1

4!
� Zijklp̂ijklj0i;

~Zijkl ¼ �Zijkl ¼
1

4!
εijklabcdZabcd: ð141Þ

Now notice that the condition

j ~ψi ¼ jψi ð142Þ

is a reality condition imposed on our originally complex
spinor. It can be checked that this condition is precisely the
Majorana condition for spinors [32]. In the following a
spinor satisfying Eq. (142) will be referred to a Majorana
spinor. Hencewe obtained the nice result that the generalized
Wootters spin flip operation of Ref. [21] is naturally related
to the notion of Majorana spinors. As an extra bonus of
embedding qubits into Fock space we have managed to
understand the meaning of the well-known Wootters spin
flip operation of quantum information as a special case of an
operation related to a natural reality condition for spinors. In
our special case after comparing Eqs. (136) and (138) we see
that for a Majorana spinor (Wootters self-conjugate spinor)
our basic covariant Rij

kl (the covariant of Katanova [30]) is
up to a factor of 2 just the two-partite reduced density
matrix ϱijkl.
Let us see how these findings manifest themselves in the

special case of embedded four-qubits. Now the independent
components of Rij

lk form a 28 × 28 matrix4 R whose
structure is similar to the one of ϱijlk. Namely this matrix is
block diagonal and consists of seven 4 × 4 blocks. One
block is containing merely zeros, the remaining six ones are

R12 ≡ ϵ ⊗ ϵLϵ ⊗ ϵLt; R34 ≡ ϵ ⊗ ϵLtϵ ⊗ ϵL;

ð143Þ

R13 ≡ ϵ ⊗ ϵMϵ ⊗ ϵMt; R24 ≡ ϵ ⊗ ϵMtϵ ⊗ ϵM;

ð144Þ

R14 ≡ ϵ ⊗ ϵN ϵ ⊗ ϵN t; R23 ≡ ϵ ⊗ ϵN tϵ ⊗ ϵN ;

ð145Þ

where

ϵ ⊗ ϵ ¼
�

0 1

−1 0

�
⊗
�

0 1

−1 0

�
¼

0
BBB@

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

1
CCCA

ð146Þ

and Lt refers to the transposed matrix of L [not to be
confused with the transposition used for spinors in expres-
sions like Ψ̂T in (140), see also Eq. (91)]. Explicitly we have

R ¼ 1

2

0
BBBBBBBBBBBB@

R12

R34

R13

R24

R14

R23

0

1
CCCCCCCCCCCCA
:

ð147Þ

Now for a four-qubit state of the form (128) the amplitudes
of the usualWootters spin flipped state spin flipped state are
defined as

~ψμ1μ2μ3μ4 ¼ ϵμ1μ
0
1ϵμ2μ

0
2ϵμ3μ

0
3ϵμ4μ

0
4ψμ0

1
μ0
2
μ0
3
μ0
4
: ð148Þ

After representing the 16 amplitudes in terms of 4 × 4
matrices the Wotters spin flip corresponds to transforma-
tions like L ↦ ϵ ⊗ ϵLϵ ⊗ ϵ terms showing up in
Eqs. (143)–(145).

G. Recovering the basic four-qubit invariants

Let us now try to recover the basic four-qubit invariants
in our spinorial framework. From the work of Luque and
Thibon [33] we know that for four qubits we have four
algebraically independent invariants. One of them is of
order 2 (H), two of order 4 (L and M), and one of order 6
(D). For a pair of arbitrary vectors U;V ∈ C4 let us define
an inner product by the formula

U · V ¼ U0V3 −U1V2 −U2V1 þU3V0 ð149Þ

i.e., the inner product has the matrix of Eq. (146). Then in
the notation of Eq. (129) we have the formula for H

H ¼ U · Z − V ·W ¼ ϵμ1μ
0
1ϵμ2μ

0
2ϵμ3μ

0
3ϵμ4μ

0
4ψμ1μ2μ3μ4ψμ0

1
μ0
2
μ0
3
μ0
4

¼ 1

2
ðψ ;ψÞ: ð150Þ

Notice that the first expression for H is hiding its
permutation invariance, clearly displayed by the second.
The third expression relates this important invariant to our
bilinear form defined for spinors, see Eq. (116), where in
this case for the labeling of the amplitudes Eq. (127) should
be used.
For the definitions of the fourth order invariants we have

L ¼ DetL; M ¼ DetM; N ¼ DetN ; ð151Þ
4Notice that the matrixR is defined with a swap of the indices

kl hence a sign change.
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and the important identity [33]

LþM þ N ¼ 0: ð152Þ

In order to define the sixth order invariant D we use the
characteristic polynomial of the matrix R≡R12 as a
generating polynomial for the algebraically independent
invariants [34]

PðR; tÞ≡ DetðtI − RÞ ¼ t4 − s1t3 þ s2t2 − s3tþ s4;

ð153Þ

where

s1 ¼ TrR ¼ 2H; ð154Þ

2s2 ¼ ðTrRÞ2 − TrR2 ¼ H2 þ 4M þ 2L; ð155Þ

3!s3 ¼ ðTrRÞ3 − 3TrRTrR2 þ 2TrR3 ¼ 4Dþ 2HL;

ð156Þ

4!s4 ¼ ðTrRÞ4 þ 8TrRTrR3 þ 3ðTrR2Þ2 − 6ðTrRÞ2TrR2

− 6TrR4 ¼ 4!DetR ¼ 4!L2: ð157Þ
An explicit computation shows that [34]

s3 ¼ 2Det

0
B@

U · U U · V U · Z

U ·W V ·W W · Z

U · Z V · Z Z · Z

1
CA

− 2Det

0
B@

U · V V · V V ·W

U ·W V ·W W ·W

U · Z V · Z W · Z

1
CA ð158Þ

which implicitly defines D. For the algebraically indepen-
dent set of SLð2;CÞ×4 invariants either the set s1; s2; s3; s4
or the oneH;L;M;D can be used. There is yet another way
of looking at the sixth order invariants which will be useful.
Using H;L;M and D one can define new sixth order
combinations [33] E and F as follows:

D ¼ E −HL; E ¼ F −HN; F ¼ D −HM:

ð159Þ

Clearly these combinations are related by permutation
symmetry of the qubits in a cyclic manner. This has the
important corollary that if in the characteristic polynomial
we plug in for R either of the matrices in Eqs. (143)–(145)

based on L;N or M then the invariants s1; s2; s3; s4
showing up will always have a similar form with the
letters L;M;N and D;E; F cyclically permuted. Explicitly

s1 ¼
8<
:

2H using L

2H; using N

2H; using M

ð160Þ

s2 ¼
8<
:

H2 þ 2ðM − NÞ using L

H2 þ 2ðL −MÞ; using N

H2 þ 2ðN − LÞ; using M

ð161Þ

s3 ¼
8<
:

2ðDþ EÞ using L

2ðEþ FÞ; using N

2ðF þDÞ; using M

ð162Þ

s4 ¼
8<
:

L2 using L

N2; using N

M2; using M;

ð163Þ

where for arriving at this form with permutation symmetry
displayed we used the identities (152) and (159). Recall
now that from the terms showing up in these expressions
one can form four algebraically independent combinations
which apart from SLð2;CÞ×4 invariance displaying permu-
tation invariance as well. These form the set [33,35]
fH;Σ;Γ;Πg where

Σ ¼ L2 þM2 þ N2; Γ ¼ Dþ Eþ F;

Π ¼ ðL −MÞðM − NÞðN − LÞ: ð164Þ

In order to reveal the spinorial origin of these invariants
one calculates the traces of the relevant 4 × 4 blocks of the
basic covariantRij

kl associated to the 28 × 28 matrixR of
Eq. (147) with explicit structure given by Eqs. (143)–(145):

1

2
TrR ¼

8<
:

H using L

H; using N

H; using M

ð165aÞ

1

2
TrR2 ¼

8<
:

H2 þ 2ðN −MÞ using L

H2 þ 2ðM − LÞ; using N

H2 þ 2ðL − NÞ; using M

ð165bÞ

1

2
TrR3 ¼

8<
:

H3 þ 6HðN −MÞ þ 3ðDþ EÞ using L

H3 þ 6HðM − LÞ þ 3ðEþ FÞ; using N

H3 þ 6HðL − NÞ þ 3ðF þDÞ; using M

ð165cÞ
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1

2
TrR4 ¼

8<
:

H4 þ 12H2ðN −MÞ þ 8HðDþ EÞ þ 4ðN −MÞ2 − 2L2 using L

H4 þ 12H2ðM − LÞ þ 8HðEþ FÞ þ 4ðM − LÞ2 − 2N2; using N

H4 þ 12H2ðL − NÞ þ 8HðF þDÞ þ 4ðL − NÞ2 − 2M2: using M:

ð165dÞ

Further traces of powers can be calculated, here we
merely give the expressions for the fifth and sixth powers
we need later:

1

2
TrR5 ¼ H5 þ 20H3ðN −MÞ þ 15H2ðDþ EÞ − 5HL2

þ 20HðN −MÞ2 þ 10ðDþ EÞðN −MÞ ð165eÞ
1

2
TrR6 ¼ H6 þ 30H4ðN −MÞ þ 24H3ðDþ EÞ − 9H2L2

þ 60H2ðN −MÞ2 þ 48HðDþ EÞðN −MÞ
þ 6ðEþDÞ2 þ 8ðN −MÞ2 − 6L2ðN −MÞ;

ð165fÞ

where in these expressions we have merely displayed the
R ¼ R12 choice.
Let us now define SLð2;CÞ×4⋊S4 invariants g2p; p ¼

1; 2;… as follows:

g2p ¼ 1

2

X
a<b

TrRp
ab; ð166Þ

i.e., in order to form these invariants we have to add the
traces of the powers of the six nontrivial matrices showing
up in Eq. (147). Then a straightforward calculation shows
that

g2 ¼ 6H; g4 ¼ 6H2; g6 ¼ 6H3 þ 12Γ ð167Þ

g8 ¼ 6H4 þ 32HΓþ 20Σ ð168Þ

g10 ¼ 6H5 þ 90HΣþ 60H2Γ ð169Þ

g12 ¼ 6H6 þ 96H3Γþ 250H2Σþ 16Γ2 − 60Π: ð170Þ

From this it follows that as an independent set of generators
the set

fg2; g6; g8; g12g ð171Þ

can be used. In order to relate our set of generators to the
one of Chen et al. [7] we express the invariant g10 in terms
of the independent ones. The result is

25 · 34g10 ¼ 7g52 þ 23 · 35g2g8 − 23 · 7 · 9g22g6: ð172Þ

Now comparing this equation with Eq. (11) of Ref. [7] one
concludes that the set of independent generators used by

Chen et al. namely ff02; f06; f08; f012g is related to ours
simply,

f02p ¼ 21−pg2p ¼ TrRp; ð173Þ

where R is the matrix of Eq. (147). Now the invariants I2p
of Eq. (125) are just trivial multiples of f02p namely

I2p ¼ ð−1Þp2pf02p; ð174Þ

and the fermionic invariants J2p can also be calculated
using Eq. (124). Clearly J2p will be again a polynomial of
the set ff02; f06; f08; f012g which we will not give here.

VII. THE ALGEBRA OF Spinð16;CÞ INVARIANT
POLYNOMIAL FUNCTIONS

Let A be the algebra of complex polynomial functions
on either Fþ or F− i.e., on the 128-dimensional complex
vector space of Weyl spinors of definite chirality which
are invariant under G0 ¼ Spinð16;CÞ. One can define the
affine variety Fþ=Spinð16;CÞ associated to A. One can
then show that this variety is isomorphic [24] to C8. In
this section we would like to elaborate on the structure of
the eight algebraically independent generators for A.
From the physical point of view the magnitudes of these
generators will give possible measures of entanglement,
which are invariant under the generalized SLOCC sub-
group G0.
Note that such an investigation can be regarded as a

natural generalization of the one initiated in Ref. [7] where
four fermions with eight modes were considered. In this
case the corresponding algebra of invariants B is the one of
complex polynomial functions on the 70-dimensional
complex vector space ∧4 V� with V ¼ C8 invariant under
SLð8;CÞ. The latter group is the nontrivial subgroup of the
SLOCC group and the affine variety ∧4 V�=SLð8;CÞ is
isomorphic to the affine space C7. In our fermionic
formalism the seven generators of B are of the form
[7,30] f2p ¼ TrRp with p ¼ 1; 3; 4; 5; 6; 7; 9 where R is
a 28 × 28 matrix not subject to the restrictions displayed in
Eq. (147). Furthermore, for embedded four-qubit systems
our detailed calculations based on the special form of
Eq. (147) show how the algebra C of complex polynomial
functions on C2 ⊗ C2 ⊗ C2 ⊗ C2 invariant under
SLð2;CÞ×4⋊S4 are derived from the basic fermionic
invariants. In this case the corresponding affine variety is
isomorphic to C4 with generators fg2; g6; g8; g12g of
Eqs. (167)–(170). According to Eq. (173) these generators
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also correspond to the set [7] ff02; f06; f08; f012g. Clearly we
have a sequence of embedded algebras

C ⊂ B ⊂ A: ð175Þ

In Ref. [7] the restriction map between the algebras C ⊂ B
has been studied. An aim of this section is to initiate a study
concerning the algebra A, as an object naturally incorpo-
rating all cases.
Now the results for the embedding C ⊂ B follow from

the decompositions based on the symmetric spaces

so8 ¼ ðsl2 ⊕ sl2 ⊕ sl2 ⊕ sl2Þ ⊕ m16; ð176Þ

e7 ¼ sl8 ⊕ m70: ð177Þ

Note that results for the symmetric space decomposition

e8 ¼ so16 ⊕ m128 ð178Þ

are also available in the literature [24]. Since the subspace
m128 in this approach is just the space of Weyl spinors i.e.,
Fþ this observation enables an explicit exploration of the
structure of the restriction map for the generators of the
algebra A an issue which is the subject of the next
subsections.

A. The semisimple orbit for four qubits

In order to gain some insight into the structure of A we
reformulate some results already discussed in the literature.
Take the representative of the semisimple orbit of four-
qubit states in the form [36]

jGðxÞi≡X4
α¼1

xαjϕαi; jϕαi≡ jφαi ⊗ jφαi;

x≡ ðx1; x2; x3; x4Þ ∈ C4; ð179Þ

where

jφ1i ¼
1ffiffiffi
2

p ðj00i þ j11iÞ jφ2i ¼
1ffiffiffi
2

p ðj01i − j10iÞ

ð180Þ

jφ3i ¼
1ffiffiffi
2

p ðj01i þ j10iÞ jφ4i ¼
1ffiffiffi
2

p ðj00i − j11iÞ:

ð181Þ

Alternatively one can write

jGðyÞi ¼ y1ðj0000i þ j1111iÞ þ y2ðj0011i þ j1100iÞ
þ y3ðj0101i þ j1010iÞ þ y4ðj0110i þ j1001iÞ;

ð182Þ

where

x1 ¼ y1 þ y4; x2 ¼ y3 − y2;

x3 ¼ y3 þ y2; x4 ¼ y1 − y4: ð183Þ

Take the following 24 element set of elementary poly-
nomials in x

� 2x1; �2x2; �2x3; � 2x4;

� x1 � x2 � x3 � x4; ð184Þ

where the last item in the list refers to all of the 16 possible
sign combinations. Call these 24 elementary polynomials
esðxÞ; s ¼ 1; 2;…24. Let us define the new polynomials

π2pðxÞ≡
X24
s¼1

½esðxÞ�2p: ð185Þ

Then for example one has

π2ðxÞ ¼ 24
X4
α¼1

x2α ð186Þ

π6ðxÞ ¼ 48

�
3
X4
α¼1

x6α þ 5
X
α≠β

x2αx4β þ 30
X
α>β>γ

x2αx2βx
2
γ

�
:

ð187Þ

Now a calculation of the simplest two invariants H and Γ
for the state Eq. (179) shows that [37]

2H ¼
X4
α¼1

x2α;

25Γ ¼
X4
α¼1

x6α −
X
α≠β

x2αx4β þ 18
X
α>β>γ

x2αx2βx
2
γ : ð188Þ

Comparing now π2p and g2p of Eq. (167) for p ¼ 1; 3
one gets that

π2ðxÞ ¼ 23g2ðxÞ; π6ðxÞ ¼ 27g6ðxÞ: ð189Þ

A computer check shows that this simple pattern survives
hence

π2pðxÞ ¼ 22pþ1g2pðxÞ; p ¼ 1; 3; 4; 6; ð190Þ

or alternatively

π2pðxÞ ¼ ð−1Þp22pI2p; ð191Þ

where I2p are the fermionic invariants defined in Eq. (125).
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Notice that using the new parametrization of Eq. (183)
for the er we immediately get the simple expressions

g2p ¼
X
α<β

ðyα þ yβÞ2p þ
X
α<β

ðyα − yβÞ2p;

α; β ¼ 1; 2; 3; 4: ð192Þ

Notice that apart from a factor of 1
6
and a different labeling

convention used this expression for g2p is of the same form
as the invariantsF 2p of Eq. (1) of Gour andWallach [38]. It
is also important to realize that these polynomials for p ¼
1; 3; 4; 6 constitute a set of algebraically independent
polynomials [39,40] invariant under the Weyl group of
the exceptional group F4. This interesting connection
between the dense orbit of four-qubit states and F4 was
emphasized in Refs. [36,38].
However, the algebraically independent sets

fF 2;F 6;F 8;F 12g and fg2; g6; g8; g12g are not the same.
Indeed in Ref. [38] instead of our parameters xα the
parametrization

ðz0; z1; z2; z3Þ ¼ ðx1; x4; x3; x2Þ ð193Þ

was used. In this parametrization [38]

F 2p ¼ 1

6

X
α<β

ðzα − zβÞ2p −
1

6

X
α<β

ðzα − zβÞ2p;

α; β ¼ 0; 1; 2; 63: ð194Þ

Hence according to Eq. (193) our polynomials g2p
expressed in terms of the parameters yα; α ¼ 1; 2; 3; 4
are of the same form as the polynomials F 2p expressed
in terms of the parameters xα; α ¼ 1; 2; 3; 4.
As a result the explicit forms of the polynomials F 2p

expressed in terms of the set fH;Γ;Σ;Πg should be some
different combinations than the ones shown in Eqs. (167)–
(170). For example a quick calculation shows that F 6 ¼
12H3 − 16Γ on the other hand according to Eq. (167)
g6 ¼ 6H3 þ 12Γ. This is in accord with the result found in
Sec. IV of Ref. [41]:

F 2 ¼ 2H; F 6 ¼ 4ð3H3 − 4ΓÞ; ð195Þ

F 8 ¼
4

3
ð33H4 − 104HΓþ 40ΣÞ ð196Þ

F 12 ¼
4

3
ð513H6 − 3012H3Γþ 2180H2Σ

þ 488Γ2 þ 480ΠÞ: ð197Þ

Comparing these expressions with the ones of Eqs. (167)–
(170) we see that our generating set fg2; g6; g8; g12g is more
elegant as the expansion coefficients are much simpler and
they can be seen as the ones derived from a more general

procedure based on fermionic systems as spinors. Notice,
however, that according to Eq. (173) up to 21−p this
generator system is the same as the one ff02; f06; f08; f012g
which already appeared in Ref. [7] as the one coming from
the invariants of Katanova [30]. Here we added to these
results a further twist by also displaying their explicit form
in terms of the usual set fH;Γ;Σ;Πg originally due to
Schläfli [35]. We also note that apart from a factor of 6 the
set fF 2;F 6;F 8;F 12g is the same as the Saito-Sekiguchi
set [42] of generators a point emphasized in the Appendix
of Ref. [37].

B. Representing the dense orbit under C× × Spinð16;CÞ
Our aim here is to use an eight parameter representative

of the generic orbit in Fþ under the action of the
generalized SLOCC group C× × Spinð16;CÞ for obtaining
explicit forms for the invariants. In Ref. [7] it was shown
how the four parameter family of states of Eq. (179) can be
embedded into a seven parameter family belonging to
∧4 C8. This means that this family can be regarded as
restrictions of a more general one for four fermions with
eight modes. This chain of generalizations is based on the
(176)–(178) sequence of Lie algebras. Here we give a
spinorial entanglement based generalization of the E8 case.
Note that our representative of the relevant entanglement
class is equivalent to the representative of the standard
semisimple orbit already known in the mathematics liter-
ature [24].
Let us consider the Fock space version of the state of

Eq. (182):

jGi ¼ y1ðp̂1234 þ p̂1234Þ þ y2ðp̂1234 þ p̂1234Þ
þ y3ðp̂1234 þ p̂1234Þ þ y4ðp̂1234 þ p̂1234Þj0i

¼
X4
α¼1

yαjEαi; ð198Þ

where

jE1i ¼ ðp̂1234 þ p̂1234Þj0i; jE2i ¼ ðp̂1234 þ p̂1234Þj0i
ð199Þ

jE3i ¼ ðp̂1234 þ p̂1234Þj0i; jE4i ¼ ðp̂1234 þ p̂1234Þj0i:
ð200Þ

Now if we make the identification

f1; 2; 3; 4; 1; 2; 3; 4g≡ f13572468g ð201Þ

then the basis vectors p2; p4; p5 and −p6 of Refs. [7,43]
will correspond to the ones jEαi. If according to (177) we
identify these states as four generators belonging to them70

part of the Lie algebra e7 we see that they define four from
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the seven of the basis states of a seven-dimensional Cartan
subspace c. In this notation the remaining three basis
vectors (denoted by p1; p3 and −p7 in Ref. [7,43]) have
the form

jE5i ¼ ðp̂1144 þ p̂2233Þj0i; jE6i ¼ ðp̂1133 þ p̂2244Þj0i;
jE7i ¼ ðp̂1122 þ p̂3344Þj0i: ð202Þ

Notice now that in the notation of Sec. IV D the basis
vectors of the first kind (p2; p4; p5;−p6) are spanning a
subspace of the single occupancy subspace F 0000 ⊂ Fþ.
On the other hand the ones of the second kind (p1; p3;−p7)
are spanning a subspace of the double occupancy subspace
F 1111 ⊂ Fþ. According to Eq. (89) these subspaces are
related by the action of the operator

Ω̂≡ Γ̂1Γ̂2Γ̂3Γ̂4: ð203Þ

Under the action of Ω̂ the basis vectors jEji; j ¼ 1;…8 are
mapped to each other as

jEαi ↦ jE9−αi; α ¼ 1; 2; 3; 4; ð204Þ

where we have introduced a new basis state jE8iwhich is of
the form

jE8i ¼ ð1̂þ p̂12341234Þj0i: ð205Þ

Hence the double occupancy version of the state of
Eq. (198) is

jG0i ¼ y5ðp̂1144 þ p̂2233j0i þ y6ðp̂1133 þ p̂2244Þj0i
þ y7ðp̂1122 þ p̂3344Þj0i þ y8ð1̂þ p̂12341234Þj0i

¼
X4
α¼1

y9−αΩ̂jEαi: ð206Þ

Now the eight parameter family of states we would like to
propose is of the form

jGðyÞi≡X4
α¼1

ðyα þ y9−αΩ̂ÞjEαi: ð207Þ

An alternative form of this state is

jGðyÞi ¼
�
y81̂þ

1

4!
Zijklp̂ijkl þ y8p̂12341234

�
j0i; ð208Þ

where

Z1234 ¼ Z1234 ¼ y1; Z1234 ¼ Z1234 ¼ y2; ð209Þ

Z1234 ¼ Z1234 ¼ y3; Z1234 ¼ Z1234 ¼ y4; ð210Þ

Z1144 ¼ Z2233 ¼ y5; Z1133 ¼ Z2244 ¼ y6;

Z1122 ¼ Z3344 ¼ y7: ð211Þ

Notice that if we define the dual tensor �Zijkl as

�Zijkl ≡ 1

4!
εijklabcdZabcd ð212Þ

then we have

�Z1234 ¼ Z1234; �Z1234 ¼ Z1234;

�Z1234 ¼ Z1234; … � Z1122 ¼ Z3344 ð213Þ

hence the tensor Zijkl is self-dual.
We will need the matrix elements

ðGðyÞ; GðyÞÞ ¼ 2y28 þ
1

4!
� ZijklZijkl ¼ 2

X8
n¼1

y2n; ð214Þ

ðGðyÞ; p̂ijklGðyÞÞ ¼ 2y8 � Zijkl;

ðGðyÞ; n̂ijklGðyÞÞ ¼ 2y8Zlkji; ð215Þ

ðGðyÞ; p̂ijn̂klGðyÞÞ ¼ ðδilδjk − δikδ
j
lÞy28 þ

1

2
� ZijabZlkab;

ð216Þ

ðGðyÞ; p̂in̂jp̂kn̂lGðyÞÞ ¼ δilδ
k
j

X8
n¼1

y2n − ðGðyÞ; p̂ikn̂jlGðyÞÞ:

ð217Þ

After using the results of Sec. V C and implementing
self-duality for the matrix elements of the basic covariant
RIJ

KL we get

Rij
kl ¼ ðδilδjk − δikδ

j
lÞy28 þ

X
a<b

ZijabZablk; ð218Þ

Rkþ8lþ8
iþ8jþ8 ¼ Rij

kl; ð219Þ

Rij
kþ8lþ8 ¼ Riþ8jþ8

kl ¼ 2y8Zijkl; ð220Þ

Rijþ8
kþ8l ¼

�
δilδ

k
j −

1

2
δijδ

k
l

�X8
n¼1

y2n −Rik
jl: ð221Þ

C. Polynomial invariants for the
generalized SLOCC group

Using the matrix elements in Eq. (114) one can calculate
the invariants I2p. For the special case of the state of
Eq. (207) these will be polynomials in the complex
amplitudes yj; j ¼ 1;…8. As an algebraically independent
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set of these polynomials that are invariant under the
nontrivial part of the generalized SLOCC group G0 ¼
Spinð16;CÞ we would like to propose

fI2; I8; I12; I14; I18; I20; I24; I30g: ð222Þ

Note that the order of the algebraically independent
polynomials has been known for a long time [24,44–46].
Indeed carrying out the calculations a computer check
shows that the set of Eq. (222) polynomials is algebraically
independent.
In order to motivate our choice and also understand

the meaning of these polynomials let us first consider
another, 240 element set of elementary polynomials
esðx1;…; x8Þ; s ¼ 1; 2;…240, of the form

�xi � xj;
1

2
ðxi � x2 � x3 � x4 � x5 � x6 � x7 � x8Þ;

ð223Þ

where in the second set only an even number of minus signs
are allowed. In accord with the (178) decomposition this
240 ¼ 112þ 128 split of polynomials corresponds to the
root system of the group E8. Let us now define the
polynomials

Π2pðxÞ ¼
X240
s

½esðxÞ�2p;

2p ¼ 2; 8; 12; 14; 18; 20; 24; 30: ð224Þ

They form an alternative set to our polynomials I2pðyÞ
coming from the set of Eq. (222). A computer check shows
that they are algebraically independent as well.
Observe now that the set of vectors defined by (199)–

(200), (202) and (205) defines a Cartan subspace c (i.e., a
maximal commutative subspace) of m≡m128 of
Eq. (178). (For the explicit form of the commutators of
the e8 Lie-algebra based on the decomposition of (178) see
the paper of Antonyan and Elashvili [24].) Let W ≡
Wðc; e8Þ be the Weyl group of e8 regarded as a graded
algebra. Then it is known [46] that the restriction of
polynomial functions C½m� → C½c� induces an isomor-
phism C½m�G0 → C½c�W . The upshot of these considera-
tions is that if we restrict the (222) generating set taken
from the space C½m�G0 of generalized SLOCC invariant
polynomials to the generic class represented by our state of
Eq. (207) one obtains some combinations of an algebrai-
cally independent set taken from the space C½c�W of
polynomials that are invariant under the action of the
Weyl group of E8. Now it is known [39] (for alternative
choices see [40,47]) that as an algebraically independent set
of C½c�W one can take our new polynomials of Eq. (224)
constructed from the roots of e8. In order to find the
relationship between the Weyl invariant polynomials of

Eq. (224) and our set of Eq. (222) restricted to the eight
parameter family of (207) we have to relate the complex
variables yj and xj j ¼ 1;…8. We choose

y1 ¼
1

2
ðx1 þ x2 þ x3 þ x4 − x5 − x6 − x7 − x8Þ;

y2 ¼
1

2
ðx1 þ x2 − x3 − x4 − x5 − x6 þ x7 þ x8Þ ð225Þ

y3 ¼
1

2
ðx1 − x2 þ x3 − x4 − x5 þ x6 − x7 þ x8Þ;

y4 ¼
1

2
ðx1 − x2 − x3 þ x4 − x5 þ x6 þ x7 − x8Þ ð226Þ

y5 ¼
1

2
ðx1 − x2 − x3 þ x4 þ x5 − x6 − x7 þ x8Þ;

y6 ¼
1

2
ðx1 − x2 þ x3 − x4 þ x5 − x6 þ x7 − x8Þ ð227Þ

y7 ¼
1

2
ðx1 þ x2 − x3 − x4 þ x5 þ x6 − x7 − x8Þ;

y8 ¼
1

2
ðx1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8Þ: ð228Þ

Now let us solve this system of equations to obtain xðyÞ.
Our aim is to find a relation between I2pðyÞ and Π2pðxðyÞÞ
for 2p ¼ 2; 8; 12; 14; 18; 20; 24; 30. Using the results
obtained in Eqs. (218)–(221) a computer calculation shows
that

I2pðyÞ ¼ ð−1Þp22p−1Π2pðxðyÞÞ: ð229Þ

Let c be the Cartan subspace of Fþ. Then G0c contains
an open subset of Fþ and is dense. From this it follows that
any G0 invariant polynomial on Fþ is determined by its
restriction to c. Hence our set of Eq. (222) can really be
regarded as an algebraically independent set ofG0 invariant
homogeneous polynomials. Clearly the extension of these
polynomials to Fþ can be given. The magnitudes of the
polynomials showing up in this set we would like to
propose for the characterization of the entanglement
properties of systems of fermions with eight modes.
A comment on the structure of these invariants is in

order. One can take for example the more general 71
parameter subset of states as given by Eq. (208). [Now we
refrain from applying the restrictions of Eqs. (209)–(211).]
Then using the explicit form of the matrix elements given
by Eqs. (216)–(217) our invariants can explicitly be
calculated. They can be expressed as polynomials in y8
with expansion coefficients given by traces of powers of the
28 × 28 matrices Z and �Z. These expressions are even
simpler for the 36 parameter family of self-dual states
�Z ¼ Z. Notice, however, that for the general case featur-
ing all 128 amplitudes even for the simplest nontrivial
invariant, i.e., the octic one I8, one would obtain a rather
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complicated formula. We mention that I8 is living inside
the octic E8 invariant calculated in the paper of
Cederwall [48].

VIII. CONCLUSIONS

In this paper following the ideas of Ref. [11] we have
been considering the problem of embedding qubits into
fermionic Fock space based on an underlying Hilbert space
of dimension N. Unlike previous studies making use of a
subspace representing systems with the number of fermions
fixed here we also allowed the possibility of creating
and annihilating fermions via changing their total number.
For this construction to make sense we made use of the
full Fock space. Mathematically this corresponded to
representing pure states of our quantum systems by spinors.
This construction naturally leads to the idea of extending
the fermionic SLOCC group GLðN;CÞ to the one of
G ¼ C× × Spinð2N;CÞ. In this picture classification of
entanglement types boils down to the classification
of spinors, i.e., the determinations of orbits underG finding
their representatives and their stabilizers. As emphasized in
Ref. [11] separable states in this formalism are represented
by pure spinors a notion that dates back to Cartan and
Chevalley. Hence entanglement in our new formalism
corresponds to some sort of deviation from purity of
spinors. Though our spinors serving as entangled states
are inherently complex for obtaining real states one can also
consider certain reality conditions. We have shown that a
natural reality condition to be imposed on complex spinors
is the one defining Majorana spinors. The naturality of this
condition stems from the fact that for embedded qubits this
condition boils down [21] to the one of self-conjugate states
under the Wootters spin flip operation [22]. This operation
is of utmost importance for defining physically well
established measures such as the entanglement of formation
for two qubits [22], and is a standard ingredient for defining
multiqubit measures of entanglement. It is amusing to see
this operation coming out easily from our Fock space
considerations.
Looking at the phenomenon of pure state multipartite

entanglement from our point of view is rewarding from
many respects. Here we elucidated the usefulness of our
approach by concentrating on special entangled systems
made of few qubits embedded into Fock space. We clarified
the structure of different types of embedding via applying
the notions of single, double and mixed occupancy. These
notions have transparent physical meaning. We have shown
that the different types of embedding help us to clarify the
physical meaning of structures showing up in the BHQC.
The main problem there was the occurrence of direct sums
combined with tensor products, or the occurrence of
singlets apart from doublets. Though doublets (qubits)
have a natural physical interpretation singlets have no
clear cut interpretation within a conventional framework
of entanglement theory. Embedding entanglement theory to

the theory of spinors enables a natural physical interpre-
tation of singlets.
It is important to note however that we are not pretending

that our ideas solve the problem of singlets showing up in
all contexts featuring the BHQC. Let us consider for
instance the problem of the tripartite entanglement of
seven qubits based on the 56-dimensional fundamental
irreducible representation of the exceptional group E7 of
Refs. [18,19] related to the work of Manivel [49]. Since
8 × 7 ¼ 56 there the authors constructed this representation
space as the sevenfold direct sum of eight-dimensional
three-qubit spaces, namely,

VABC⊕VADE⊕VAFG⊕VBDF⊕VBEG⊕VCDG⊕VCEF:

ð230Þ

However, again without giving a physically sound recipe
for what the seven superselection sectors in this case mean,
this system is left in a state which is lacking any quantum
information theoretic meaning. Although as demonstrated
in Sec. V C. this system contains seven sectors of 32-
dimensional subspaces amenable to a femionic interpreta-
tion based on the tripartite entanglement of six qubits the
full 56-dimensional representation space cannot be
embedded into fermionic Fock space. In order to see this
just recall the decomposition of the 56 of E7ðCÞ under
SLð2;CÞ × SOð12;CÞ:

56 ¼ ð2; 12Þ ⊕ ð1; 32Þ: ð231Þ

Here the extra SLð2;CÞ factor corresponds to the seventh
qubit (say qubit G). The second part (1,32) of this
decomposition is featuring the 32-dimensional spinor
representation amenable to a Fock space reinterpretation.
Its meaning is clearly related to the tripartite entanglement
of six qubits (say A; B;C;D; E; F) a picture coming from
the embedded qubits5 of Sec. V C. However, the first term
is featuring the vector representation of SOð12;CÞ for
which no spinorial characterization is possible. Hence in
order to make sense of these constructs from an entangle-
ment point of view other ideas are needed.
As another application of our ideas we conducted a study

on n-qubit invariants reinterpreted as spinorial structures.
We have seen that it is rewarding to enlarge the n-qubit
SLOCC group GLð2;CÞ×n to Sn ⋉ GLð2;CÞ×n by also
taking into consideration permutations of qubits. Being the
largest subgroup of the fermionic SLOCC group
GLð2n;CÞ which leaves invariant the n-qubit subspace
spanned by the basis vectors of single occupancy it serves
as a natural group directly related to the chain

Sn ⋉GLð2;CÞ×n ⊂GLð2n;CÞ⊂C× ×Spinð4n;CÞ: ð232Þ

5There a different labeling of qubits was used. However, the
incidence structure of the decomposition is the same.
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The rightmost member of this chain is our generalized
SLOCC group of Eq. (26) taken for the special case of
N ¼ 2n. An important corollary of this observation is that
n-qubit invariants featuring also permutation symmetry
should be regarded as ones coming from the basic spinorial
invariants and covariants. In other words for investigating
these invariants we should consider a suitable restriction of
the algebra A of complex polynomial functions on either
Fþ or F−. Indeed from a mathematical point of view the
chain of algebras C ⊂ B ⊂ A answering the chain of groups
of Eq. (232) should be regarded as the natural object of
study. This idea first appeared in Ref. [7] for the inclusion
C ⊂ B. In this paper we proposed to enlarge this inclusion
to also include the algebra A. As an illustration of these
ideas we worked out the n ¼ 4 case. Here we had the
chance to compare our findings with numerous results
already existing in the literature [7,30,33,34,36–38,41].
The n ¼ 4 case is also highly special revealing an in-
triguing relationship to exceptional groups. Indeed consid-
erations of Refs. [7,36,38] have already revealed that the

algebras C and B are related to the structure of exceptional
groups F4 and E7. Via the structure of the algebra A our
considerations managed to add the largest exceptional
group E8 to the list. In particular we constructed an
algebraically independent set of Spinð16;CÞ invariant
polynomials. The magnitudes of these polynomials can
serve as measures of entanglement in our fermionic Fock
space context. With an explicit computation we have shown
that when restricting these polynomials to the dense orbit
the resulting polynomials on eight variables are invariant
ones under WðE8Þ i.e., the Weyl group of E8.
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