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We study two distinct #-exact Seiberg-Witten (SW) map expansions, (I) and (II), respectively, up to order
3 for the gauge parameter, gauge field, and gauge field strengths of the noncommutative U, (1) gauge
theory on the Moyal space. We derive explicitly the closed-form expression for the SW map ambiguity
between the two and observe the emergence of several new totally commutative generalized star products.
We also identify the additional gauge freedoms within each of the e>-order field-strength expansions and
define corresponding sets of deformation/ratio/weight parameters, (k. ;) and (k,«}), for these two SW

maps, respectively.
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I. INTRODUCTION

The f-exact Seiberg-Witten (SW) map is an old and new
subject in the noncommutative (NC) gauge field theory on
the Moyal space. Some results emerged immediately after
the map itself [1] was discovered [2-27]. Applications to
the perturbative noncommutative quantum field theories
started several years later. Until now it has been shown to be
of great value for developing nontrivial variants of the
noncommutative quantum field theory from both theoreti-
cal and phenomenological perspectives [28—43]. Yet most
of them are restricted to the first/e?> order of the #-exact
expansion only due to the complicated nature of (obtaining)
the second/e*-order expansion.1 Recently a systematic
construction of the #-exact SW map expansion with respect
to the powers of the coupling constant e for arbitrary gauge
field theories on Moyal space was proposed in Ref. [44].
(See also Ref. [45] for its latest hybrid SW map extension.)
This could trigger many further applications in the near
future.

The main aim of this paper is to continue the afore-
mentioned important progress on the @-exact SW map
expansion [44]. Here we focus on two topics. First, the
e3-order SW map expansion for the U, (1) gauge field
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Generically the ordering employed in this article is the formal
power of field operators or the homogeneity in the fields [23]. The
equivalent notation of coupling constant ordering is a conse-
quence of the so-called U, (1) charge quantization issue and its
resolution within the SW map approach [5,27]. In this resolution
[5,27] the commutative field in the SW map expansion for a
U, (1) theory is bundled with the commutative charge Qe in order
to normalize the NC field to the quantized charges 0, £1, which
in turn induces the equivalence between the field operator and
coupling constant power ordering. We use the name coupling
constant ordering for its easier visibility in (front of) the
equations.
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obtained via the method in Ref. [44] [denoted as SW map
(D] appears to be different from the early results [7,34]
[SW map (II)], which is not really surprising since has
long been recognized that the SW map is far from unique
when defined as the map between noncommutative
and commutative fields that preserves the smooth commu-
tative limit and satisfies the consistency condition relations
[12-16,22,23,46]:

Op\A, = 0,A+ i[AA,] = 5,A,[a,]. (1)
5AF/w = i{AtF;w] = 52F/41/[a/4]’ (2)

Al[A1, o), a,) = [A[Ay, a3 A[4s, a,]] + i6;, Al2y, @]
- i5,12A[ll,a#]. (3)

The Moyal star(x) product used in the above is defined as
usual. Besides a possible connection by gauge transforma-
tion, there can be plenty of generic ambiguity/freedom/
redundancy between two different gauge field SW maps.
Still, it gives rise to the question of to exactly what extent
are the two maps (I) and (IT) different from each other. The
ambiguity between the NC gauge field expansions can be
characterized by looking at the composition of the first SW
map expansion {A;(a,,4),A,; (a,)...} and by the inverse
{A(A,. A), ay, (A,)...} of the second SW map expansion
{As(a,. 1), Ay (a,)...} [23]. Consistency conditions then
lead to the following equality in the case of the NC U, (1)
gauge theory:

0o (Ay (a,), N (a,, 2)) = a5, (A (a,)).  (4)

It was further pointed out [22,23] that such a composition
bears the following general form:
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az},(Al#(au)) :au+xu(ay)+ayy(ay)9 (5)

KAy, (@) M@, ) =2+ 5,¥(a,).  (6)
where §,X,(a,) = 0. Thus, the procedure to thoroughly
distinguish these two SW maps would be to determine
X,(a,) and Y(a,) explicitly.

Second, a large class of SW map ambiguities (field
redefinitions) was constructed in the past by iteratively
adding commutative gauge-covariant terms with free coef-
ficients at the nth power of 6** to the known solution Aﬁ" up
to the same order [29,46]. It was found that such redefi-
nitions contribute to the field strength in the action which
can help to cancel certain divergences in the perturbative
quantum loop computations [32,47-51]. These findings
made such a method highly favorable in the #-expanded
studies, yet it remains an open question how to generalize
this procedure to the #-exact approach since the iteration is
based solely on the powers of " and consequently gives no
hint about how to resum over all orders of 0. Recently we
observed that the e?-order f-exact expansion of the field
strength for U, (1) gauge theory possesses a freedom by
itself [52]: it contains a term invariant under the commu-
tative gauge transformation. For this reason this term does
not contribute to the consistency relation at e> order. One
can then freely vary the ratio of this term with respect to the
other term. The resulting deformed field-strength operator
still allows the usual quadratic action to be gauge invariant
up to e order. The e?-order ratio coefficient can be shown
to be the inverse of the @'-order iteration induced coef-
ficient reported in the early works. This fact motivates us to
consider such ratio parameter(s) a possible substitute for
the iteration-induced coefficient(s) in the #-exact approach.

In this article we study both topics mentioned above at
the e order. We first compare—up to the cubic order of the
coupling constant e—two distinct #-exact SW map expan-
sions for the NC U, (1) gauge theory: one obtained from
the SW differential equation (I), and the other by inverting
an early f-exact inverted SW map solution (II). We give a
closed-form expression for the SW map ambiguity between
these two maps and show that this ambiguity/freedom
could contribute to the field strength. We then extend the
procedure in Ref. [52] to each of the e3-order field-strength
SW map expansions, identify the gauge-invariant parts
inside each of the expansions, and assign the corresponding
ratio parameters. With help from the new generalized star
products found when studying the gauge field ambiguity,
we are able to explicitly express each of the gauge-invariant
parts in terms of the commutative field strength too.

The paper is structured as follows. In the second section
we describe both #-exact SW map expansion solutions up
to the ¢* order. The SW map ambiguity between these two
SW maps is given explicitly in Sec. III, where we also
demonstrate the emergence of several new totally commu-
tative generalized star products within the expressions.
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Section IV is devoted to the freedoms within each of the
e3-order f-exact gauge field strength expansions, respec-
tively. Discussions and conclusions then follow. In this
article the capital letters denote NC objects, and the small
letters denote commutative objects.

II. TWO DIFFERENT 6-EXACT SEIBERG-WITTEN
EXPANSIONS UP TO THE ¢* ORDER

A. Seiberg-Witten map (I)

The first powerful method (I) to obtain the #-exact SW
map expansion for NC gauge theories on Moyal space is
performed by solving the SW differential equations [1,14—
16,22,23,44,45]. For the NC gauge parameter (A), the NC
gauge field (A,), and the NC gauge field strength (F, ) of
the U, (1) gauge theory, these equations read

d 1 ..
A = ——QUTA*O.A
A =~ 0ia,n), )
d Lo
EA”(X) = ZQ’{A, ,'3]»AM + Fjﬂ}’ (8)
d 1 ij * * *r
EF”’“()C) :4_19 {Fu v Ft = {A%(D + 0))F b,

©)

where the Moyal x product with an additional parameter ¢
is defined as

() (x) = U0 p(x + (v + Ol
= () Dy (x). (10)

Note that in the rest of the article this parameter ¢ will be
absorbed into the definition of #”/ when not needed. The
NC covariant derivative is defined in the following way:

D}' = 9; — i[A;%]. By imposing the initial conditions [39]

Agy(x) = ed+ O(e?), Ay, (x) = ea, + O(e?), (11)
one can easily solve Eqgs. (7) and (8) at the e? order and
obtain the following solutions:

2
Agy(x) = ed— %Gi/aifztajﬂ +0O(e?),

2
er .
Aﬂa) (x) = ea, — ?Q’Jai*zt(ajaﬂ + fiu) + O(e?). (12)

Then, the next order of the SW differential equations can be
written down recursively,

2 pe )—339179“ %10 (agx2,014)
dr X—S [{aivjakZ,l }
+{axxy, (01a; + f1;)%0;4}], (13)
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d 3 83 ..
EAE (x) = gelj‘gkl[{ai*"(aj(ak*zt(az% + flﬂ)) - 2(fjk*2,f/41 - ai*Z,alfjﬂ))} -+ {(ak*Z,(alai + fli))*”(ajaﬂ + f/y)}]-
(14)
The x, product is defined analogously to the x, product, i.e.,
9,00
sin(t=3572)
B (x) o, (x) = ﬁd’(ﬂ)#’(’fz) : (15)
D) X|=Xp=X

The fact that denominator is not scaled by ¢ is crucial in solving the higher-order SW differential equations [44]. On the
other hand, the " ordering still remains the same as the " ordering because of the extra "/ outside the generalized star
product(s).

Since Egs. (13) and (14) involve only {f* (g /)}-type terms, in accord with the technique from Ref. [44] one can
immediately introduce a new generalized x5 product,

0400, 0400 0,00, 0400, 0400 9,00,
t cos[(fj—l—f”—””)]—l cos[(fJ—i—f”—i—””)]—l
[fgh]*/ / l‘/{f*’/( Zlh)} .< 2 2 >f® ® ) (1 )
3 0 d g*2, (afeaq 8/6'8h 6qg)ah>(agzah) <a,98 afeah agza,l) (aq(;ah) gen 6

for a universal expression of the e3-order expansion. In this notation we find the following §-exact solutions for the SW
differential equations up to the e* order:

2 3
Agy(x) = el — %Gijai*zajﬂ + %effakl[a,.aj(aka,z) — diday(9ya; + flj)]*3’ + O(e*), (17)
&2 ed
Ay, (xX) = ea, - 79’ ai*x>(0;a, + fj,) + gguekl([aiaj(ak(azaﬂ + [, = 2lai(fif i — axOif i),
+[(0a, + fj)ax(01a; +f1i>]*3/) + O(e*). (18)

B. Seiberg-Witten map (II)

Another type (II) of 8-exact SW map expansion [34] was obtained by inverting the solutions from Ref. [7]; the explicit
expansion for A, and A up to e’ order is as follows:

e’ . e 1 1
A(H) (X) = el — 36’”61,-*28]-/1 + ?9”6’]‘1 |:§ (ak*z(alai + f[i))*zaji + Eai*zﬁj(ak*zall)}

3
— %Gi«iekl[akai/laja; + 3k/1aialaj}*3 + 0(64), (19)

2

€ gii e’
Auy (¥) = eay == 0 aixy (0,0, + f) +

2 91]9](1 |:2 (ak*Z(ala + fll))*Z(aja,u + fm)
1 1
+aix; <8j(ak*2(alaﬂ +fi) = an(ak*z(alaj + flj))) - Eai*Z(akaj*Zalaﬂ)}
3
+ %eifakl laidna, (D01 + £ 1) — Didsa,aa; — 20,a,0,a5a1),. + O(e*). (20)

Clearly this gives the same e?-order solution as in Eqgs. (17) and (18) of the SW map (I); however, the e* order starts to show
a difference. The totally commutative x5 product [7] is defined as follows:

Sin(f)zﬁag) sm(a 10( 02+ag))

W0, = (Mg + (1 2 ) ale)h)

(21)

X=X
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The generalized star products x,, x3, and x3 are con-
nected with star commutators by the following relations:

£ (x)1g(x)] = i070;f (x)%20,9(x). (22)

F)*2lg(x) h(x)] + g(x) %2 [f (x) 1h(x)]
= i07[0f (x)g(x)0;h(x) + f(x)0ig(x)0;h(x)],,. (23)

[/ () 29(x) ()]
= 2 h(x)0,F(x)9,9(x) + 9(x)D,F (x)Dh(x)
+ O (¥)0,9(0)h(x) + if (X)g()h(). - (24)

Here we see that there are extra derivatives in the generalized
star product formula for the star commutators, which
provides the opportunity to “integral over” the infinitesimal
transformation 9;4 — a;. Note also the difference between
the x; and «3 products: %3 helps to realize the
[f(x)*g(x)*,h(x)] structure, which takes place in the
infinitesimal commutative gauge transformation of
the SW map expansion of the NC U, (1) gauge field in
terms of the commutative U(1) gauge field, while *; realizes

|
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the f(x)*,[g(x)*h(x)], which is typical in the inverse SW
map expansion of the commutative U(1) gauge field in terms
of the NC U, (1) gauge field [7].

III. THE 0-EXACT SEIBERG-WITTEN MAP
AMBIGUITY AT THE ¢* ORDER

The two e-order SW map expansions presented in the
last section look quite different, although they bear simi-
larities to a certain degree: they both start at the order #* and
bear a similar tensor structure. It is not hard to show that
they are indeed not equal to each other by, for example,
inspecting the #%- and &*-order expansions of each solution.
Therefore, a certain ambiguity structure should exist
between these two solutions. In this section we compare
these two #-exact SW maps up to the e order given in
Sec. II in detail. Following the arguments in Refs. [22,23],
we consider the composition of one of the SW maps and the
inverse of the other. Now, since SW map (II) was derived
from a f-exact inverse SW map expansion in Ref. [7], we
choose the original inverse map of (II) for the ambiguity
analysis outlined in the Introduction. This inverse SW map
expansion is as follows:

1 ..
Ay (A, A) = A+ 59” (A0, A + 0M[0,0,AA A, + D;AADA,,) + O(A%)A, (25)

1 ..
Ay (Ay) = Ay + 59” (Ai*2(0jA, + Fj,) + O [-A:0,A,(0,A; + F ) + 0;0,A,A;A; + ,A0,A/A)],,) + O(A*).  (26)

3

Now, by expanding the compositions A (A, (a,), A (a,.4)) and a, (A, (a,)) up to the e* order, we find

Ay (A (@) Ay (@, 2)) = eA(x) + Af;) (x) = Af;I) (x) +O(e*), (27)
Ay <AM(1) (aﬂ)) =eaq, (x) + A/iil) (x) - A/ijn) (x) + 0(64). (28)

Note that the e> order vanishes as expected. Equations (5) and (6) in the Introduction then indicate that the (I) minus (II)
differences at the e* order should bear the following expressions:

K H

Afy (0) = Ag (0) = X (x) + 9,7 (x), Ag (x) — A

3

o () = 6,7 (). (29)

In order to find a solution for the explicit forms of X ;3 (x) and Y*'(x), we first Fourier transform A,‘f (x) into a momentum-

space quantity A;3 (p,q,k):

3

‘.
8

~ .3

Ay (p.g.k) =

[a,(k)((a(p)Oq)(a(q)0k)M, + (a(p)Ba(q))(qOk)M, + (a(p)ok)(a(q)0k)M5)

+ k.((a(p)0q)(a(q)0a(k)) My + (a(p)0a(q))(gfa(k))Ms + (a(p)0a(k))(alq)0k)M)].  (30)

Then from Egs. (17) to (20) we read out the coefficients M;s for the SW maps (I) and (II), respectively:
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B pOq ka q0k
f*gr ( ’ 2 2 f*3/

pOq pOk qbk
- f*3/ —’—7— 5

272
f*3/<

pbq pbk gk
2 2
o (2

2

pOq p¢9k qu q9k
= f*3r<—7 f*%/ —7

2

and

i, =87 (7507 (5

Ok 0 k
M3(H) - Sf*» (q >f*2 (%

0 Ok
My, = —4f., (p q) ful <(P+2‘1>

My, =2, <p9q> f. (( .
q+k)

Ok 0 Ok
()1 (25) -, (2.

9’ El

) (o

2

(-

pOq p@k qu
PP —fu (-

p+ q)9k> 81, <619k> f.. <p9(

poq pok q9k>

RACAC

200 sap, ()1 (P
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> = =My,

q0k

2

ka

2

rbq
2

’ ’

a0k _pok _pog
2’ 2 2 )
plq  pbk
_pra PR 1
27 2 ) (3 )
q+k) pOq pbk qOk
PAEEE) —ur. (I ) = e
2
q+k) pOq pbk qbk
2 ) + Sf*.s < 2 ) 2 ) 2 9’
q+k)
2 9
q0(p + k
2)> (32)
[
M5(LH) = —Ms 6am (6] = k> (36)

The functions f, (a), f*S(a,b, ¢), and f*z,(a,b,c) are
defined as follows: )

sina
fula) =25, (33)
a
sinbsin(a + b) sincsin(a — c¢)

b b7 - 9 34
fulabo) =0 v Ta—owro Y

cos(a+b—c)—1 cos(a+b+c)—1

b,c) = — .

fuylab.c) (a+b-c)c (a+b+c)c

(35)
From Egs. (31) and (32) we observe that under the

permutation g < k,

3

-5 @) (@(p)0g) @(q)0k)M1,,, +

+ &, ((a(p)0ia(q)) (q0a(k))M;, ).

e’ _
Ham

(a(p)Oa(q))(q0k)My,  +

which indicates that the M S and Mg . (and part of the
40 ) contributions could be made equivalent to two

approprlate infinitesimal NC gauge transformation(s), re-
spectively,

II( )+5H‘)3 AEIII( )

x)+0 Heln ( ) =+ (0)(64)7 (37)

with the rest of the gauge field A’em( x) bearing the
following form in momentum space:

(a(p)ok)(a(q)0k)My )
(38)

The above gauge parameters = _(I H>( x) have been found explicitly for both cases (I) and (II),

3
e .
- §9’19k1(2[a18jakai]*3/ +

[aiajakal]*y) + 0(34)7 (39)
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. o Meanwhile, the p <> ¢ permutation symmetry of the
Cron (x) = _Zgugkl(z(a,-*zajak)*zal + a;x,(0;arxa;)) (a(p)0k)(a(q)Bk) term, leads to M,3<1 i’

4
+ O(e*), (40) 2My = Ms,, [poa K+ M, (g, p. K], (42)

. . ,
respectively. It also turns out that the coefficients M. b which further simplifies Eq. (38).

satisfy Finishing all of the above transformations, we now
. . . . 3

41 examine the remaining difference Wﬂ(x) — A/;m (x) -

(41) A f,?”) (x) in momentum space:

W, = A5, = A5, = 0,00 @p)00) @000, =5 @(p)030) (0K, -+ )00 )00 s

- k(@) ) (003 ()74 . #3)
where
~ pok | (pOq pOk qOk plq pOk qbOk pOq pOk qOk pOq pOk qbOk pOk -~
W, =" (- A T BT o (B2 22 T o) | =25 =W, (44
‘2[(2 > T2 ) )T e s q9p3()

where the functions f(a, b, c¢) and f,(a, b, c;n) have relatively complicated structures,

1 cos(a+b+c) cos(a+b—c)

fila.bre) =4 ((a+b)(b+c)(a+c)(a+b+c) e braa=-latb-o)
cos(a—b+c) B cos(a—b —c)

(a=b)(b-c)la+c)la=b+c) (a—b)(b+c)la—c)la—b-c)

8
_(a+b+c)(a+b—c)(a—b+c)(a—b—c))’ (45)

a?" cos asin b sin ¢ b?" sina cos b sin ¢ ¢ sinasin b cos ¢

bc(a2 — bz)(cz _ aZ) + ac(a2 —_ bz)(bz — 02) + ab(b2 — Cz)(cz — az) . (46)

fala,b,c;n) =

One can immediately observe that the functions f; and f, are both completely symmetric under any permutation over
a, b, c. This enables us to express the relevant part W, (x) of the difference between two #-exact SW maps (I) and (II) via
two new generalized entirely symmetric 3-products ¢ and <, (n):

o) = [ om0 5 5. (@)
o) = [ e eroipiatanmr (75050 5. (48)

After reformulating the inverse fourier transformation of Eq. (43) in terms of ¢ and ¢, products and some lengthy
rearrangement of the fields and (the rest of) the indices, we find the following expression for W, (x) in terms of the ¢; and
©2(0) 3-products:

e
Wﬂ (X) = _ggt}gk!gpqgrs ([arfipfjkasaqflﬂ]ol + [arfipfjkasalfqu]ol + [apfriaqukasflu]ol
1 :
+ Zeahecd[8paafriaqacfjkasabadfly]02(0) + 8ﬂ <[apfiraquk8sal}ol + z[aparaiaqajakasal]ol

1
- EgabHCd(3[8;78aaraiaqacajak6sabadal]<>2(0) - [ap8aaiaraqacakajasabadal]<>2(0))) ) : (49)
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Note that both f(a, b, ¢) and f(a, b, c;n) have a smooth § — 0 limit, as expected. Consequently, W, (x) will end at the 6°

order if we expand the 3-products ¢ and ¢, ) to their lowest order only. Finally, we add (0 Ef;) (x)

- @E‘(fl) (x)) back to

the W, (x) and obtain explicit solutions to the equations (29):

u

3 el )
X5 (x) = =S 0900710 ([0, £, 10,0, ),

+ [arfipfjkasalfqu]ol + [apfriaquka\‘flu]o]

1
+ Z eabgaj[8[7aafriaqacfjkasabadflu}02(()))’ (50)

3
ye (x) = %QiijZ(Z[alﬁjakai]w + [a,@jakal]

*3/

—4(a;x,0;a;) %20, — 2a;%,(0a;%,a;))

3
= S 07010710° (0,0, f 5D, + 200,00, D;aDsal,

1
- Egabeai(?’[817aaaraiaqacajakasabadal]<>2(0) - [8paaaiaraqacakajasabadal]<>2(0)))' (51)

The simple structure for the ambiguity between two gauge field SW maps at the e* order [Eq. (29)] leads to the following

result for the gauge field strength difference/comparison:

3 3
Fﬁl/([) ('x) - Fe

HY(1m)

(x) = 0,X¢ (x) — 0,X5 (x)

e
- thjgklgpqgrs ([8rapfﬂi8quk8sfvl]ol - [arapfyifjkasaqfvl]o] + [apfﬂiarfjkaqasfvl]ol

+ [arfpiasajfykaqful]ol - [arfpiajfpkasaqfvl]ol + [fpiarajfﬂkasaqul]ol

1

+ Z9“b06d<[8paraaf;u’aq8cfjkasabadfvl}02(0) + [apaafriaqacajfﬂkasabadfvl]02(0)))

e
+ ggljgklgpqgrs <2[arfpifjkasaqalf/4b]ol - [arfpiasfjkaqalfﬂv]ol

1
- Zeabgcd [araafpiasacfjkaqabadalfﬂy} > . (52)

©2(0)

Clearly the Y¢' (x)-related terms drop out, leaving Eq. (52) with only the U(1) gauge field strengths.

IV. THE 6-EXACT GAUGE FIELD STRENGTH UP
TO THE ¢ ORDER

In the last sections we examined the SW map ambi-
guities between two known gauge field expansions. This
section focuses on another type of freedom within each of
the two field-strength SW map expansions. Our motivation
is to find a certain O-exact alternative of the earlier
O-iterative freedom parameters. In the past the majority
of studies on SW map ambiguities followed the f-iterative
field redefinition procedure in Refs. [29,46]. At 6! order
this procedure introduces the following correction to the
gauge field expansion [32]:

b .
qﬂﬂ = Zegl']Dﬂfij’ (53)

which then gives the gauge field strength correction

b ..
q)/w = Dﬂ(pl/ - Dl/(pﬂ = Zeguf/wfijv (54)
and consequently modifies the action into

2l 7 1 b
550" = —/ezgljfw<fuifuj_jl__fijfﬂ”)' (35)

To find a 8-exact alternative of Eq. (55) we first study the
e?-order field-strength SW map expansion. The gauge field
expansions A, (x) and Au (x) [from Egs. (18) and (20),
respectively] lead to the same noncommutative U, (1)
gauge field strength expansion up to the e? order,

F;w(x) = ef;u/ + ezeij(fui*nyj - ai*Zajf/w) + 0(63)’
(56)
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On the other hand, at the e? order, the general consistency
condition for the gauge field strength

5/1F;w = i[A’:FW] (57)
becomes
8, F5, = ie*[33f ). (58)

Examining the gauge field strength (56), we find that the
variation of the first term at ¢? order, €*0f,*>f,;,
vanishes; therefore, the consistency condition (58) is
fulfilled solely through the second term —e?6"a;x,0,f,, as

85,(—€*0Va;%,0,f,,) = —€*070,2%0,f,, = ie*[A5f ],
(59)

thanks to the relation between the *, product and the x
commutator (22). This observation encourages us to put an
arbitrary parameter  in front of the term e*6" f,;%,f,; in

Eq. (56) since this does not break the e?-order consistency
condition (58). Such a procedure leads to the x-deformed
gauge field strength up to the e” order,

F;w(x)lc = ef/w + ezgij(Kfﬂi*vaj - ai*Zajf/w) + O(€3>.
(60)

The restriction of the F,,(x), to the ' order gives
Fﬂl/(x>g] = ezgij(’cfyifuj - aiajfpw)' (61)
Also, the deformed action at the @' order reads
Se20' _ 2gij fuv 1 62
K - e f Kfyifyj_Zfijf;w . ( )

Here we see that the b correction (54) to the gauge field
strength does not match the x correction in Eq. (61).
|

3
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However, the b and k corrections are instead connected
by the (inter)actions since the x and/or a =1+ b are
present the ratio between two gauge-invariant terms in an
inverted fashion. For this reason we consider the «
deformation as a possible substitute for the b (a in the
literature) modification in the @-exact approach.

To extend the k deformation to 3 order we must handle
the effect of « in the e3-order consistency relation as well as
the identification of possible new gauge-invariant terms.
This can be done by solving the consistency relation

th;Z (X)e

= ie([A“1f ]+ [1Fg (x),])

= ie([A“1f ] + (12200 (kf yixaf = ai%20ifw)))-
(63)

[
[

We start by observing that both SW maps in Sec. II satisfy
the e’-order consistency relation (63) when k = 1, i.e.,
without the x deformation; then, within the undeformed NC
field strength F, (x), we identify those terms relevant to

the to-be-deformed term i60"/[A%f,,;%»f,;] and make them

proportional. We also search for a possible x-unrelated
freedom/ambiguity in the undeformed NC field strength.

A. Gauge field strength from
the Seiberg-Witten map (I)

The easiest way to determine the gauge field strength
corresponding to the gauge field A, (x) is by solving
directly the SW differential equation for the gauge field
strength [1],

d Lo
EF/M/(I) ()C) = ZQJ[Z{FW 7'F1/j}

—{An(20;F,, —ilAFu}.  (64)

it

which at the e* order yields

3
F/ew(I) (x) = %gijgkl [([fykfyiflj]*s, + [fl/lfuifkj]*3,) - ([fvlaiajfyk]*y + [f}tkaiajful]*z, + [akal(f;tifvj)]*3,>

1
+ [aiajakalf;w]*}, + [alf;waiajak}*y + [akaialajf;why - 5 ([aiakajalf/why + [alf/waiakaj]*},) . (65)

Here we notice a few facts. First, among all of the above terms in Eq. (65), the first two in the first line are manifestly
invariant under the commutative gauge transformation and antisymmetric under the u <> v permutation; therefore, they
could be subject to the free variation, i.e., associated with a new deformation (weight) parameter «;.

Next, considering the next three terms in the first line of Eq. (65), with the help of Eq. (24) we find that the sum of these
three terms together satisfy the following transformation property:

1 ..
) 59"’9k1([fyzaiajfyk]*3, + [fﬂkaiajfyl]*y

+ [akal(fuifuj)]*y) = _iekl Mtfﬂk*Zfl/l]' (66)
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Thus, the second fact is that they are a relevant subject for the x deformation at the e order.
These two facts lead us to an extended (k,x;) deformation of the field strength (65):

3
Fﬁim (X)ex, = % 00" |k, ([fﬂkfviflj]*3, + [fulfuifkj]*3,) - K([fylaiajfukhy + [fﬂkaiajfyl]*y + a0, (f;u’fvj)]*y)

1
+ [aiajakalfuv]*3, + [8zfﬂuai3jak]*3, + [akaialajfﬂu]*3, ) ([aiakajalfuy]*}, + [8lf;wai8kaj]*3,) . (67)

B. Gauge field strength from the Seiberg-Witten map (II)

Next we consider the e3-order §-exact gauge field strength from A”(H) (x), which can be expressed as follows:

Ffw m (x) = e300 fyi*2(fjk*2flu) +flu*2(fjk*2f;u’) - [fyifjkflu]*S

= ((aix20;f ) *af i + (aix20,f ) %2 f e = [@:0;(fuif ui)lsy) — @ix20;(fu*afu)
+ (ai%20;a1) %20, f u + ai%2(0jar %20, f ) + aixa(@r*20;0,f ) — [@;0;a10,f ],

(a
1
E(a *2(6ka *231f,w) (ai*zakaj)*Zalf/w - [aiakajalfﬂv]*3 + [aiakajalfuv]*3) . (68)

Using the basic relation (23), we can show that the infinitesimal commutative gauge transformation of the parentheses in the
second line of Eq. (68),
820708 ((aix20f w) *2fur + (@20 f ) %2 f e = [@:0;(furf i)l
= 070" (0:4%20; f i) *2.f i + (0id%20,f ) *2.f e = [0:40; (f kS )],
= i([Afud*afu + 5 fulxofu + furalf A + fuxalfutd]) =0, (69)

vanishes. One can further turn these parentheses into a manifestly gauge-invariant form with the help of the 3-
products ©5(,):

0708 ((a;%20,f ) *2.f i + (ai%20fu) %o fuk = (@0 (fucf )y,

49”9"19” 0 ([f pi0;0rf e 0q0sf il o, 1) + 49‘”’ 010,04 11040:0;f u0s0p0af

+ apfiraqaaacajfﬂkasabadful + 8pfiraqaaacajfulasabadfﬂk]02(0)) . (70)

Therefore, we conclude that the first two lines in Eq. (68) do not contribute to 6, F Among the rest of the terms, we notice
that the first one is compatible with the x, commutator, since

5/1(—‘9”9”01'*20j(f,4k*2fu1)) = oM [/lffuk*val]' (71)

Thus, this term alone gives the formal NC transformation of the fully commutative gauge field strength term 6" f ui*xafuj
at 3 order. Therefore, multiplying Eq. (71) by the x parameter ensures compatibility at the e order.

It is also straightforward to notice that two more additional free variations could be performed on Ffw II( X)
via a multiplication of the manifestly gauge-invariant first two lines of Eq. (68) by two new deformation para-
meters k) and k), respectively. This way, we obtain the (k. &}, k,)-deformed extension for the gauge field strength at

Ff”/ (11) ( )

125027-9
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Fiy (%)

HV(r)

PHYSICAL REVIEW D 91, 125027 (2015)

KKK = 0o [Kﬁ (fm*z(fjk*zflu) +flu*2(fjk*2f/u’) - [fyifjkflv],,})

1 1 )
- K/Z Z orag <[fpiaj8rf;4k8qasful]<>z(l) + ZeabeLd[8paafri8qacajfykasabadful

+ apfiraqaaacajfﬂkasabadft/l + apfiraqaaacajfulasabadfﬂk]02(())) - Kai*Zaj(fuk*nyl)

+ (@%20;a1) %20, f 1 + aix2(0jax %20, f ) + aixy(ar%20;0,f ) —

(
1
2

[aiajakalf;w]a(3

(ai*Z(akaj*2alf;w) + (ai*2akaj)*2alfﬂu - [aiakajalf;w]*} + [aiakajalfyu]*3):| . (72)

Inspired by the form of Eq. (72), we add and subtract a;%;0;(fu*2f,) in Eq. (65), then assign k to the
a;*20;(fu*2fy) term, and assign a new parameter x, to the sum of the terms ([f,,lai(?jfﬂk]‘w + [fﬂkaiajfyl]*3/+

[ak(‘?,(f#,-fyj)]w —2a;%,0;(f,u*2f.1))- This way, Eq. (67) is generalized into essentially the same form as Eq. (72). This

leads to

3
3 e’ ..
F;l/(l) (x)x,lchxz = 761]91{[ K ([fﬂkfuiflj]*y + [fulfyifkj]*3,) - 2Kai*28j(f;¢k*2ful) - K2([fvlaiajf;4k]*3, + [fﬂkaiajfl/l]*3,

2
+ [akal(fmfyj)],3, —2a;%0;(fue*afu)) + [aiajakalf;w]*}, + [alfyuaiajak]*y

1
~3 ([aiakajalfm/]*z, + [8lfm/aiakaj]*3,) :

+ [akaialajf/w]*},

(73)

Note that the x,-proportional part can be expressed as follows using diamond ¢; and ¢ ;) products:

([fulaiajfyk]*}, + [fukaiajful]*3, + [ax0, (fuifvj)]*}, = 2a;%20;(fu*2fu1)

83 ..
= 26’19"[6’1"19"9 <[fpiajarfykaqasful]oz(l) - [arfpiasajfﬂkaqful}ol + [arfpiajfﬂkasaqful]ol

1
- [fpiarajfﬂkasaqul]ol + ZHabHCd([apfiraqaa8cajfyk8sabadful + apfiraqaa8cajfulas8b8dfﬂk]02(()))) : (74)

Using Eq. (44), one can show that the difference between first two terms in Eq. (65) and the first line in Eq. (68) becomes

1
2 ([fﬂkfuiflj]*s, + [fulf;zifkj]*y) = (Fux2(fp*af ) + fura(fuxafui) = fuif inful,,)

1 .. ,
= Zeuek!epq@” ([8rapfuiaquk8sfyl]<>] - [arapfﬂifjkasaqul]ol + [apfﬂiarfjkaqasfyl}o]

1
+ Z HabGCd[81;araafﬂiaqacfjkasabadfﬂ]02(0)> .

Consequently, the difference between Egs. (73) and (72) in
the case without k, k;, and «; deformations (that is, for
K =Ki—1p = Kj_j, = 1) gives exactly Eq. (52)%, proving
the consistency of our computations, as it should.

*The rest of the terms in Egs. (67) and (72) receive no
deformation; they all contain f,, and therefore they arise when
the partial derivative 0, hits the gauge field carrying the
external index v(u), respectively. One can show that they are
equal to the terms containing f,, in Eq. (52) following a
procedure exactly identical to that in Sec. III.

(75)

V. DISCUSSION AND CONCLUSION

In this article we studied the e*-order #-exact SW map
expansion of U, (1) gauge field theory, following important
recent progress in solving the #-exact SW map expansions
for arbitrary gauge groups/representations [44,45]. We first
focused on the ambiguities between two distinct 9-exact
SW map expansions: the first expansion (I) is obtained by
solving the SW differential equations € exactly [1,44], and
the other (II) is obtained by inverting a known SW solution
[7]. Since the maps relate NC gauge orbits with ordinary
ones, there are two types of freedoms: generic redefinitions
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or gauge transformations of the NC gauge fields, and only
the former will contribute to the dynamics. The redefinition
freedom should be (and it was) taken into account when
dealing with pathologies in the photon and neutrino two-
point functions [40,52]. We then used/applied these two
SW map expansions up to the e’ order to study the
corresponding field-strength expansions and discuss the
gauge-inspired freedom/deformation parameters in each of
the field-strength expansions.

In the first part of the study, we managed to determine
the ambiguity between these two maps explicitly and
transformed it into the standard form given in
Refs. [22,23], and showed that the difference between
these two SW maps for the gauge field at the ¢ order
(52) is generic rather than just gauge transformations. We
found that the SW map ambiguity between these two
U, (1) gauge field expansions is decomposed into totally
symmetric momentum structures which have a lowest
order at &* or #°, which means that the ambiguity can be
expressed in terms of several commutative (yet non-
associative) 3-products. This crucial decomposition
enabled us to perform permutation and relabeling within
the commutative 3-products and obtain the 6-exact
expression for the ambiguity in terms of the commutative
field strength f,,, as shown in the Sec. IIl. Our
observation thus indicates that at the e* order (even just)
the U, (1) SW map expansion can possess much more
profound structures than the prior order.

In the next stage we extended the e?-order gauge field
strength deformation parameter « [52] to the e* order. We
identified that part of the e*-order gauge field strength
should be multiplied by x to keep the consistency con-
dition, while there are other parts which are invariant under
the commutative gauge transformations by themselves, and
thus each of them can be varied independently like the
k-proportional part in the e”> order. This promotes the
introduction (alongside «) of the new parameters k;, and
K, for maps (I) and (I), respectively. Each pair of
k(x");-proportional parts bear an identical structure at the
6? order, yet they differ from the #* order on. The difference
between each «; and «) pair can be put into a relatively
compact form using the generalized star products ¢, (),
and ©y(y), defined in Sec. III. The total difference matches
the result (52) derived from the gauge field ambiguity when
all deformation parameters are switched off.

Besides its own manifestness, the results on the gauge
field strength expansion in this paper can enable the
construction of #-exact, and (k, k;) and/or (k, «})-deformed
U, (1) gauge theory (pure noncommutative Yang-Mills
gauge theory action) up to the four-photon coupling term,
which should then lead to the completion of the one-loop
photon two-point function computation started in Ref. [40]
by adding the four-photon tadpole diagram contributions.
We hope that—Ilike the x parameter in the bubble diagram

PHYSICAL REVIEW D 91, 125027 (2015)

contribution to the photon polarization tensor [40]—
exploring the extended deformation freedom parameter
space (k,k;) and/or (k, ;) would provide enough control
over the pathological divergences in the four-photon-
tadpole diagram. The same term should also contribute
to the NC phenomenology at extreme energies, for example
tree-level NCQED contributions to the 2 — 2 scattering
processes like yy — yy, etc. [53-56].

Knowing the fact that prior studies based on the x,
product have given rise to profound pathologies in both
theory and phenomenology (even more so with the pres-
ence of the gauge freedom parameter x [38-40,43]), we
positively expect that our work in this article will form a
universal basis for future studies on the various potential
physical effects of the generalized star products and the
higher-order gauge freedom parameters «;’s and «}’s.

Finally, it is worth noticing that despite its profound
nature our study on the SW map ambiguity in this paper is
limited to only two distinct SW map expansions. There
should still be many other variants available. The current
methods for solving SW map(s)—for example, open-
Wilson line operators [7], string-/D-brane-inspired analyses
[1,8-10], the Batalin-Vilkovisky formalism, and the (gen-
eralized) SW differential equations [14-16,22,23,44,45]
etc.—are extremely powerful in finding specific (some-
times closed-form) solutions, yet normally they do not
provide us with all possible maps simultaneously.3 SwW
maps also relate Morita-equivalent star products on Poisson
manifolds; their nonuniqueness can be understood as a
local gauge freedom in this context [6,12], which may help
to understand the background (in)dependence of the string
theory. It would be delightful to see any progress alone this
line in the near future.
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