
Classifying BPS states in supersymmetric gauge theories coupled to higher
derivative chiral models

Muneto Nitta1,* and Shin Sasaki2,†
1Department of Physics, and Research and Education Center for Natural Sciences, Keio University,

Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan
2Department of Physics, Kitasato University, Sagamihara 252-0373, Japan

(Received 6 May 2015; published 18 June 2015)

We study N ¼ 1 supersymmetric gauge theories coupled with higher derivative chiral models in four
dimensions in the off-shell superfield formalism.We solve the equation of motion for the auxiliary fields and
find two distinct on-shell structures of the Lagrangian that we call the canonical and noncanonical
branches characterized by zero and nonzero auxiliary fields, respectively. We classify Bogomol’nyi-
Prasado-Sommerfield (BPS) states of the models in Minkowski and Euclidean spaces. In Minkowski space,
we find Abelian and non-Abelian vortices, vortex lumps (or gauged lumps with fractional lump charges) as
1=2BPS states in the canonical branch, and higher derivative generalization of vortices and vortex-(BPS)baby
Skyrmions (or gauged BPS baby Skyrmions with fractional baby Skyrme charges) as 1=4 BPS states in the
noncanonical branch. In four-dimensional Euclidean space, we find Yang-Mills instantons trapped inside a
non-Abelian vortex, intersecting vortices, and intersecting vortex-(BPS)baby Skyrmions as 1=4BPS states in
the canonical branch but no BPS states in the noncanonical branch other than those in the Minkowski space.

DOI: 10.1103/PhysRevD.91.125025 PACS numbers: 11.30.Pb, 11.15.-q, 11.27.+d

I. INTRODUCTION

Low-energy effective theories play an important role in
the study of nonperturbative effects of quantum field
theory, such as the chiral Lagrangian of QCD [1]. In
certain supersymmetric gauge theories, low-energy effec-
tive theories are determined exactly, offering full quantum
spectra of Bogomol’nyi-Prasado-Sommerfield (BPS) states
[2]. BPS states preserve a part of supersymmetry, belonging
to so-called short multiplets of supersymmetry algebra, and
consequently they are stable against quantum corrections
perturbatively and nonperturbatively [3]. The low-energy
effective field theories are constructed by a derivative
expansion and are usually complemented by higher deriva-
tive corrections, as in the chiral perturbation theory [1].
Recently, in our previous paper, BPS states in the

supersymmetric chiral models with higher derivative terms
have been classified in N ¼ 1 supersymmetric theories in
four dimensions [4]. The purpose of this paper is to classify
BPS states in N ¼ 1 supersymmetric gauge theories
coupled with higher derivative chiral models in four-
dimensional Minkowski and Euclidean spaces.
Higher derivative corrections to supersymmetric field

theories have a long history because of the auxiliary field
problem. The auxiliary fields F in the off-shell super-
field formalism of higher derivative models are generically
acted on by space-time derivatives and consequently cannot
be eliminated algebraically to obtain on-shell actions.
Supersymmetric higher derivative terms free from the

auxiliary field problem have been studied individually in
various contexts: theWess-Zumino-Witten term [5–8], low-
energy effective action [9–17], CP1 (Faddeev-Skyrme)
model [18,19], Dirac-Born-Infeld (DBI) action [20,21],
k-field theory [22,23], low-energy effective action on BPS
solitons [24], BPS baby Skyrme model [4,25–27], and
nonlinear realizations of Nambu-Goldstone fields [28]. In
the framework of supergravity, higher derivative terms
[29–33] have been applied to ghost condensations [29,30]
and the Galileon inflation models [31]. Among those, the
four derivative term first found in Ref. [9], that can be
constructed from a (2, 2) Kähler tensor, was rediscovered in
Refs. [29,30] and has recently been used in various contexts.
By using a Kähler tensor containing space-time derivatives,
one can construct higher derivative terms with an arbitrary
number of space-time derivatives [28].
In our previous paper [4], the auxiliary field equations

were found to admit at least two distinct solutions that we
called canonical and noncanonical branches with F ¼ 0
and F ≠ 0, respectively. In particular, BPS baby Skyrmions
(compactons) [25,26] have been found to be 1=4 BPS states
in the noncanonical branch, while BPS lumps are 1=2 BPS
states in the canonical branch [24], although both of them
saturate the same Bogomol’nyi bound. In the former, the
on-shell Lagrangian contains no usual kinetic term and
consists of only a four derivative term, while in the latter,
higher derivative corrections disappear in solutions and
energy. BPS baby Skyrmions as compactons are currently
paid much attention [34,35].
In this paper, we classify BPS states in N ¼ 1 super-

symmetric gauge theories coupled with higher derivative
chiral models in four-dimensional Minkowski and
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Euclidean spaces. Here, we concentrate on the cases where
superpotentials are absent for simplicity. As in the previous
cases without gauge fields, we find canonical and nonca-
nonical branches corresponding to solutions F ¼ 0 and
F ≠ 0 of auxiliary field equations, respectively. We find
that 1=2 BPS states that exist in theories without higher
derivative terms remain 1=2BPS in the canonical branch and
that correspondingBPS states in the noncanonical branch are
1=4BPS states. On the other hand, we also find that 1=4BPS
states that exist in theories without higher derivative terms
remain 1=4 BPS in the canonical branch but there are no
corresponding BPS states in the noncanonical branch. More
precisely, we find that 1=2 BPS equations in the canonical
branch do not receive higher derivative corrections for an
Abrikosov-Nielsen-Olesen (ANO) vortex [36] at the critical
(BPS) coupling, a non-Abelian vortex [37], lumps [38], and
vortex lumps (gauged lumps with fractional lump charges)
[39,40]. We then show that higher derivative generalization
of vortices (that we may call compact vortices) and vortex-
baby Skyrmion (or gauged baby Skyrmions with fractional
baby Skyrme charges) are 1=4 BPS states in the noncanoni-
cal branch. In four-dimensional Euclidean space,we find 1=2
BPS Yang-Mills instantons, 1=4 BPS Yang-Mills instantons
trapped inside a non-Abelian vortex, and 1=4 BPS intersect-
ing vortices with instanton charges in the canonical branch.
These configurations were known in supersymmetric theo-
ries with eight supercharges without higher derivative terms
in 4þ 1 or 5þ 1 dimensions [41–44], and so what we
confirm here is that they are still 1=4 BPS states in theories
with four supercharges inEuclidean four dimensions and that
higher derivative terms are canceled out in the BPS equations
and energy bound. Further, as new configurations, we find
1=4 BPS vortex-lump string intersections with Yang-Mills
instanton charges.We find noBPS states in the noncanonical
branch other than those in Minkowski space.
This paper is organized as follows. In Sec. II, we give a

supersymmetric Lagrangian in the superfield formalism.
The first subsection is devoted to a review for higher
derivative chiral models of chiral multiplets without cou-
pling to gauge fields. In the second subsection, we
introduce vector multiplets and coupling of vector and
chiral multiplets. In Sec. III, we classify BPS states in four-
dimensional Minkowski space. In Sec. IV, BPS states in
four-dimensional Euclidean space are discussed. Section V
is devoted to a summary and discussion. Notations and
conventions are summarized in Appendix A. Explicit
supersymmetry variations of fermions in Euclidean space
are found in Appendix B.

II. HIGHER DERIVATIVE CHIRAL MODEL

In this section, we introduce the four-dimensional
N ¼ 1 supersymmetric higher derivative chiral model
[4,29] and its coupling to the vector multiplet. The super-
symmetric higher derivative chiral model consists of chiral
superfields Φiði ¼ 1;…; nÞ with arbitrary Kähler potential

K, superpotential W, and a symmetric (2, 2) Kähler tensor
Λikj̄ l̄. The tensor Λikj̄ l̄ is an arbitrary function of Φi;Φ†j̄

and its space-time derivatives. Among other things, the
purely bosonic part of the model never contains the space-
time derivatives of the auxiliary fields Fi. Then all the
auxiliary fields are integrated out by the algebraic equation
of motion, and one finds explicit on-shell Lagrangians.
When global symmetries in the model are gauged, the
higher derivative term couples to the vector multiplet. In
the following, we provide the explicit Lagrangian of the
nongauged higher derivative chiral model and its coupling
to the vector multiplet (gauged model).

A. Higher derivative chiral models
without gauge coupling

We first start from the nongauged N ¼ 1 supersym-
metric higher derivative model with chiral superfields Φi.
We employ the Wess-Bagger convention [45] in this paper,
and detailed conventions and notations are summarized
in Appendix A. The component expansion of the chiral
superfield in the chiral base ym ¼ xm þ iθσmθ̄ is

Φi ¼ φiðyÞ þ θψ iðyÞ þ θ2FiðyÞ: ð2:1Þ

Here φi is the complex scalar field, ψ i is the Weyl fermion,
and Fi is the auxiliary complex scalar field. The Lagrangian
of the nongauged higher derivative chiral model is given by

L ¼
Z

d4θKðΦi;Φ†j̄Þ

þ 1

16

Z
d4θΛij̄kl̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

þ
�Z

d2θWðΦiÞ þ ðH:c:Þ
�
; ð2:2Þ

where K is the Kähler potential, Λikj̄ l̄ is a symmetric (2, 2)
Kähler tensor, and W is the superpotential. The fourth
derivative part in the Lagrangian is evaluated as

DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

¼ 16θ2θ̄2
�
ð∂mφ

i∂mφkÞð∂nφ̄
j̄∂nφ̄l̄Þ

−
1

2
ð∂mφ

iFk þ Fi∂mφ
kÞð∂mφ̄j̄F̄l̄ þ F̄j̄∂mφ̄l̄Þ

þ FiF̄j̄FkF̄l̄

�
þ If: ð2:3Þ

Here If stands for terms that contain fermions. Since the
purely bosonic part in Eq. (2.3) saturates the Grassmann
coordinate, only the lowest components in Λikj̄ l̄ contribute
to the bosonic part of the Lagrangian. Then, the bosonic
part of the Lagrangian is
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Lb ¼ gij̄ð−∂mφ
i∂mφ̄j̄ þ FiF̄j̄Þ þ ∂W

∂φi F
i þ ∂W̄

∂φ̄j̄
F̄j̄

þ Λikj̄ l̄ðφ; φ̄Þfð∂mφ
i∂mφkÞð∂nφ̄

j̄∂nφ̄l̄Þ
− 2∂mφ

iFk∂mφ̄j̄F̄l̄ þ FiF̄j̄FkF̄l̄g: ð2:4Þ

Here gij̄ ¼ ∂2K
∂φi∂φ̄j̄ > 0 is the Kähler metric. In order to find

the on-shell Lagrangian, we integrate out the auxiliary
fields Fi. Since the Lagrangian does not contain space-time
derivatives of the auxiliary fields Fi, one can solve the
equation of motion for Fi and find the explicit form of
the purely bosonic part of the on-shell Lagrangian.1 The
equation of motion for the auxiliary fields is

gij̄F
i − 2∂mφ

iFkΛikj̄ l̄∂mφ̄l̄ þ 2Λikj̄ l̄F
iFkF̄l̄ þ ∂W̄

∂φ̄j̄
¼ 0:

ð2:5Þ

As we have advertised, Eq. (2.5) is an algebraic equation,
and it can be solved in principle. There are distinct on-shell
branches associated with different solutions to Eq. (2.5). In
general, there are two classes of solutions. The first class
has a smooth limit Λikj̄ l̄ → 0 to the ordinary (i.e. without
higher derivative terms) theory. For this class of solutions,
higher derivative terms are introduced as perturbations to
the ordinary (with second space-time derivatives) theory in
the on-shell Lagrangian. We call this case the canonical
(perturbative) branch. On the other hand, the second class
of solutions does not have a smooth limit Λikj̄ l̄ → 0 to the
ordinary theory. For this class of solutions, the higher
derivative terms enter into the on-shell Lagrangian non-
perturbatively. We call this case the noncanonical (non-
perturbative) branch. In Ref. [4], we studied on-shell
structures of the Lagrangian (2.4) for the single chiral
superfield model. When W ≠ 0, the equation of motion for
the auxiliary field becomes that of the cubic power of F,
and the solutions can be obtained by Cardano’s method
[21]. The explicit solutions are quite nonlinear in K, Λ, W,
and ∂mφ. Therefore, the on-shell Lagrangian becomes a
highly complicated function of the scalar field φ. In the
following, we consider models with W ¼ 0 and show the
explicit on-shell Lagrangians in the canonical and nonca-
nonical branches.
Canonical branch.—It is apparent that Fi ¼ 0 is always

a solution to Eq. (2.5). In this case, the bosonic part of the
on-shell Lagrangian is

Lb ¼−gij̄∂mφ
i∂mφ̄j̄þΛikj̄ l̄ðφ; φ̄Þð∂mφ

i∂mφkÞð∂nφ̄
j̄∂nφ̄l̄Þ:
ð2:6Þ

The tensor Λikj̄ l̄ determines higher derivative terms in the
Lagrangian. Since Λikj̄ l̄ is an arbitrary function of φ; φ̄, one
can construct arbitrary higher derivative terms for n ¼ 1

models. For example, the scalar part of the N ¼ 1 super-
symmetric Dirac-Born-Infeld action [20] is obtained by the
single chiral superfield model with a flat Kähler potential
and

Λ ¼ 1

1þ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ A2Þ − B

p ;

A ¼ ∂mΦ∂mΦ†; B ¼ ∂mΦ∂mΦ∂nΦ†∂nΦ†: ð2:7Þ

The supersymmetric Faddeev-Skyrme model is obtained by
the CP1 Fubuni-Study metric Kφφ̄ ¼ 1

ð1þjφj2Þ2 and [4]

Λ ¼ ð∂mΦ∂mΦ∂nΦ†∂nΦ†Þ−1

×
1

ð1þ ΦΦ†Þ4 ½ð∂mΦ†∂mΦÞ2 − ∂mΦ∂mΦ∂nΦ†∂nΦ†�:

ð2:8Þ

This does not contain an additional term other than
Faddeev-Skyrme term, in contrast to Refs. [18,19] that
contain an additional term. The other examples include a
supersymmetric completion of the Galileon inflation model
[29], the ghost condensation [30], and the effective action
of the supersymmetric Wess-Zumino model and
QCD [6,10].
Noncanonical branch.—Although it is not easy to find

explicit solutions Fi ≠ 0 for the n > 1 case, one finds the
solution for a single chiral superfield model [4]:

F ¼ eiη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Kφφ̄

2Λ
þ ∂mφ∂mφ̄

r
; ð2:9Þ

where η is a phase factor and Kφφ̄ ¼ ∂2K
∂φ∂φ̄. Then the

bosonic part of the on-shell Lagrangian in the noncanonical
branch is

Lb ¼ Λj∂mφ∂mφj2 − Λð∂mφ∂mφ̄Þ2 − K2
φφ̄

4Λ
: ð2:10Þ

In this case, the ordinary canonical (second space-time
derivative) kinetic term cancels out, and the on-shell
Lagrangian contains higher derivative terms only. An
example is the BPS baby Skyrme model [26], where Λ
is given by

1There are space-time derivatives of the auxiliary fields Fi in
the fermion term If . Solutions to Fi that include fermions are
obtained order by order of the fermions. Since we are interested in
the classical configurations of fields, these fermionic contribu-
tions are irrelevant in this paper.
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Λ ¼ 1

ð1þ ΦΦ†Þ4 : ð2:11Þ

The Kähler metric is the Fubini-Study metric of CP1.
A few comments are in order for the noncanonical

branch. First, since FF̄ ≥ 0, the fields satisfy the constraint

∂mφ∂mφ̄ −
Kφφ̄

2Λ
≥ 0: ð2:12Þ

Second, the last term in Eq. (2.10) is considered as the
scalar potential when Λ does not contain a space-time
derivative term. One can introduce an arbitrary scalar
potential without the superpotential W or the D-term
potential in the noncanonical branch. This is an alternative
way to introduce the scalar potential in supersymmetric
models [32].

B. Gauged higher derivative chiral models

In this subsection, we study couplings of the gauge field
to the higher derivative chiral models. We consider the
higher derivative model of the type (2.2) where some global
symmetries are assumed. Let us consider the chiral super-
fields Φiaða ¼ 1;…; dimGÞ belonging to the fundamental
representation of global symmetry group G with an addi-
tional flavor index i.2 Then the fourth derivative term which
preserves the global symmetry G is

1

16

Z
d4θΛikj̄ l̄;ab

cdDαΦiaDαΦkbD̄ _αΦ
†j̄
c D̄ _αΦ†l̄

d ; ð2:13Þ

where the Kähler tensor Λikj̄ l̄;ab
cd has indices of the (anti)

fundamental representation of G.
The gauge field is introduced by the N ¼ 1 vector

superfield V with gauge group G. The generators
Tâðâ ¼ 0; 1;…; dimG − 1Þ of the gauge algebra G are
normalized as Tr½TâTb̂� ¼ kδâ b̂ðk > 0Þ. The component
expansion of V ¼ VâTâ in the Wess-Zumino gauge is

V ¼ −ðθσmθ̄ÞAmðxÞ þ iθ2θ̄ λ̄ðxÞ − iθ̄2θλðxÞ þ 1

2
θ2θ̄2DðxÞ:

ð2:14Þ

Here, Am is the gauge field, λα; λ̄ _α are the gauginos, andD is
the auxiliary real scalar field. All the fields belong to the
adjoint representationofG. The couplingof thegauge field to
the higher derivative terms is introduced by gauge covarian-
tizing the supercovariant derivatives in Eq. (2.13). The gauge
covariantized supercovariant derivative is defined by

DαΦia ¼ DαΦia þ ðΓαÞabΦib: ð2:15Þ

Here Γα is the gauge connection defined by

Γα ¼ e−2gVDαe2gV; ð2:16Þ

where g is the gauge coupling constant. The gauge trans-
formations of the superfields are

Φi → e−iΘΦi; e2gV → e−iΘ
†
e2gVeiΘ; ð2:17Þ

where Θ ¼ Θâðx; θ; θ̄ÞTâ is a gauge parameter chiral super-
field. Then the quantities DαΦi; D̄ _αΦ†ī are transformed
covariantly under the gauge transformation:

DαΦi → e−iΘDαΦi; D̄ _αΦ†ī → D̄ _αΦ†īeiΘ
†
: ð2:18Þ

We note that the Kähler tensor Λikj̄ l̄;ab
cd becomes a function

of Φ;Φ† and V, in general.
Now we look for the concrete realizations of the gauge

invariant generalization of the higher derivative term (2.13).
We find a manifestly gauge invariant generalization of
(2.13) is given by

−
1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†; VÞðD̄ _αΦ†j̄e2gVDαΦiÞ

× ðD̄ _αΦ†l̄e2gVDαΦkÞ; ð2:19Þ

where the Kähler tensor is

Λikj̄ l̄ ab
cd ¼ Λikj̄ l̄ðΦ;Φ†; VÞðe2gVÞcaðe2gVÞdb ð2:20Þ

and Λikj̄ l̄ is a gauge invariant (2, 2) Kähler tensor which is a
function of Φ;Φ†; V.
The component expansion of the fourth derivative term

(2.19) is

−
1

16
ðD̄ _αΦ†j̄e2gVDαΦiÞðD̄ _αΦ†l̄e2gVDαΦkÞ

¼ θ2θ̄2
�
ðDmφ̄j̄

aDnφiaÞðDmφ̄
l̄
bDnφ

kbÞ

−
1

2
ðDmφ

iaFkb þ FiaDmφ
kbÞðDmφ̄j̄

aF̄l̄
b þ F̄j̄

aDmφ̄l̄
bÞ

þFiaF̄j̄
aFkbF̄l̄

b

�
þ I0f; ð2:21Þ

where If 0 is terms that contain fermions. Again, there are
no auxiliary fields with space-time derivatives in the
purely bosonic terms. Since the bosonic terms in
D̄ _αΦ†DαΦD̄ _αΦ†DαΦ already saturate the Grassmann coor-
dinate, the factor e2gV does not contribute to the purely
bosonic sector of the Lagrangian. However, the factor e2gV

is necessary for the gauge invariance of the higher

2It is straightforward to generalize the result in this subsection
to other representations. Therefore, we consider the fundamental
representation of G for the chiral superfield Φa throughout this
paper.
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derivative terms, and this indeed contributes to the fermionic
part I0f in Eq. (2.21). We also note that the lowest compo-
nents in Λikj̄ l̄ come from the chiral superfields only. This is
because the lowest component in the vector superfield V
contains the Grassmann coordinate θ in the Wess-Zumino
gauge (2.14). In Ref. [26], a three-dimensional analogue of
the gauge invariant higher derivativemodel for aUð1Þ gauge
group was discussed.
Introducing the ordinary kinetic terms for Φia and the

gauge field, the total Lagrangian we consider is

L¼
Z

d4θKðΦ†;Φ;VÞ

−
1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†;VÞðD̄ _αΦ†j̄e2gVDαΦiÞ

×ðD̄ _αΦ†l̄e2gVDαΦkÞþ 1

16kg2
Tr

�Z
d2θWαWαþðH:c:Þ

�

−2κg
Z

d4θTrV: ð2:22Þ

Here we have introduced the Fayet-Iliopoulos parameter κ
for the purpose of later discussions. The field strength of
the vector superfield V is defined by

Wα ¼ −
1

4
D̄2ðe−2gVDαe2gVÞ: ð2:23Þ

Throughout this paper, we consider the gauge invariant
Kähler potential of the form KðΦ†;Φ; VÞ ¼
1
2
ðKðΦ†e2gV;ΦÞ þ KðΦ†; e2gVΦÞÞ and general gauge group

G if not mentioned. Then, the bosonic component of the
Lagrangian (2.22) is

Lb ¼ −
∂2K

∂φ̄j̄
a∂φib

Dmφ̄
j̄
aDmφib −

∂2K

∂φ̄j̄
a∂φib

F̄j̄
aFib

þ g
2
Dâ

�
φ̄j̄
cðTâÞcd

∂K
∂φ̄j̄

d

þ ∂K
∂φic ðTâÞcdφid − 2κδâ0

�

þ 1

k
Tr

�
−
1

4
FmnFmn þ 1

2
D2

�

þ Λikj̄ l̄ðφ; φ̄Þ
�
ðDmφ̄j̄

aDnφiaÞðDmφ̄
l̄
bDnφ

kbÞ

−
1

2
ðDmφ

iaFkb þ FiaDmφ
kbÞðDmφ̄j̄

aF̄l̄
b þ F̄j̄

aDmφ̄l̄
bÞ

þ FiaF̄j̄
aFkbF̄l̄

b

�
; ð2:24Þ

where we have assigned the Uð1Þ generator to T0. The
gauge field strength is

Fmn ¼ ∂mAn − ∂nAm þ ig½Am; An�: ð2:25Þ

The equation of motion for the auxiliary field D is3

Dâ þ g
2

�
φ̄j̄
cðTâÞcd

∂K
∂φ̄j̄

d

þ ∂K
∂φic ðTâÞcdφid

�
− gκδâ0 ¼ 0:

ð2:26Þ

The equation of motion for F̄j̄
a is

∂2K

∂φ̄j̄
a∂φib

Fib − Λikj̄ l̄ðφ; φ̄Þ½Dmφ
ibDmφ̄j̄

bF
ka

þDmφ
iaDmφ̄l̄

bF
kb − 2FiaFkbF̄l̄

b� ¼ 0: ð2:27Þ

As in the case of the nongauged chiral superfield models,
there are two on-shell branches associated with solutions
to Eq. (2.27).
Canonical branch.—We first consider the canonical

branch. One finds that Fia ¼ 0 is always a solution.
Then, the on-shell Lagrangian in the canonical branch is

Lb ¼ −
∂2K

∂φ̄j̄
a∂φib

Dmφ̄
j̄
aDmφib

þ Λikj̄ l̄ðφ; φ̄ÞðDmφ̄j̄
aDnφiaÞðDmφ̄

l̄
bDnφ

kbÞ

−
g2

2

�
1

2
φ̄j̄
cðTâÞcd

∂K
∂φ̄j̄

d

þ 1

2

∂K
∂φic ðTâÞcdφid − κδâ0

�
2

−
1

4k
TrFmnFmn: ð2:28Þ

The vacuum of the model is determined by the D-term
condition

φ̄ī
cðTâÞcdφid − κδa0 ¼ 0: ð2:29Þ

We stress that Λikj̄ l̄ does not contain the space-time
derivatives on Φ (Φ†), unlike the nongauged cases for
which the space-time derivative can act on Φ (Φ†) in Λikj̄ l̄.
This is because the gauge covariant derivative of a chiral
superfield DmΦia does not provide supersymmetric cou-
plings of the gauge field. From now on, we therefore
consider the tensor Λikj̄ l̄ which never contains the space-
time derivatives of the superfields.
Noncanonical branch.—It is not so easy to find a Fia ≠ 0

solution even for the single chiral superfield model.
However, we find that a Fa ≠ 0 solution can be explicitly
written down for single chiral superfield models with a
Uð1Þ gauge group as

3We never introduce higher derivative terms of the vector
superfield V. Therefore, the equation of motion for D is always
linear and can be solved trivially.
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F0 ¼ eiη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Kφφ̄

2Λ
þDmφDmφ̄

r
; ð2:30Þ

where η is a phase factor. The solution in Eq. (2.30) is just
the gauge covariantized counterpart of that in Eq. (2.9). The
fields satisfy the gauge covariantized constraint (2.12):

jF0j2 ¼ −
Kφφ̄

2Λ
þDmφDmφ̄ ≥ 0: ð2:31Þ

Then the bosonic part of the on-shell Lagrangian in the
noncanonical branch is

Lb ¼−
1

4
FmnFmn−

g2

2

�
1

2
φ̄
∂K
∂φ̄þ1

2

∂K
∂φφ− κ

�
2

þΛðjDmφDmφj2− ðDmφDmφ̄Þ2Þ− ðKφφ̄Þ2
4Λ

; ð2:32Þ

where Fmn ¼ ∂mAn − ∂nAm is the field strength of the
Uð1Þ gauge field. An example of the Lagrangian (2.32) is a
supersymmetric generalization of the gauged BPS baby
Skyrme model [35] whose potential term is determined by
the Kähler potential K through the D term and the term
K2

φφ̄=Λ. In this case, the explicit function Λ is given
in Eq. (2.11).

III. BPS STATES IN MINKOWSKI SPACE

In this section, we investigate BPS configurations of the
model (2.22) in four-dimensional Minkowski space. BPS
configurations in supersymmetric theories preserve parts of
supersymmetry. BPS equations are obtained from the
condition that the on-shell supersymmetry transformation
of the fermions in the model vanishes: δonξ ψα ¼ δonξ λα ¼ 0.
Here δonξ (δoffξ ) is the on-shell (off-shell) supersymmetry
transformation by the parameters ξα, ξ̄ _α. The off-shell
supersymmetry variation of the fermions ψ , λ is

δoffξ ψ ia
α ¼

ffiffiffi
2

p
iðσmÞα _αξ̄ _αDmφ

ia þ
ffiffiffi
2

p
ξαFia; ð3:1Þ

δoffξ λα ¼ iξαDþ ðσmnÞαβξβFmn: ð3:2Þ

The on-shell supersymmetry transformations are obtained
by substituting the solutions of the auxiliary fields equa-
tions into F and D. Therefore, they have distinct structures
in the canonical and noncanonical branches.
In Ref. [4], we studied BPS equations in the nongauged

higher derivative models given in Eq. (2.4) where no gauge
fields are present. We derived the 1=2 BPS domain wall and
lump equations in the canonical branch. These equations
are the same for the ordinary (without higher derivative
term) theory. We calculated the BPS bound of the on-shell
action associated with these configurations. Then we found
that the BPS bound is given by the ordinary tension of the
domain wall and the lump (topological) charge,

respectively. Namely, higher derivative effects are totally
canceled in the 1=2 BPS domain wall and lump. In the
noncanonical branch, we found 1=4 BPS configurations for
the domain wall junctions and lump-type solitons. The
equation for the domain wall junction receives higher
derivative contributions, while the associated BPS bound
of the Lagrangian is expressed by the ordinary domain wall
tension and the junction charge. For the lump-type soliton,
it is considered as a compacton, which is a soliton with a
compact support. Indeed, when the Kähler potential K and
Λ are chosen appropriately, the 1=4 BPS equations in
Ref. [4] have compacton-type solutions [26].
In the following subsections, we proceed with the

analysis of the BPS configurations for the gauged higher
derivative chiral models given in Eq. (2.22). For the ordinary
N ¼ 1 supersymmetric gauge theory with fundamental
matter in Minkowski space, there are BPS vortices which
are codimension-two solitons. We study codimension-two
vortex configurations in the canonical and noncanonical
branches of the model (2.22).

A. Canonical branch

We start from the flat Kähler potential K ¼ Φ†īe2gVΦi

and look for the vortex configurations. The static ansatz for
the vortex is given by

φia ¼ φiaðx1; x2Þ; F12 ≠ 0; ð3:3Þ

where the other components of Fmn all vanish. In the
canonical branch, we have the solution Fia ¼ 0. Then, the
on-shell supersymmetry variations of the fermions are

δψ i ¼
ffiffiffi
2

p
i

� ðD1 − iD2Þφiξ̄_2

ðD1 þ iD2Þφiξ̄_1

�
¼ 0; ð3:4Þ

δλ ¼ −i
�

ξ1F12 − ξ1D

−ξ2F12 − ξ2D

�
¼ 0; ð3:5Þ

where Dâ ¼ −gðφ̄ī
cðTâÞcdφid − κδâ0Þ. The vortex configu-

ration is obtained by imposing the following projection
condition on the supersymmetry parameter:

1

2
ðσ1 þ iσ2Þξ̄ ¼ 0: ð3:6Þ

This is equivalent to the condition ξ̄_2 ¼ ξ1 ¼ 0 so that the
projection (3.6) leaves a half of N ¼ 1 supersymmetry.
Therefore, we obtain the following BPS equations:

D̄zφ
ia¼ 0; Fâ

12−gðφ̄ī
cðTâÞcdφid− κδâ0Þ¼ 0: ð3:7Þ

Here we have defined z≡ 1
2
ðx1 þ ix2Þ andDz ≡D1 − iD2,

D̄z ≡D1 þ iD2. This is just the ordinary 1=2 BPS Abelian
(ANO) or non-Abelian vortex equation [37]. Now we
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calculate the Lagrangian bound4 associated with the BPS
equations (3.7). Using the first condition in Eq. (3.7), we
find the higher derivative terms vanish:

Λikj̄ l̄ðDmφ̄j̄
aDnφiaÞðDmφ̄

l̄
bDnφ

kbÞ

¼ 1

4
Λikj̄ l̄ðDzφ

iaD̄zφ
kb þ D̄zφ

iaDzφ
kbÞ

× ðDzφ̄
j̄
aD̄zφ̄

l̄
b þ D̄zφ̄

j̄
aDzφ̄

l̄
bÞ

¼ 0: ð3:8Þ
Then, by using the first and the second equations in (3.7),
we obtain the Lagrangian bound

L ¼ κgF0
12: ð3:9Þ

Here F0
12 is the Uð1Þ flux density in the ðx1; x2Þ plane.

Integrating it in the ðx1; x2Þ plane, we obtain the ordinary
vortex topological charge. Therefore, in the canonical
branch, all the higher derivative corrections to the 1=2
BPS vortex are canceled in both the equations (3.7) and the
Lagrangian bound (3.9). This is a conceivable result, since
the BPS nature is determined by the supersymmetry
algebra. The model (2.28) includes higher derivative terms,
but supersymmetry is manifestly realized. Then we expect
that the BPS structure is protected against higher derivative
corrections. A typical example is the world-volume theory
of D-branes where BPS states in super Yang-Mills theory
linearize the non-Abelian DBI action canceling the higher
derivative corrections [47]. While the higher derivative
corrections exist in the non-Abelian vortex effective theory,
the higher derivative effects are canceled in the BPS
equation and energy of CPN−1 lumps inside a non-
Abelian vortex [24]. We also comment that this is the
same conclusion discussed in the domain wall and lump in
the nongauged chiral models [4].
We next consider the general gauge invariant Kähler

potential of the form KðΦ†;Φ; VÞ ¼ 1
2
ðKðΦ†e2gV;ΦÞ þ

KðΦ†; e2gVΦÞÞ. The BPS equations for the 1=2 BPS
projection condition (3.6) are

D̄zφ
ia ¼ 0;

Fâ
12 −

g
2

�
φ̄j̄
cðTâÞcd

∂K
∂φ̄j̄

d

þ ∂K
∂φic ðTâÞcdφid − κδâ0

�
¼ 0:

ð3:10Þ
By using the first condition in (3.10), we find that the
higher derivative terms vanish. Then, the Lagrangian bound
associated with the BPS condition (3.10) is

L ¼ −
1

2

∂2K

∂φ̄j̄
a∂φib

D̄zφ̄
j̄
aDzφ

ib

−
g2

2

�
1

2
φ̄j̄
cðTâÞcd

∂K
∂φ̄j̄

d

þ 1

2

∂K
∂φic ðTâÞcdφid − κδâ0

�
2

−
1

2
ðFâ

12Þ2

¼ −εst∂sN t þ κgF0
12; ð3:11Þ

where we have defined the following quantity:

N s¼
i
2

�∂K
∂φ̄j̄

a

Dsφ̄
j̄
a−

∂K
∂φiaDsφ

ia

�
ðs; t¼ 1;2Þ: ð3:12Þ

The first term in Eq. (3.11) is the gauge covariant
generalization of the lump charge density. Then the
Lagrangian bound is given by the sum of the lump and
the vortex charge densities. The BPS configurations whose
energy bound is given by Eq. (3.11) have been studied in
the gauged nonlinear sigma models where higher derivative
corrections are absent [39,40]. In there, the configurations
admit fractional lump charges. Once again, we find that all
the higher derivative effects are canceled on the 1=2 BPS
states (3.10).

B. Noncanonical branch

We next consider BPS equations in the noncanonical
branch. The Lagrangian is given by (2.32) where the gauge
group is Uð1Þ and K ¼ Φ†e2gVΦ. The nonzero solution of
the auxiliary field F0 is given in Eq. (2.30). The super-
symmetry variation of the fermions is

δψ ¼
ffiffiffi
2

p �
iðD1 − iD2Þφξ̄_2 þ ξ1F0

iðD1 þ iD2Þφξ̄_1 þ ξ2F0

�
¼ 0; ð3:13Þ

δλ ¼ −i
�

ξ1F12 − ξ1D

−ξ2F12 − ξ2D

�
¼ 0: ð3:14Þ

Since the auxiliary field F0 is nonzero in the noncanonical
branch, the 1=2 BPS projection (3.6) gives the equa-
tions (3.7) and the following additional condition:

F0 ¼ eiη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2Λ
þDmφDmφ̄

r
¼ 0: ð3:15Þ

Solutions that satisfy the ordinary vortex equations (3.7) do
not satisfy the condition in Eq. (3.15) for general Λ.5 We
therefore look for another BPS condition. A natural
candidate is the gauge covariantized generalization of
the BPS lumps in the noncanonical branch. Following4When the Lagrangian (2.28) contains higher order time

derivatives of fields, the positive energy Hamiltonian is not
defined in general [46]. Therefore, we calculate the Lagrangian
bound, rather than the energy bound, for the BPS configurations.

5However, when Λ is chosen appropriately, it is possible that
the ordinary vortex solution satisfies the condition (3.15).
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the BPS lumps studied in Ref. [4], we consider the 1=4 BPS
projection conditions

1

2
ðσ1 þ iσ2Þα _αξ̄ _α ¼ 0;

1

2
ðσ1 − iσ2Þα _αξ̄ _α ¼ iξα: ð3:16Þ

Then, from the variation of the fermions, we find a set of
1=4 BPS equations:

D̄zφ¼−ieiη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2Λ
þ1

2
ðDzφ̄D̄zφþ D̄zφ̄DzφÞ

r
;

F0
12−gðφ̄φ− κÞ¼ 0: ð3:17Þ

The first equation is the gauge covariantized generalization
of the compacton-type equation, while the second equation
is that for the ANO vortex. We call solutions to these
equations as higher derivative vortices. These equations
may admit a vortex with a compact support for the scalar
fields (that we may call a compact vortex). See Ref. [48] for
a vortex with a compact support which are non-BPS in
nonsupersymmetric theories.
We then calculate the Lagrangian bound associated with

the BPS condition (3.20). Using the first condition in
Eq. (3.20), we obtain the following relation:

ΛfðDmφDmφÞðDnφ̄Dnφ̄Þ − ðDmφDmφ̄Þ2g

¼ −
1

4
ΛðD̄zφDzφ̄ −DzφD̄zφ̄Þ2 ¼ −

1

4Λ
: ð3:18Þ

By using this relation and the second equation in Eq. (3.17),
we calculate the BPS bound of the Lagrangian as

L ¼ κgF0
12: ð3:19Þ

This is the topological vortex charge density. Therefore,
Eqs. (3.17) correspond to the higher derivative generali-
zation of the ANO vortex rather than the compacton. We
comment that the higher derivative terms cancel out in the
Lagrangian bound even in the noncanonical branch.
However, the BPS equation (3.20) receives higher deriva-
tive corrections. The situation is quite similar to the 1=4
BPS domain wall junction and the compacton in the
nongauged model [4]. In there, there are higher derivative
corrections to the BPS equations. However, the bounds for
the BPS states do not receive higher derivative corrections.

Now we consider the general gauge invariant Kähler
potential. A set of 1=4 BPS equations is obtained as

D̄zφ ¼ −ieiη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Kφφ̄

2Λ
þ 1

2
ðDzφ̄D̄zφþ D̄zφ̄DzφÞ

r
;

F0
12 −

g
2

�
φ̄
∂K
∂φ̄ þ ∂K

∂φ φ − κ

�
¼ 0: ð3:20Þ

Using the first condition in Eq. (3.20), we find that the
higher derivative terms cancel out in the Lagrangian bound.
The result is

L ¼ −εst∂sN t þ κgF0
12 ðs; t ¼ 1; 2Þ; ð3:21Þ

where

N s ¼
i
2
ðKφ̄Dsφ̄ − KφDsφÞ: ð3:22Þ

This is precisely the sum of the lump and the vortex
charges. We therefore expect that Eqs. (3.20) describe
composite states of the higher derivative ANO vortex and
the BPS baby Skyrmions, or simply gauged BPS baby
Skyrmions. Solutions should carry fractional baby
Skyrmion charges as for the vortex lumps in the canonical
branch. BPS states in Minkowski space are summarized in
Table I.

IV. BPS STATES IN EUCLIDEAN SPACE

In four-dimensional Euclidean space, one can consider
codimension-four objects. Typical examples are the Yang-
Mills instantons and the instantons trapped inside (inter-
secting) vortices. In this section, we study codimension-four
BPS configurations of the higher derivative model (2.22) in
Euclidean space. The off-shell supersymmetry variation of
the fermions in Euclidean space is

δξψ
i
α ¼

ffiffiffi
2

p
iðσmE Þα _αξ̄ _αDmφ

i þ
ffiffiffi
2

p
ξαFi; ð4:1Þ

δξλα ¼ iξαDþ ðσmn
E ÞαβξβFmn; ð4:2Þ

where m ¼ 1, 2, 3, 4 and the sigma matrices in the
Euclidean space are defined by

TABLE I. BPS states in the gauged higher derivative (HD) chiral model and super Yang-Mills (SYM) with gauged nonlinear sigma
model (SUSY NLSM). Theories are defined in Minkowski space. The BPS states are classified into the lump (L) type, the vortex (V)
type, and the vortex-lump (VL) type.

SYMþ SUSY NLSM Canonical Noncanonical

L type 1=2 BPS lump 1=2 BPS lump 1=4 BPS baby Skyrmion
V type 1=2 BPS vortex 1=2 BPS vortex 1=4 BPS HD vortex
VL type 1=2 BPS vortex lump 1=2 BPS vortex lump 1=4 BPS vortex-baby Skyrmion
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ðσmE Þα _α ¼ ði~τ; 1Þ; ðσ̄mE Þ _αα ¼ ð−i~τ; 1Þ: ð4:3Þ

Here, ~τ are the Pauli matrices. The explicit supersymmetry
variations of the fermions are found in Appendix B. We
note that, in Euclidean space, ξα and ξ̄ _α are independent
from each other and they are not complex conjugate
anymore. Then it is possible to consider BPS projections
that drop a chiral half of N ¼ 1 supersymmetry ξα ¼ 0,
ξ̄ _α ≠ 0. Indeed, the standard Yang-Mills instantons exist in
our model (2.22), that preserve the (anti)chiral half of
supersymmetry and are 1=2 BPS configurations. Since BPS
states with codimensions less than four in Euclidean space
are the same as those in Minkowski space, discussed in the
previous section, we focus on codimension-four BPS states
in the higher derivative model in the following subsections.

A. Canonical branch

We start from the Lagrangian (2.22) where the Kähler
potential is flat. We consider the 1=4 BPS projection
condition6

ξ̄_1 ≠ 0; ξ̄_2 ¼ ξ1 ¼ ξ2 ¼ 0: ð4:4Þ

Then from the supersymmetry variation of the fermions, we
obtain the following set of 1=4 BPS equations in the
canonical branch:

D̄zφ
i ¼ D̄wφ

i ¼ 0;

Fâ
12 − Fâ

34 ¼ gðφ̄ī
cðTâÞcdφid − δâ0κÞ;

Fâ
13 þ Fâ

24 ¼ Fâ
14 − Fâ

23 ¼ 0; ð4:5Þ

where we have defined complex coordinates and deriva-
tives with respect to them by

z≡ 1

2
ðx1 þ ix2Þ; w≡ 1

2
ðx4 þ ix3Þ;

Dz ≡D1 − iD2; Dw ≡D4 − iD3: ð4:6Þ

Using the condition D̄zφ
i ¼ D̄wφ

i ¼ 0, we find that the
higher derivative terms vanish for the BPS configuration
(4.5):

Λikj̄ l̄ðDmφ̄
j̄
aDmφ̄l̄

bÞðDnφ
ibDnφkbÞ

¼ 1

4
Λikj̄ l̄ðDzφ

iaD̄zφ
kb þ D̄zφ

iaDzφ
kb þDwφ

iaD̄wφ
kb

þ D̄wφ
iaDwφ

kbÞðDzφ̄
j̄
aD̄zφ̄

l̄
b þ D̄zφ̄

j̄
aDzφ̄

l̄
b

þDwφ̄
j̄
aD̄wφ̄

l̄
b þ D̄wφ̄

j̄
aDwφ̄

l̄
bÞ

¼ 0: ð4:7Þ

Then the BPS bound of the Lagrangian associated with the
configuration (4.5) is

LE ¼ −κgðF0
12 − F0

34Þ þ
1

4k
Tr½Fmn

~Fmn�; ð4:8Þ

where ~Fmn ¼ 1
2
εmnpqFpq is the Hodge dual of the gauge

field strength Fmn. We note that the sign of the Lagrangian
in Euclidean space is flipped from that in Minkowski space.
The first and the second terms in (4.8) correspond to the
vortex charge densities in the ðx1; x2Þ and ðx3; x4Þ planes,
respectively. The last term is the instanton charge density.
Therefore, solutions to Eq. (4.5) are the Yang-Mills
instantons trapped inside intersecting vortices. A set of
these equations were first found in Refs. [41–44] for
supersymmetric theories with eight supercharges without
higher derivative terms, and configurations were shown to
be 1=4 BPS states [42]. Solutions can be constructed in
terms of the moduli matrix [43] and are mathematically
characterized in terms of amoeba and tropical geom-
etry [44].
We next consider the general gauge invariant Kähler

potential. In this case, a set of 1=4 BPS equations that we
obtain is

D̄zφ
i ¼ D̄wφ

i ¼ 0;

Fâ
12 − Fâ

34 ¼
g
2

�
φ̄j̄
cðTâÞcd

∂K
∂φ̄j̄

d

þ ∂K
∂φic ðTâÞcdφid − κδâ0

�
;

Fâ
13 þ Fâ

24 ¼ Fâ
14 − Fâ

23 ¼ 0: ð4:9Þ

Using Eqs. (4.9), the BPS bound of the Lagrangian can be
evaluated as

LE ¼ εst∂sN t − εs
0t0∂s0N t0 − κgðF0

12 − F0
34Þ

þ 1

4k
Tr½Fmn

~Fmn�; ð4:10Þ

where s; t ¼ 1; 2 and s0; t0 ¼ 3; 4. The first and the second
terms correspond to the gauge covariantized extension of
the lump charge densities in the ðx1; x2Þ and ðx3; x4Þ planes,
respectively. The third and the fourth terms are vortex
charge densities in the ðx1; x2Þ and ðx3; x4Þ planes, respec-
tively, and the last term is the Yang-Mills instanton charge
density. Note that, when the gauge field vanishes, the
configuration corresponds to the intersecting topological
vortex lumps in the ðx1; x2Þ and ðx3; x4Þ planes.

B. Noncanonical branch

Finally, we consider the noncanonical branch where the
gauge group is Uð1Þ. The 1=4 BPS configurations in the
two-dimensional subspaces are constructed by the same
ways discussed in the Minkowski case. We now look for
codimension-four BPS states. Since the solution of the

6The other combinations, for example, ξ2 ≠ 0;ξ1 ¼ ξ̄_1 ¼ ξ̄_2 ¼ 0
and so on, give essentially the same form of the BPS equations.
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auxiliary field is not zero in the noncanonical branch, the
1=4 BPS projection (4.4) gives the BPS equations (4.5) and
the additional condition F0 ¼ 0 (3.15). As in the case of the
Minkowski space, the solutions to Eqs. (4.5) do not satisfy
the condition (3.15) for general Λ. Therefore, the 1=4 BPS
configurations associated with the projection (4.4) do not
exist in the noncanonical branch. BPS states in Euclidean
space are summarized in Table II.

V. SUMMARY AND DISCUSSION

In this paper, we have classified BPS states in N ¼ 1
supersymmetric gauge theories coupled with higher deriva-
tive chiral models in four Minkowski and Euclidean
dimensions. We have found canonical and noncanonical
branches corresponding to solutions F ¼ 0 and F ≠ 0 of
auxiliary field equations, respectively. 1=2 BPS states in
theories without higher derivative terms remain 1=2 BPS
in the canonical branch, and the corresponding BPS states in
the noncanonical branch are 1=4 BPS states. 1=4BPS states
in theories without higher derivative terms remain 1=4 BPS
in the canonical branch, but there are no corresponding BPS
states in the noncanonical branch. We have obtained 1=2
BPS equations for an ANO vortex, a non-Abelian vortex, a
lump, and a vortex lump in the canonical branch and 1=4
BPS higher derivative generalization of the ANO vortices in
the noncanonical branch. In four Euclidean dimensions, we
have obtained the 1=4 BPS Yang-Mills instantons trapped
inside a non-Abelian vortex, and 1=4 BPS intersecting
vortices or vortex-lump intersections with instanton charges
in the canonical branch and no codimension-four BPS states
in the noncanonical branch.
While we have given the superfield Lagrangian of

gauged multicomponent chiral models, we have been able
to obtain on-shell Lagrangian only for the cases of a single
component because of difficulty solving the equations of
motion for the auxiliary fields for the multicomponent
cases. Obtaining on-shell Lagrangians for gauged or non-
gauged multicomponent chiral models, in particular in the
presence of an isometry large enough, remains a future
problem. Our method will give a simple way to construct
higher derivative nonlinear sigma models on Kähler

manifolds by gauging chiral fields with flat target spaces
for which auxiliary field equations of motions are easy to
solve. In the strong gauge coupling limit, vector superfields
do not have gauge kinetic terms becoming auxiliary
superfields and can be eliminated by their equations of
motion. This procedure is known as the Kähler quotients;
see Ref. [49] for constructions of Hermitian symmetric
spaces. Thus, it will be possible to construct higher
derivative nonlinear sigma models on Hermitian symmetric
spaces, as a generalization of the Faddeev-Skyrme CP1

model.
In this paper, we have not introduced superpotentials

while we introduced them for nongauged chiral models in
our previous paper [4]. In the presence of a superpotential,
there are more varieties of BPS topological solitons such as
domain walls [50] in UðNÞ gauge theories [51], domain
wall junctions [52,53] or networks [54], and vortices
ending on or stretched between domain walls [55,56]. In
these cases, the auxiliary field equation can be solved at
most perturbatively even for a single component, as was so
for nongauged chiral models [4].
We also comment that, in our gauged model, Λikj̄ l̄ does

not contain space-time derivatives of the chiral superfields,
unlike the nongauged cases for which it is possible as for
the supersymmetric Dirac-Born-Infeld action in Eq. (2.7)
and the supersymmetric Faddeev-Skyrme model in
Eq. (2.8). A simple gauge covariant generalization of the
form (2.7) or (2.8) does not provide supersymmetric
interactions of the vector superfield. It is interesting to
introduce the gauge covariant derivatives of Φ in a super-
symmetric way in the Kähler tensor Λikj̄ l̄, in order to
construct a gauged Dirac-Born-Infeld action [57] or a
gauged Faddeev-Skyrme model.
In Ref. [58], 1=2, 1=4, and 1=8 BPS states were

classified in N ¼ 2 supersymmetric field theories without
higher derivative terms. Extension to N ¼ 2 supersym-
metric field theories with higher derivative terms should be
an interesting future problem. In particular, 1=4 BPS states
in the canonical branch may have 1=8 BPS state counter-
parts in the noncanonical branch. While off-shell super-
symmetry for eight supercharges is a hard task, because one
needs harmonic superfield or projective superfield

TABLE II. BPS states in the gauged higher derivative (HD) chiral model and super Yang-Mills with gauged nonlinear sigma model.
Theories are defined in Euclidean space. Here L, V, I, VL, HDV, bS, and HDVbS stand for lumps, vortices, instantons, vortex lumps,
higher derivative vortices, BPS baby Skyrmions, and higher derivative vortex-BPS baby Skyrmions, respectively. The subscript stands
for subspaces that the soliton is defined.

SYMþ SUSY NLSM Canonical Noncanonical

L type 1=2 BPS L12 1=2 BPS L12 1=4 BPS bS12
V type 1=2 BPS V12 1=2 BPS V12 1=4 BPS HDV12

VL type 1=2 BPS VL12 1=2 BPS VL12 1=4 BPS HDVbS12
V-V-I type 1=4 BPS V12-V34-I 1=4 BPS V12-V34-I No
VL-VL-I type 1=4 BPS VL12-VL34-I 1=4 BPS VL12-VL34-I No
L-L type 1=4 BPS L12-L34 1=4 BPS L12-L34 No

MUNETO NITTA AND SHIN SASAKI PHYSICAL REVIEW D 91, 125025 (2015)

125025-10



formalisms, partially off-shell supersymmetry that BPS
solitons preserve can be used to construct an effective
theory of BPS solitons [59].
Extension to supergravity is also interesting for appli-

cation to cosmology such as the ghost condensations and
the Galileon inflation models in supersymmetric theories
along the line in Refs. [29–33].
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APPENDIX A: NOTATION AND CONVENTIONS

We use the convention in the textbook of Wess and
Bagger [45]. The component expansion of the N ¼ 1
chiral superfield in the x basis is

Φðx; θ; θ̄Þ ¼ φþ iθσmθ̄∂mφþ 1

4
θ2θ̄2□φþ θ2F; ðA1Þ

where only the bosonic components are presented. The
supercovariant derivatives are defined as

Dα ¼
∂
∂θα þ iðσmÞα _αθ̄ _α∂m; D̄ _α ¼ −

∂
∂θ̄ _α

− iθαðσmÞα _α∂m: ðA2Þ

The sigma matrices are σm ¼ ð1; ~τÞ. Here ~τ ¼ ðτ1; τ2; τ3Þ are Pauli matrices. The bosonic components of the supercovariant
derivatives of Φi are

DαΦiDαΦj ¼ −4θ̄2∂mφ
i∂mφj þ 4iðθσmθ̄Þð∂mφ

iFj þ Fi∂mφ
jÞ − 4θ2FiFj

þ 2θ2θ̄2ð□φiFj þ Fi
□φj − ∂mφ

i∂mFj − ∂mFi∂mφjÞ; ðA3Þ
D̄ _αΦ†īD̄ _αΦ†j̄ ¼ −4θ2∂mφ̄

ī∂mφ̄j̄ − 4iðθσmθ̄Þð∂mφ̄
īF̄j̄ þ F̄ī∂mφ̄

j̄Þ þ 4θ̄2F̄īF̄j̄

þ 2θ2θ̄2ðF̄ī
□φ̄j̄ þ□φ̄īF̄j̄ − ∂mφ̄

ī∂mF̄j̄ − ∂mF̄ī∂mφ̄j̄Þ; ðA4Þ

DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄ ¼ 16θ2θ̄2
�
ð∂mφ

i∂mφkÞð∂mφ̄
j̄∂mφ̄l̄Þ − 1

2
ð∂mφ

iFk þ Fi∂mφ
kÞð∂nφ̄j̄F̄l̄ þ F̄j̄∂nφ̄l̄Þ þ FiF̄j̄FkF̄l̄

�
:

ðA5Þ
When the supercovariant derivative is gauged, we obtain

DαΦ ¼ 2iðσmÞα _αθ̄ _αDmφþ 2θαF þ 2θαθ̄
2ð□φþ gDφÞ − 1

2
ðσmÞα _αðσ̄nÞ _α _βθβθ̄2ð∂m∂nφ − 2ig∂mAnφÞ þ iθ2ðσmÞα _αθ̄ _α∂mF:

ðA6Þ
Using this expression, we obtain Eq. (2.21).

APPENDIX B: SUPERSYMMETRY VARIATION OF FERMIONS

The explicit supersymmetry variation of the fermions in the Euclidean space is given by

δξψ
i
α ¼

ffiffiffi
2

p
i

� ð∂4 þ i∂3Þφiξ̄_1 þ ið∂1 − i∂2Þφiξ̄_2 − iξ1Fi

ð∂4 − i∂3Þφiξ̄_2 þ ið∂1 þ i∂2Þφiξ̄_1 − iξ2Fi

�
; ðB1Þ

δξψ̄
_αi ¼

ffiffiffi
2

p
i

� ð∂4 − i∂3Þφ̄iξ1 − ið∂1 − i∂2Þφ̄iξ2 − iξ̄_1F̄i

ð∂4 þ i∂3Þφ̄iξ2 − ið∂1 þ i∂2Þφ̄iξ1 − iξ̄_2F̄i

�
; ðB2Þ

δξλα ¼
�
iξ1Dþ iξ1ðF12 þ F34Þ − ξ2ðF13 − iF14 − iF23 − F24Þ
iξ2D − iξ2ðF12 þ F34Þ þ ξ1ðF13 þ iF14 þ iF23 − F24Þ

�
; ðB3Þ

δξλ̄
_α ¼

�
−iξ̄_1D − iξ̄_1ðF12 − F34Þ þ ξ̄_2ðF13 þ iF14 − iF23 þ F24Þ
−iξ̄_2Dþ iξ̄_2ðF12 − F34Þ − ξ̄_1ðF13 − iF14 þ iF23 þ F24Þ

�
: ðB4Þ
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