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We study the geodesics of a five-dimensional nonasymptotically flat dilatonic 2-brane. Although the
metric’s warp function diverges logarithmically in the far field region of the transverse space, the curvature
does not. The brane has two naked singularities, the usual central singularity and a circular singularity at the
radius where the warp function vanishes. This creates two causally disconnected regions of the transverse
space. Using the methods of energy conservation and effective potentials, we study the null and timelike
orbital and radial geodesics in both regions and show that they exhibit opposing energy requirements.
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I. INTRODUCTION

The concept of asymptotic flatness in physics is a time-
honored principle usually imposed on gravitational solu-
tions as a way to define isolated and closed systems.
Nevertheless, nonasymptotically flat spacetime solutions
exist in various theories of gravity, supergravity, and string
theory. There are too many of them to simply dismiss as
nonphysical, and yet very little literature exists on their
properties and interpretation (for example see Refs. [1–12]).
Some of these exhibit nonvanishing curvature at infinity,
while others, while endowed with nonasymptotically flat
metrics, are well behaved at infinity. To our knowledge, there
does not seem to be any literature on the geodesic structure
of either types, which is bound to be interesting, and hence
our work purports to fill an important gap in our under-
standing of such spacetimes. In our case study here, we
investigate the geodesics of a 2-brane in five-dimensional
N ¼ 2 supergravity theory endowed with a metric that
diverges logarithmically at radial infinity [13], although its
curvature does not. Far from being an exotic solution
designed specifically to be nonasymptotically flat, this
2-brane arises from the dimensional reduction of M2-branes
over a Calabi–Yau submanifold. Furthermore, its properties
are very similar to another nonasymptotically flat 2-brane,
found in the same work, that arises from four intersecting
M5-branes wrapped over special Lagrangian cycles of the
Calabi–Yau space, which we plan to study in future work.
The fact that these solutions are directly related to M-branes
inD ¼ 11 is another reason why it is important to study their
properties and geodesic and causal structures; a task we
begin in this paper.
The 2-brane studied here carries a real charge that can be

either positive or negative, giving two different metrics, and
both have the interesting property that they change sig-
nature over two regions of the two-dimensional space
transverse to the brane, introducing what seems to be

two extra time dimensions.1 For the positively charged
solution, this is the inner region, while for the negative
charge, it is the outer region. In our case, the two regions
are causally disconnected, and the effect their presence has
on the geodesics is that they seem to be inverted with
respect to each other in terms of the allowed test particle
energies. While it is possible to dismiss the “inverted”
regions as unphysical, or at least abandon the interpretation
of geodesics as particle trajectories, they do arise as a direct
result of the logarithmic nature of the metric, which in turn
follows from the dimensional reduction of M-branes.

II. GENERAL PROPERTIES

The 2-brane subject of this study was originally found
in Ref. [13] and is the result of the dimensional reduction
of a single M2-brane down to five dimensions over a rigid
Calabi–Yau manifold (Hodge numbers h1;1 ¼ h2;1 ¼ 0).
The brane’s metric in the Einstein frame

ds25 ¼ −dt2 þ dx2 þ dy2 þ fðrÞðdr2 þ r2dθ2Þ ð1Þ

is characterized by the warp function fðrÞ ¼ mþ q lnðrÞ,
being the solution of the radial two-dimensional Laplace
equation in the transverse space ðr; θÞ. The real integration
constant m is the value of f at r ¼ 1. Without loss of
generality, we will set m ¼ 1. The constant q may in
principle acquire positive or negative values, and we will
explore both cases. It can be argued that the brane’s mass
density is in fact proportional to q2, as briefly outlined
below. The brane couples to the four scalar fields of the
universal hypermultiplet, and hence it is a dilatonic
solution. In fact, the warp function is directly related to
the dilaton as discussed in Sec. VII.
The warp function fðrÞ bestows on the brane two

interesting properties: the first is the nonasymptotically
flat nature that inspired this work in its entirety, and the
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1This kind of behavior has been previously investigated, under
different contexts, by several authors, such as in Ref. [14].
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second is the fact that it causes the metric signature to
change from “−;þ;þ;þ;þ” to the unusual “−;þ;þ;

−;−” at the radius r ¼ Rb ¼ e−
1
q. So a question that arises

early on is what exactly the physical interpretation of that
circular “barrier” r ¼ Rb is. To answer this question, we
investigate the usual geometric properties: the Riemann and
Ricci tensors, the Ricci scalar, and the Einstein tensor,
respectively:

Rr
θθr ¼ − q2

2f2
; Rθ

rθr ¼
q2

2r2

Rrr ¼
q2

2r2f2
; Rθθ ¼

q2

2f2

R ¼ q2

r2f3

Gtt ¼
q2

2r2f3
¼ −Gxx ¼ −Gyy: ð2Þ

We note that all of these are in fact well behaved at radial
infinity, while they diverge at r ¼ Rb, where f → 0. The
circle r ¼ Rb is then a naked spacetime singularity. It
separates the transverse space into two causally discon-
nected regions r < Rb and r > Rb. The geodesics are then
expected to be discontinued at that boundary. Now since
fðrÞ diverges at infinite r, it is rather difficult to rigorously
define the mass density of the brane; however, since it is
necessarily proportional to Gtt, one sees that it is dependent
on q2, so the brane’s mass density should be positive for
any real value of q. If one wishes to explore this in more
detail, the so-called “quasilocal mass” may be investigated
[15]. The geodesic equations

d2xσ

dλ2
þ Γσ

μν
dxμ

dλ
dxν

dλ
¼ 0; μ; ν; σ ¼ 0;…; 4 ð3Þ

lead to

̈r ¼ ðqþ 2fÞ r
_θ2

2f
− q
2rf

_r2

θ̈ ¼ −
_r _θ
rf

ðqþ 2fÞ; ð4Þ

where an overdot represents a derivative with respect to λ:
an arbitrary affine parameter in the null case or the proper
time in the timelike case. Now consider the Lagrangian L of
the geodesics:

2L ¼ gμν _xμ _xν ¼ −_t2 þ f_r2 þ r2f _θ2: ð5Þ

Clearly, the parameter θ is cyclic, signalling the first
integral

∂L
∂ _θ ¼ r2f _θ ¼ l; ð6Þ

where the constant l is the angular momentum parameter.
This can be used to further reduce (4) to the single equation

̈r ¼ ðqþ 2fÞ l2

2r3f3
− q
2rf

_r2: ð7Þ

The nature of r ¼ Rb is immediately obvious from (4)
or (7) since ̈r; θ̈ ∝ f−1 and as such diverge at Rb. As the
equations of motion are highly nonlinear, we will attempt
mostly numerical solutions with various initial conditions.
For the simpler case of the radial geodesics (l ¼ 0), it is
actually possible to find an analytical solution, as we
will see.

III. ORBITAL EFFECTIVE POTENTIAL

It is quite instructive to first study the Newtonian
effective potential. We will see that it has an interesting
anomalous behavior as a direct consequence to the sig-

nature flipping singularity Rb ¼ e−
1
q. The other first integral

of (5) is found by first calculating the conserved temporal
conjugate momentum

∂L
∂_t ¼ −_t ¼ E ð8Þ

and substituting in the normalization condition

gμν _xμ _xν ¼ −_t2 þ f_r2 þ r2f _θ2 ¼ ε; ð9Þ

where ε is zero for null geodesics and −1 for timelike
geodesics. This gives

E ¼ E2 þ ε ¼ f_r2 þ l2

r2f
; ð10Þ

where the constant E is taken to define the total energy.
Now, since _r2 cannot be allowed to become negative, we
interpret the second term of the right-hand side of (10) as
the Newtonian effective potential, so

Veff ¼
l2

r2f
: ð11Þ

Note, however, that the presence of f allows the kinetic
term f_r2 to become negative which results in an upside-
down effective potential in the inner region r < Rb (this is
for the case q > 0—for the case q < 0, the upside down
potential occurs at r > Rb). Essentially, the quantity

_r2 ¼ E − Veff

f
ð12Þ
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must remain positive for all allowed geodesics. For the
outer region r > Rb (q > 0), this is not a problem since
both f and Veff are positive so geodesics can exist for all
values E ≥ Veff . On the other hand, in the inner region
r < Rb, both f and Veff become negativewhich implies that
the allowed geodesics must have values E ≤ Veff . In other
words the effective potential is inverted for the inner
regions, as shown in Fig. 1(a), where we have also included
a plot of fðrÞ for reference. For the case q < 0, Fig. 1(b),
the inner region is where the potential is “right-side up,”
and the argument is reversed. Since the shaded regions are
forbidden, geodesics in the inner region can never connect
to infinity and vice versa. As we will see, radial “infall”
geodesics will exhibit similar properties, as would be
expected.

IV. STABILITY OF CIRCULAR ORBITS

Figures 1(a) and 1(b) clearly show the existence of
circular orbits. The value of the radius R0 may be found in
the usual way by either setting

V 0
eff ¼

dVeff

dr
¼ − l2

r3f2
ðqþ 2fÞ ð13Þ

to zero and solving for r ¼ R0 or by setting ̈r ¼ _r ¼ 0 in
(7). Both of these give

qþ 2fðR0Þ ¼ 0

→ R0 ¼ e−ð
1
2
þ1

qÞ: ð14Þ

Usually, there are two methods of exploring the stability
of circular orbits. The first is the standard second derivative
test

V 00
eff jr¼R0

¼ l2

r4f2

�
5qþ 6f þ 2

q2

f

�
r¼R0

8<
:

> 0 stable

¼ 0 critical

< 0 unstable:
ð15Þ

In this case, however, this method leads to the incorrect
result for q > 0, since it does not test the actual dynamical
stability of the orbit but rather simply tests whether the
potential has a minimum or a maximum. The true stability
is tested by perturbatively disturbing the circular orbit and
exploring whether it leads to an oscillation about R0 or not.
This is done by plugging r ¼ R0 þ ϵ, where ϵ ≪ R0, in (7),
expanding and ignoring Oðϵ2Þ terms and higher, giving

̈ϵþ
�
8l2

q2R4
0

�
ϵ ¼ 0: ð16Þ

This is of course the standard simple harmonic differ-
ential equation with angular frequency

ω ¼
���� 2

ffiffiffi
2

p
l

qR2
0

����: ð17Þ

The fact that ω2 is positive for both q ¼ �1 indicates
that the circular orbit is stable under small perturbations
even for the case q > 0 where the potential is clearly
upside down.

V. ORBITAL GEODESICS

We now attempt numerical solutions to Eqs. (4) classi-
fied by different values of the total energy E. Another
peculiar consequence of the warp factor f is the possibility
of getting negative values (left handed) for the initial
angular speed _θi corresponding to positive angular
momenta l (right handed), via (6). We then set l ¼ �1

as appropriate to always give positive values for _θi. The
energies E are chosen as multiples of the energy of circular
orbits,

(a) (b)

FIG. 1. The effective potentials and the warp function (not to scale). (a) q > 0. (b) q < 0.
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E0 ¼
−2l2

qR2
0

; ð18Þ

and the initial radial velocity is calculated using

_ri ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − Veffðri;lÞ

fðriÞ

s
; ð19Þ

where ri is the initial radius. All plots start at the horizontal
axis; i.e., the initial angle is θi ¼ 0. The results are
collectively shown in Table I. Figures 2 represent the
null/timelike geodesics for q ¼ þ1. The plots for the case
q ¼ −1 are very similar in form, just larger by a factor of
e2=jqj. Finally, the inner regions’ geodesics can be shown to
be closed by plotting their phase diagram _r vs r. These are
given in Fig. 3.

VI. RADIAL GEODESICS

We now study the radial geodesics. The energy con-
servation relation (10) reduces to

_r2 ¼ E
f
; ð20Þ

implying that radial geodesics with positive total energy E
cannot exist inside the barrier r < Rb (for the case q > 0
and the reverse argument for q < 0). Equation (20) leads to

λðrÞ ¼
Z

dr

ffiffiffi
f
E

r
; ð21Þ

the solution of which is

λðrÞ ¼ 1

2

ffiffiffi
f
E

r �
2rþ

ffiffiffi
π

p
Rb

χ
erfcðχÞ

�
; ð22Þ

where

erfcðχÞ ¼ 2ffiffiffi
π

p
Z

∞

χ
e−u2du ð23Þ

is the Gauss complimentary error function and

χðrÞ ¼
ffiffiffiffiffiffiffi
− f
q

s
: ð24Þ

For positive values of q, the function χ is real only for
negative f, which is true in the region r < Rb. The square
root ahead of (22) also requires E < 0 as in the orbital case.
On the other hand, in the region r > Rb, positive energies
are required, and the overall λðrÞ is still positive because the
product of the now complex χ with its own complimentary
error function is real. The argument is reversed for the
case q < 0.
Figure 4(a) shows λðrÞ plots of six double geodesics2 for

q ¼ þ1, three in the inside region r < Rb and three in the
outside region r > Rb. The inner geodesics have E ¼ −1,
with initial radii Rb=4, Rb=2, and 3Rb=4. The outer
geodesics have E ¼ þ1 with initial radii 3Rb=2, 2Rb,
and 5Rb=2. For each point we show outward (the solid
lines: _ri > 0) and inward (the dashed lines: _ri < 0) geo-
desics. The singularity r ¼ Rb appears naturally, causally
disconnecting the inner and outer regions.
In the outer region, the geodesics exhibit the expected

_r behavior: outward curves seem to “slow down” as they
move away from the brane, while inward curves speed up
as they move toward the ring singularity. In the inside
region, the curves speed up toward the ring singularity but
slow down toward the central singularity r ¼ 0. To clarify
this, consider (20), this function is “symmetrical” about
r ¼ Rb, in the sense that j_rj gets larger as it approaches
r ¼ Rb and smaller as it moves away from it, in any
direction, even toward the central singularity. This is yet
another unusual property of this 2-brane. Figure 4(b) shows
a q ¼ þ1 plot of j_r2j that further clarifies this point.

VII. UNIVERSAL HYPERMULTIPLET
AND THE STRING FRAME

As shown in Ref. [13], the 2-brane couples to two of the
four scalar fields of the universal hypermultiplet, these
being the dilaton σ and the 3-form gauge potential A012,
while the two axions vanish. The fields are

σðrÞ ¼ − ln fðrÞ
A012 ¼ �f−1: ð25Þ

Clearly, the dilaton σ only has real values in the regions
(q > 0, r > Rb) and (q < 0, r < Rb), i.e., regions where
the metric is positive. However, the dilaton’s field strength
dσ exists everywhere and is singular at both r ¼ 0 and
r ¼ Rb, and the same is true for the 4-form field strength
Fr012 ¼ dA012, as shown in Fig. 5. Explicitly,

TABLE I. The q ¼ �1 solutions classified by energy and initial
conditions.

q ¼ �1 Figure number l ri E _ri

Inside region 2.a ∓1 R0 E0 0
2.b 50E0 > 0
2.c 5000E0 > 0

Outside region 2.d �1 2Rb −E0=4 > 0
2.e −E0 < 0
2.f 20Rb ≈∞ −E0 < 0

2Light cones in the null case.
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FIG. 2. Results of numerically solving equations (4) for q ¼ þ1. The q ¼ −1 plots are identical, except that the scale is adjusted by a
factor of e2. For example, the radius of the circular orbit for q ¼ þ1 is R0 ¼ 0.2231, while for the q ¼ −1 case, it is
R0 ¼ 0.2231 × e2 ¼ 1.6487, and so on. (a) The circular orbit. (b) An inner orbit with low energy. (c) An inner orbit with high
energy. (d) An outer region geodesic: _ri > 0. (e) An outer region geodesic: _ri < 0. (f) A slingshot geodesic: _ri < 0, ri → ∞.
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dσ ¼ − q
rf

dr

Fr012 ¼ ∓ q
rf2

dr: ð26Þ

For completeness, we reanalyzed the results in the
previous sections in the string frame, where the metric
becomes

ds2String frame ¼ e
4
3
σds2Einstein frame

¼ f−4
3ð−dt2 þ dx2 þ dy2Þ þ f−1

3ðdr2 þ r2dθ2Þ:
ð27Þ

The geodesic equations in this frame are

̈t ¼ 4q
3rf

_t_r; θ̈ ¼ _r _θ
3rf

ðq − 6fÞ ð28Þ

̈r ¼ q
6rf

ð_r2 − r2 _θ2Þ þ r_θ2 þ 2q
3rf2

_t2; ð29Þ

along with the first integrals

_t ¼ −f4
3E; _θ ¼ f

1
3

r2
l: ð30Þ

For null geodesics, energy conservation leads to

E ¼ E2 ¼ f−5
3 _r2 þ Veff ; ð31Þ

where the effective potential is still defined by (11).
Consequently the geodesics in the string frame are similar
to those in the Einstein frame and are still described, up to
scaling factors, by the previous plots [Figs. 2, 3, and 4(a)]
as can be easily checked.

(a) (b)

FIG. 3. Phase diagrams _r vs r for the inner orbits in Figs. 2(b) and 2(c). These are for the case q ¼ þ1. The ones for the case q ¼ −1
are identical up to a scale as well. (a) The phase diagram for Fig. 2(b). (b) The phase diagram for Fig. 2(c).

(a) (b)

FIG. 4. The radial geodesics.
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VIII. CONCLUSION

In this work, we have studied the geodesic structure of a
nonasymptotically flat 2-brane in D ¼ 5 supergravity. This
solution is one of two branes that arise as the dimensional
reduction of M-branes over a rigid Calabi–Yau manifold,
the second of which we plan to explore in future work,
although the fact that they have similar properties implies
that they probably share similar geodesic structures (the
second brane differs only in that it does not change
signature). The brane’s metric contains a logarithmic warp
function fðrÞ that diverges at radial infinity. Although the
curvature of the transverse space vanishes at infinity, it
diverges on the brane (r ¼ 0) as well as at the radial
distance r ¼ Rb, the root of the logarithmic function.
Hence, there are two causally disconnected regions sepa-
rated by a circular ring singularity. The warp function fðrÞ
flips sign over the boundary of these two regions intro-
ducing an interesting behavior to the geodesics’ energy
conservation, in that the Newtonian effective potential is
upside down in one of the regions as compared to the other.
Only negative energy geodesics can exist in one and
positive energy geodesics in the other. The fact that the
metric changes signature over this boundary raises all kinds

of interesting questions as to the causal structure in the
regions where there is more than one time dimension. This
begs for further investigation in the future. It is also
possible to argue, however, that such a signature change
simply introduces a forbidden spatial region. So regions of
the transverse space where the effective potential is inverted
are nonphysical, and nothing can exist there. This is further
amplified by noting that the dilaton potential can only exist
in regions where the brane carries the standard signature.
On the other hand, the fields do exist everywhere, and
reanalysis in the string frame showed no difference from
that in the Einstein frame. Again, due to the uniqueness of
such nonasymptotically flat solutions and their relation to
the dimensional reduction of M-branes, this begs for further
investigation before any such conclusions can be firmly
established. Furthermore, although the literature contains
several solutions with nonasymptotically flat metrics (with
or without vanishing curvature at infinity), there does not
seem to be any work done on the geodesic structure of such
solutions. This paper then fills an important gap. In the
future, we also plan to investigate the geodesic structure of
spacetime solutions of which the curvature does not vanish
at an infinite distance from the source.
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